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Abstract

We define the push statistic on permutations and multipermutations and
use this to obtain various results measuring the degree to which an arbi-
trary permutation deviates from sorted order. We study the distribution on
permutations for the statistic recording the length of the longest push and
derive an explicit expression for its first moment and generating function.

*This material is based upon work supported by the National Research Foundation
under grant numbers 86329, 81021 respectively

JCMCC 115 (2020), pp.77-95



Several auxiliary concepts are also investigated. These include the number
of cells that are not pushed; the number of cells that coincide before and
after pushing (i.e., the fixed cells of a permutation); and finally the number
of groups of adjacent columns of the same height that must be reordered
at some point during the pushing process.

1 Introduction

The combinatorial objects considered in this paper are permutations and
multipermutations (collectively referred to as permutations). A permuta-
tion of [n] = {1,2,...,n} is an ordering of the elements of [n}, and for any
positive integer m, a multipermutation of the multiset {17*,2™, ... n™}
is an ordering of {1™,2™,...,n™} where the m copies of each member
of [n] are considered indistinguishable (see, e.g., [12, Section 1.3]). It is
well known that there are n! permutations of [n] and ("™ ) multiper-
mutations of {1™,2™, ... ,n™}, where it is understood that the m occurs
n times in the multinomial coefficient. Let S,, denote the set of permuta-
tions of [n] and S, ., the set of multipermutations of {1™,2™,... ,n™} for
m > 1. Statistics related to left-to-right maxima on S, and &, ;, have been
previously studied in [10, 13]. See also [6] for related asymptotic properties
on iid sequences of discrete random variables.

We define here a new statistic on permutations as follows. Consider an
arbitrary member of S, ,, with its corresponding graphical representation
where a column of height r represents a part of size r. We say that a column
of size r consists of r unit squares called cells. Suppose that the leftmost
element in the permutation which is not a weak left-to-right maximum (a
weak left-to-right maximum is a part which is greater than or equal to all
parts to its left) occurs in position : and has height v(¢). Shift all cells
which are to the left of i and of height greater than v(i) one position to
the right. We call this shifting process a push. We apply a sequence of
pushes, successively, to a permutation, which terminates once a weakly
increasing permutation has been achieved. Illustrated in Figure 1 below is
the multipermutation 322131 of {12, 22, 32} and the sequence of four pushes
leading to its counterpart 112233, which is the sorted order of any member
of 53,2.

Remark 1. We see that the total number of pushes required to generate a
weakly increasing permutation is equal to the length minus the number of
weak left-to-right mazima. In the example above, the length is 6 and there
are 2 weak left-to-right mazima resulting in 4 pushes.
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Figure 1: The multipermutation 322131 with its 4 pushes

Here, we study pushes and some associated concepts such as the total
number of cells which do not move in the pushing process (see Section 2)
and the total number of cells that coincide before and after the process
(Section 3). In the fourth section, we consider the notion of a frictionless
push where cells are shifted to the right not necessarily one position at a
time but perhaps several positions corresponding to a group of adjacent
columns of the same height strictly less than that of the cells being shifted.
A simple formula for the average number of frictionless pushes in multiper-
mutations is derived, and a combinatorial proof of this result is provided.
In the fifth section, we consider a statistic on permutations recording the
length of the longest push and derive an explicit formula for the generating
function of the distribution and its first moment. Some concluding remarks
are made in the final section.

2 Number of cells that do not move

The average number of left-to-right maxima in permutations of length »
is well known to be the harmonic number H, =377, }1- (see, e.g., [3, 4]).
Thus, by Remark 1, we have the following result.

Theorem 1. The average number of pushes over all permutations of [n] is
given by
n— H,.

The number of pushes in multipermutations is equal to the length minus
the number of weak left-to-right maxima, which have been studied previ-
ously by Myers and Wilf in [10]. Using their result on multipermutations,
we obtain the following.

