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Abstract

A signed total Italian dominating function (STIDF) of a graph G
with vertex set V(G) is defined as a function f : V(G) — {-1,1,2}
having the property that (i) > . N f(Z) = 1 for each v € V(G),
where N(v) is the neighborhood of v, and (ii) every vertex u for
which f(u) = —1 is adjacent to a vertex v for which f(v) = 2 or
adjacent to two vertices w and z with f(w) = f(z) = 1. The weight
of an STIDF is the sum of its function values over all vertices. The
signed total Italian domination number of G, denoted by ~yus (G), is
the minimum weight of an STIDF in G. We initiate the study of
the signed total Italian domination number, and we present different
sharp bounds on v47(G). In addition, we determine the signed total
Italian domination number of some classes of graphs.

Keywords: Signed total Italian domination, signed total Roman
domination, total domination
MSC 2010: 05C869

1 Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes,
Hedetniemi and Slater [4]. Specifically, let G be a graph with vertex set
V(G) = V and edge set E(G) = E. The integers n = n(G) = [V(G)| and
m = m(G) = |E(G)| are the order and the size of the graph G, respectively.
The open neighborhood of vertex v is Ng(v) = N(v) = {u € V(G)|uv €
E(G)}, and the closed neighborhood of v is Nglv] = N[v] = N(v) U {v}.
The degree of a vertex v is dg(v) = d(v) = |N(v)|. The minimum and
mazimum degree of a graph G are denoted by §(G) = § and A(G) = A,
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respectively. A graph G is regular or r-regular if §(G) = A(G) = r. For a
subset X C V(G), we use G[X] to denote the subgraph of G induced by
X. Let K,, be the complete graph of order n, C,, the cycle of order n, P,
the path of order n, and K, , the complete bipartite graph with partite
sets X and Y, where | X| = p and |[Y| = ¢. Let S(r,s) be the double star
with exactly two adjacent vertices u and v that are not leaves such that u
is adjacent to » > 1 leaves and v is adjacent to s > 1 leaves.

A set D of vertices of G is called by Cockayne, Dawes and Hedetniemi [2]
a total dominating set if each vertex in V(G) is adjacent to some vertex of
D. The total domination number ,(G) equals the minimum cardinality of
a total dominating set in G. We note that this parameter is only defined for
graphs without isolated vertices. Total domination is very well studied in
the literature. For more details on total domination, the reader is referred
to the two domination books by Haynes, Hedetniemi and Slater [4, 5], the
survey article on total domination by Henning [6] and the book on total
domination by Henning and Yeo [9].

A signed total Roman dominating function (STRDF) on a graph G is
defined in [10] as a function f : V(G) — {—1,1,2} having the property that
f(N(©)) = 2 senw) f(x) = 1 for each v € V(G) and if f(u) = —1, then
the vertex u must have a neighbor w with f(w) = 2. The weight of a signed
total Roman dominating function is the value f(V(G)) = }_,cv () f(w)-
The signed total Roman domination number vy p(G) is the minimum weight
of a signed total Roman dominating function on G.

A signed total Italian dominating function (STIDF) of a graph G is
defined as a function f : V(G) — {—1,1,2} having the property that
(i) f(N{(v)) > 1 for each v € V(G) and (ii) every vertex u for which
f(u) = —1 is adjacent to a vertex v for which f(v) = 2 or adjacent to
two vertices w and z with f(w) = f(z) = 1. The weight of an STIDF
fisw(f) = ZvEV(G) f(v). The signed total Italian domination number
of G, denoted by 74 (G), is the minimum weight of an STIDF in G. A
Yot 1{G)-function is an STIDF of weight v, ;(G). For an STIDF f on G,
let V; = {v € V(G) : f(v) = i} for i = —1,1,2. An STIDF f can be
represented by the ordered partition f = (V_q, V4, Vo