Theorem 2. The average number of pushes over all multipermutations of
{1™,2™, ..., n™} is given by

e Z(nmz)m+1
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In the rest of this section, we calculate the total number of cells that
do not move in the pushing process over all permutations of length n. In
Figure 2 below, the cells that do not move are indicated by a dot.

° ©
o e oo
t ole

ole |
2 ®|® 0@ © ee e @
e|e|ejoe ¢l e , e|e|e
e|e|e|o|e oo e o eo/o0|o|e
Original permutation Pushed permutation

Figure 2: The cells that do not move in the permutation 2174356

Let P(n) denote the total number of cells that do not move, taken
across all members of S,. We will construct (as illustrated below) the
permutations of length n + 1 from those of length »n using the following
process: For an arbitrary member of S,,, place n + 1 in the k-th position
(from the left) for some 1 <k < n+1. Let A, x be the additional number
of unmoved cells across all members of &, ¢; belonging to the column of
height n + 1.

We note that the insertion of n + 1 does not change which cells did
not move in the prior n-case. In other words, a cell to the right or left
of the k-th position will not move under the pushing process of the new
permutation if and only if it did not move in the pushing process for the
member of §,, from which it arose. Furthermore, the number of additional
cells that do not move and belonging to the new k-th part of size n 4+ 1 is
seen to equal the size of the smallest part to the right of n + 1.

As indicated in the sketch below, let ¢ denote the smallest part in the
permutation of [n] which occurs to the right of the k-th position. Hence,
the parts 1,2,...,%7 — 1 occur in any order to the left of the k-th position.

The number of permutations with this structure is then given by BCD
as in (2.1) below, where B is the number of possible positions for 7, C is
the number of ways to arrange and order the parts less than ¢, and finally
D is the number of ways to order the parts greater than 7 (excluding n+ 1)
in their positions.
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Figure 3: Decomposition of a permutation with regard to unmoved cells

(n—k+1) (’?:;)(5—1)1(7;—5)! (2.1)
\-v—-/\ 2 l\_v.._/
B (¢} D

Since each permutation with this structure contributes ¢ cells, the total
number is given by

i(n—k+ 1)(’::11)(7:—-1)!(71—1')!.

Considering all possible z implies

k
Ank z:Z(n— k+ 1)(?:;)(%— ) (n—1i)l.
i=1

Note that i < k, otherwise, it is not the minimum to the right of position
k. Thus

ko . .
= kY g

i{n — i)!

=(n—k+1)(k- 1)12 =T

(n+ 1)! _ (n+ 1)
m—k+1)(n—k+2)(k—1)! n4+2—-k

= (n—k+1)(k—1)!
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Summing over all k, we obtain

n+ 1)!
n+2-—k
= (n+ DW(Hy, — 1) + nli{n +2)
=nl((n+ 1)H, +1),

P(n+1)—(n+1)P(n) = Z Lt in+2)

where the n!(n 4 2) term accounts for the cases where k =1 and k=n+1.
This last equation may be rewritten as
P(n+1) P(n)
n+1!  nl

+Hn+17 nZ 1!

with initial condition P(1) = 1. Letting av(n) = f%)-, we obtain the
recursion av(n + 1) = av(n) + H,, 1, which has solution

av(n) = (n+ 1)(Hn41 — 1)
Thus, we have the following result.

Theorem 3. The number of cells that do not move in all permutations of
length n s
P(n) = av(n)n! = (n + 1)1 (Hny1 — 1).

From this, we see that the average number of cells that do not move is
asymptotically equal to nlogn.

3 Fixed cells in permutations

Consider performing the push sequence from left-to-right until an increasing
permutation is obtained. Any cell in the grid that is filled in both the
original and final permutation will be termed a fized cell. We illustrate this
in the following example: The permutation 2174356 is pushed, resulting
in the identity permutation of length 7. The 23 fixed cells are shaded in
Figure 4 below.

By comparing the original arbitrary permutation with the pushed iden-
tity permutation, we notice that for a particular column of size r in position
k of the original permutation, the number of fixed cells contributed by this
column is the minimum of » and k. This is because after the pushing pro-
cess, the part of size k ends up in position k& and so the number of fixed
cells contributed is obtained by comparing » with k. Hence, considering
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Original permutation Pushed permutation

Figure 4: The fixed cells of the permutation 2174356

all possible parts 7 in the k-th position, the contribution to the number of
fixed cells from this position is given by

(n—1)! (f:w f: k)

re=] r=k+1

So the total contribution over all positions k is

n k 1)
(n-l)!Z(Zr+ > k)
k=1 \r=l r=k+41

=(n-11y" ((Z) +(n—k+ 1)k) = (n— 1)!§(n+ 1)(2n +1).

k=1
Let Av(n) be the average number of fixed cells over all members of S,,.
From the previous equation, we have the following result.

Theorem 4. The average number of fized cells in a permutation of [n] s

Av{m) = %(n+ 1)(2n + 1),

2
Asymptotically, the number of fixed cells on average is 1‘; compared to %~
cells in total. Thus, the proportion tends to §, i.e., two thirds of the cells
are fixed.

The preceding may be generalized to members of Sn,m- In this case, the
reordered multipermutation with which we compare an arbitrary permuta-
tion is 1™2™ ... n™m  For each part k in the final sorted multipermutation,



the number of fixed cells is found by comparison of k with the original num-
ber i of cells in the position now occupied by the k in question. If ¢ < k,
then the position corresponding to this k contributes 7 fixed cells, whereas
if i > k, then the contribution is k. For example, the multipermutation
399131 has 9 fixed cells which are shaded in the figure below.

orted

Figure 5: The permutation 322131 with its fixed cells

For each such i, the number of permutations of the remaining nm — 1

positions is given by (m .Tfr:z—’n];—l)’ where the multinomial coefficient has

n — 1 copies of m. This evaluates to A == (—7;% Hence, the total
number of fixed cells is

n k
S mAQ 4+
k=1 r=1

The factor m arises because there are m copies of each letter k, and hence
m positions to consider. Again, letting Av(n) denote the average number
of fixed cells over all members of Sy, m, We obtain

;l k) =m (m!()ﬁf_"l E;ﬂ i %(n +1)(@n+1).

Av(n) = -’g-(n +1)(2n+1).

4 TFrictionless pushes in multipermutations

A frictionless push is counted from the bottom of the multipermutation
upward and within each row from left to right. It is defined recursively
as follows: The leftmost group of adjacent 1's (single or multiple) in the
bottom row count one frictionless push constituted by moving the maximal
block consisting of parts > 2 from the left of these 1’s to their immediate
right. This is then repeated until all 1’s are at the beginning of the multi-
permutation. Then the same procedure is applied to the second row, i.e.,
for multiple or single 2’s, and so on, recursively, to all other rows. The
procedure ends once the multipermutation is in sorted order.



Note that the statistic recording the number of frictionless pushes dif-
fers from the push statistic as defined in the introduction when applied to
members of Sy, ., where m > 1. Though the two statistics coincide when
m = 1, the order in which the various elements are shifted forward is dif-
ferent. If m > 1, then a member of Sn,m will have strictly more pushes
than it does frictionless pushes, unless each element that is shifted occurs
singly (i.e., as a run of length one), in which case they are equal in number.
Thus, counting frictionless pushes involves keeping track of certain runs of
elements in a multipermutation whose elements are not weak left-to-right
maxima. See, e.g., [1, 2, 8, 9] for other kinds of statistics on permutations
related to runs or various types of maxima.

We define a generating function F(g) which enumerates members of
Sn,m according to the number of frictionless pushes required to produce
sorted order. Note that the distribution for frictionless pushes on multi-
permutations may also be obtained, equivalently, by first considering the
groups of columns of height n and shifting them, if necessary, so that they
all occur at the end, and then considering columns of height n — 1 and
shifting them, and so on for columns of lesser height, until sorted order is
achieved. To realize this equivalence, consider applying to multipermuta-
tions the reverse complement operation.

We now find a recursion for F™(q) as follows where m > 1 is fixed.
An arbitrary member of Snt1,m is obtained from a precursor in Sn.m by
inserting the m (n+ 1)’s in any of the positions of the precursor. To count
these, we assume that j of the (n+1)’s where 0 < j < m are placed together
in the rightmost position of the precursor. These are already in sorted order
and therefore contribute no frictionless pushes. Let j; denote the number of
runs of n+1 of length i (in each run, precisely 7 n+1’s are inserted adjacent
to one another somewhere within the precursor). Each run contributes one
frictionless push, and the number of choices regarding the relative positions
of the runs for each precursor is given by G, ,J'z,.--,jr::znr:wZEg, ;). Tosee this,
first consider the number j; of possible positions for the runs of n + 1 of
length one, then the number j; of positions for runs of n + 1 of length two,
and so on, up to m. We obtain the total number of choices regarding the
positions of the runs as

o () () (5519

(st 00
jhjZ: ses :jra nm — 22.:1 jz' ‘

Note, for instance, that once the positions for the j; runs of length one
have been chosen, there are (nm + j1) — 2j1 = nm — j; possible positions
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for the j, runs of length two, which accounts for the ("";;j 1) factor. This
development is then repeated when considering the subsequent run lengths.

From the prior considerations, we thus obtain the following recursion:

Fvﬁl(‘l)

m-—1
nm S .. di
=1+ > . )q“*2‘ F (9)-
(31;3%' .

. r ‘
sy Jry VM Zq‘,:l Ji

3=0 3,5, ifi=m—j
(4.1)

Iterating this equation yields

Fr ()

_..nI:f 1_{_”5:51 Z ( Zm ) E,—>;ji
=1l L P o

3=0 325, Wi=m—J sy ey M Zi:.l Ji
(4.2)

where Fi*(g) = 1. When ¢ = 1, we have the identity

:ﬁ 1+mi:1 3 (jl,jg,. i ) . (43)

Jrsmm — Y0y i
g==1 j=0 2::“1 ije=tn—3j LRI L 6 i=1J/2

For later use, we define the factors in (4.2) by

m—1
m .
14 ( ) )2—;};13" 4.4
Z Z A1, T2 - - p ( )

G M =Y 4 i
3=0 I, ifi=m—j I Zle Ji

fi

where 1 < £ < n— 1. For example, here is a calculation for the generating
function F2, ie., for arbitrary n where m = 4. In this case, the solutions
to the equation

ji+ 2t i =4

are given in Table 1 below.



=
. =1
n=3{n=1 gJo=1 Ja=1

O] =] b o,
o
ead
Il
[ 2]

nn=41n=2 g=1j5=1 gs=1]j=2]|js=1

Table 1: Possible values of 3;

Each j; not specified in the solutions is taken to be zero. So (4.1)
becomes:

Foilg) = [1 + 4(4f)q+2(4;)q2 + (?)ff’ - (?)tz“

4n 2 dn 3 4
*“2(1, 1,4nw2)q * (2, 1, 4n — 3)" ] Fata)

Simplifying this and substituting into (4.2), we obtain
Fy(q)

n—-1

=11 (1 + 16dig — 12(1 — 4é)g” + #z(l — 20)(1 — 44)¢°

=1

——%z’(l —2i)(3 — 4)(1 ——-412)(14) : (4.5)

Checking equations (4.3) and (4.5), we msert g = 1 and n = 3 into the

latter and obtain 34650. This is indeed (,’ 44 4) as asserted by the former.
4|
d =1 3
One can further compute -5 e
2 q;:l
dfr
2 { mi
Lemma 1. For each fized m > 1, == -

Proof. We begin by simplifying fgn‘q::l' From (4.3) and (4.4),

((z+1)m)
\m,...,m/ (mz a5 1) (mi +m). (4.6) _

q:—:—l ( im
My...,m2

i

Next, we provide a combinatorial interpretation of %n»lqzl. We represent
by fi™ the number of ways of positioning the m (¢ +1)’s when constructing
an arbitrary member of S; 1 ,,, from one in S; ,,, where if a run of i 4 1 is
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placed in some position other than the last, this produces a single friction-
less push marked by the variable q. Then %ﬁ——lq=1 is the total number of
frictionless pushes and thus

o > (n:n)’ (T) - m; (n;) (Tjn__ 11)' (47)

Jj=1

af>*
dq

To see this, note that the first binomial coefficient in the first sum represents
the number of ways of choosing the positions for ;7 distinct runs of i+1 (not
counting a possible terminal run of 14 1), with the factor of 7 accounting for
the number of frictionless pushes which result from this choice. The second
binomial coefficient (") then gives the number of ways that the m (i +1)’s
may be split into j + 17 groups where each of the first j groups is nonempty.
By (4.6) and (4.7), our lemma is true if and only if

m(l + i); (";’) (’;":11) - .i—!(mi)(mz' + 1) (mi+m),

or equivalently

i (n;z) (T:ll) = ;};(mz’)(mi +1)--(mi+m—1)

j=1 )
mi+m—1
— m 3

which holds by Vandermonde’s identity (see, e.g., [5, Formula 5.23]), com-
pleting the proof. O

Theorem 5. The average number of frictionless pushes in multipermuta-
tions of {1™,2™, ..., n™} is m(n— H,).

Proof. Differentiating both sides of {4.2) with respect to g, setting ¢ = 1
and using Lemma 1, we have

dF7(q) nm e nm s 1
—n Y = 1—
dq m,...,m m§1+i m,...,m m) 148

= ( e )m(n—-Hn).
My .., M

Dividing by (m:"” ) yields the desired result. O
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We conclude this section by providing a bijective proof of the prior
result.

Combinatorial proof of Theorem 5.

We first count the frictionless pushes where it is assumed that the m
copies of each letter ¢ € [n] are distinct (which we denote by 1;,12,...,im).
Assume that ¢, < jp if ¢ < j and that the 4, for a given 7 are equal when
comparing the entries of a multipermutation. Then there are (mn)(mn)!
letters in all of multiset permutations = of {1™,2™,...,n™} where the
letters are considered distinct from which we will subtract a certain set
of letters to obtain the stated result. By a block ender, we will mean the
final letter of a run (i.e., block) of the same element which is moved in
some frictionless push when = is reordered (where here we start by moving
blocks involving the letter n, if needed, and then n — 1, and so on). That
is, a block ender is the last letter of some block for which there is at least
one clement to the right of the block that is smaller than the elements
in the block. Note that the total number of block enders within all the
permutations is the same as the total number of frictionless pushes. Other
letters will be referred to as non block enders. So we will count the total
number of non block enders and subtract from the total number of letters to
obtain the number of frictionless pushes. Within a given multipermutation
7 of {1™,2™,. .. ,n™}, let S = S; denote the subsequence (of length mi)
comprising copies of all letters in [i] where 1 < i < n. Fix a copy 1, of the
letter 7, where 1 < a < m. Note that i, is a non block ender of = if and
only if either (a) 7, is the rightmost letter of S, or (b) ¢, is not the final
letter of its run.

We use basic probability to compute the number of 7 for which either
(a) or (b) holds. The probability that (a) holds for a randomly chosen
permutation 7 is seen to be -:- and thus there are L (mn)! possibilities.
In order for (b) to occur, it must be the case that i, is not the last letter
of S and, given this fact, the next letter in S is another copy of i. Upon

conditioning on the first of these events, the probability that (b) holds

for a randomly selected permutation is (B&3d) -ﬁ"ﬁl}) = 2Z=1 and thus

there are (=1} (mn)! such permutations. Combining (a) and (b) yields
(;11*; + %‘;—1-) (mn)! = -}(mn)! possible permutations 7, and thus the num-
ber of times i, occurs as a non block ender. By symmetry, the same is true
of any copy of 7 giving Z*(mn)! non block enders involving a copy of i. Sum-
ming over 1 < i < n yields ). | Z(mn)! = mH,(mn)! non block enders
in total. The desired result now follows from subtracting from (mn)(mn)!,

and dividing by (m!)™ (since copies of letters are not to be distinct). O
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It is also possible to give a combinatorial proof of Theorem 2 above,
which provides such a proof as well for the comparable result from [10] on
weak left-to-right maxima.

We first count weak left-to-right maxima (wlrm) in multipermutations
where it is assumed once again that the m copies of each letter i € [n]
are distinct (which we will denote by 1,12,...,%,). Note that if z; for
some j € [m] corresponds to a wirm, then it must occur to the left of all
copies of elements in [i + 1,7n]. The probability that i; occurs to the left
of all elements in [z + 1, n] within a randomly chosen permutation is given
by Gr—gm7r (Which can also be realized by cyclic rotation of ¢; and the
elements of [i + 1,n] within their positions). So there are W(nm)!
wlrm involving ; and thus mf-)—"r;ﬁ(nm)! wirm involving any copy of i, by
symmetry. Summing over i gives Y .., =y (nm)! wirm in total, and
dividing this by (m!)™ gives all the wirm in members of S, ;. Subtracting
from nm(mf.’fm) yields the total number of pushes in members of S, m,

and dividing by (. "™ ) implies the result. O

m

5 Push of greatest length

By the length of the longest push within = € S,,, we mean the greatest
number of positions an individual element i € [n] must be moved when =
is reordered. For example, if # = 6514372 € Sy, then we have the sequence
of pushes

m = 6514372 — 5614372 — 1564372 — 1456372 — 1345672 — 1234567,

where the underlined entries in each step are those responsible for the push.
Note that we have push lengths of one, two, two, three and five correspond-
ing to the elements 5, 1, 4, 3 and 2, respectively. Thus, the longest push
is of length five (achieved by the element 2). Clearly, it is possible for
the maximal length to be achieved by more than one element. Let a(n, )
denote the number of permutations of [n] where the length of the longest
push is ¢ for 0 < i < n — 1. Note for example that a(n,0) = 1, since only
the identity permutation is counted, whereas a(n,n — 1) = (n — 1)! since
all permutations of the form n = n’1 are counted.

From the definitions, it is seen that the statistics recording the length of
the longest push and the longest frictionless push are the same. Thus, for
convenience, to ascertain a(n,1), we will consider the length of the longest
frictionless push. As before, when discussing frictionless pushes, we will



start by shifting n to the right, if necessary, and then work downwards
recursively. Define the distribution polynomial a(n;y) = Eif a(n, 1)y for

n > 1. The a(n;y) satisfy the following recurrence formula.

Lemma 2. If n > 2, then

a(n;y):a(l:y,y) v

+y§~a(n L) — y(n -1, (5.1)

with a(l;y) = 1.

Proof. We start by writing a recurrence for the numbers a(n, ). Suppose
permutations of length n are obtained by inserting the element » within a
precursor permutation of length n — 1. Note that the number of positions
required to move n (so that it occurs at the end of the permutation) does
not affect the length j of the longest frictionless push of the precursor.
Furthermore, observe that if j < 4, then n must correspond to the longest
frictionless push (and thus be inserted in the (i + 1)-st position from the
right), whereas if j = ¢, then n can be inserted in any of the 7 + 1 rightmost
positions. Combining the observations above, and noting that j > 4 is not
possible, yields the following recurrence for n > 2:

i-1
a(n,i):Za(n—l,j)+(i+ 1)a(n — 1,1), 1<i<n-1, (5.2)
=0
with a(n,0) = 1 and a{n,n) = 0 for all » > 1. Multiplying both sides of
(5.2) by ¥*, and summing over 1 < i < n — 1, yields

n—1 i—1 n—1
a(n;y) — 1 = Zy Za(n—-— L)+ Y G+ Dafn— 1,i)y’
=1 =1
“Za(nml ) Z Yy +Z(z+1)a(n——1 iyt — 1
i=j+41 =0
i+ _
= }:acn DT+ S aln = Liy) -1

Formula (5.1) now follows from the last equality, upon noting

n—2

S a1 ) =a(n—1;1) = (n~1).

=0
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Define the exponential generating function
P n-1 N\ z"
Flz,y) = a(my)—r = (Z a(n, i)y‘) =
n>1 n>1 \i=0

Then multiplying both sides of (5.1) by fﬁ—"_-:li)-,-, and summing over n > 2,
implies F(x,y) is a solution to the following linear first order pde:

J %) B 1-~y—-1“y F(:v,y)
EEF(:r,y)—y-égF(m,y) “ T iz 1=y (5.3)

with F(z,0) = € — 1. By direct calculation, one can obtain the following
solution of (5.3).

Theorem 6. We have

e 1l —yt+ 1))
Fle,y) == 1)/;) (yer—* — 1)%(yte™ ™t — I)dt'

Let Fi(z) = 3 ,5i1 a(n,i) & ~ for i > 0 be the exponentlal generating

function for a(n,i). Then Fj(z) is the coefficient of ¥* in F(z,y). Thus, by
Theorem 6, we have

1 —y(t+1)e**
F(J},y) = (y_ 1)/ (y—*-et 3;)(1 my(t-i—l)e” t+y2t62(a’: t))

__/“’ § < gt % gt
o (gt—e—*)(1~1)?
B T tetT(1 — etY) 1+e‘_m(t2——tnl))dt
/0 ((y*e"’)z(l“f) N (y—e—=)(1—1)?

Therefore, we can state the following result.

Theorem 7. Ifi > 0, then
Fi(z)

= /x (L—te® )t i+ 1)t(1l —e* %) £ et 42—t — 1) =0 gy
0 (1 —1¢)2 1t (1—1¢)2

From the previous theorem, one can obtain the following generating
function formula concerning the first moment of the distribution a(n; y):

) % (s 31368t = Tt
ngi(.’r) il A g T v (5.4)




Let o denote the longest push statistic on S,, and 3 the statistic on S,
given by 8(p) = max{p; —i:1 < i < n} for p= p1ps--- pn. By induction,
upon considering the possible positions of n, one can show a(p) = B(p’) for
all p € §,,, where p’ denotes the reverse complement of p. Thus o, being
equally distributed to 8, may be viewed as a kind of maximum deviation
statistic. Note further that the sequence whose generating function is given
by (5.4) corresponds to the sum total of either the a or 8 statistics on S,
and occurs as entry A018927 in the OEIS [11]. Using the formula from [11],
we obtain the following result.

Theorem 8. The average length of the longest push in a permutation of
[n] is given by

n—1 k n—k n—k
Tt ((k+ 1)n—Fk — kr=k)
2 O |

Corollary 1. The average length of the longest push in a permutation of
[n] i3 also given by the simpler formula

n
n— -1-; D kR, (5.5)
™ =i

Asymptotically as n — oo, this is n — Ve o % +0 (:%;q) :

Proof. We can rewrite the formula of Theorem 8 as
1 n—1
= kZO kKW (k + 1)"F — g»%),

Ignoring for the moment the factor 1/n!, this is

-1 n—1 n—1
3 (k4 1) (k4 1)k 4 1)) D e+ DIk +1)" " FHD N pp1gnk,
k=0 k=0 k=1

Rewrite this as

n—1 n
i kEUE™F = " Rkl R =y Rk,
k=1 k=1

k=0

which gives (5.5) after division by n!. Now

1 n
= > k"R = P(n),
T k=1
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where P(n) is the function studied by Knuth in Chapter 1 of {7] defined as
1 n
P(n) = ~ Y (n—k)*(n—k).
k=0

The asymptotic result follows from the asymptotics of P(n) derived in
Chapter 1 of [7]. O

One can consider the analogous statistic on multipermutations as fol-
lows. If 7 is a multiset permutation of {1™,2™,...,n™}, then the length
of the longest push of 7 is defined as the maximum number of positions
a copy of some letter £ must be moved before it is ordered. Thus, it is
the number of copies of letters that are larger than £ that £ must move
past when ordered. Let a,,(n,:) denote the number of members of S,
whose longest push has length i. Note that a,,(n,%) is nonzero only for
0 <7 <m(n—1). The a,,(n,7) are determined recursively as follows.

Proposition 1. If n > 2 and m > 1, then

i, B = (2 i 1) gam(n —1,5)+ (i ;’”) dmln—~L4), (6]

m—1

for 0 <i < m(n—2), with

am(n, i) = (i L 1) (m(" - 1)), (5.7)

m—1 m,...,m

form(n—2)4+1<i<m(n-1).

Proof. To determine a,,(n,1), one may consider equivalently the length of
the longest frictionless push within members of S, ,, and again start by
moving copies of n as needed. If m(n —2)+1 <7 < m(n— 1), then a copy
of n must be responsible for the longest frictionless push, in which case
the leftmost » must be preceded by exactly m{n — 1) — ¢ copies of letters
in [n — 1). Thus, there are (*™7') choices for the positions of the other

m—1
m(n—1)

n’s and ( m,_",m) ways to arrange the letters less than n in their positions,
which implies (5.7). If 0 < 7 < m(n — 2), then consider the length j of the
longest frictionless push in the precursor member of S,_1 ., into which m
copies of n are to be inserted. Note that j > ¢ is not possible since inserting
copies of a larger element cannot decrease the longest push length, whence
j < 4. If § < 1, then at least one n must be inserted into the (i + 1)-st
rightmost position of the precursor, with the other copies of n restricted to
this position and those to its right. Thus, there are (i‘;"i'll) ways in which



to insert the n'’s into the precursor and considering all 0 < j7 < 1—1 gives the
first part of (5.6). If 7 = 1, then again the n’s are confined to the rightmost
1+ 1 positions of the precursor except now there is no requirement that an n
be placed in the first of these positions as before. This gives (i‘fnm)a(n—- 1,4}
additional multipermutations, which completes the proof of (5.6). 1

We were unable to find an extension of Theorem 6 to a,,(n, ¢) for general
m and leave this as a challenge to the reader.

6 Conclusion

In this paper, we have explored various concepts related to pushes on per-
mutations and multipermutations. Explicit formulas have been found for
the total number of cells that are not moved in any step of the pushing
process as well as for the number of cells that belong to both the original
and final sorted permutations. The distribution for frictionless pushes on
multipermutations was found and a simple formula obtained for the first
moment. It is possible to extend some of the results above to an arbitrary
multiset {1%1,2%2 ... n%} where a; > 0 for all i. For example, extending
the combinatorial proof given for Theorem 2 yields the following resuit.

Theorem 9. The average number of pushes over all multipermutations of
{121,2% .. n%} is given by

ay + - +an—Za2+l+ —r

See (10] for the comparable result concerning weak left-to-right maxima
in an arbitrary multiset. It is also possible to generalize Theorem 4 above
as follows.

Theorem 10. The average number of fized cells in a multipermutation of
{101,202 .. n} i3 given by

pI-” (E;ml jaj + Z;;H»l ia; )

a1+...+an

Note that the formula stated above for the average number of fixed cells
on Sy m corresponds to the special case ay = --- = a, = m of the prior
theorem. The distribution that was found for frictionless pushes can also
be extended to arbitrary multisets, though the general formula is more
complicated. On the other hand, it appears to be more difficult to generalize
Theorems 3, 6 and 7 above, which we leave as further problems to explore.
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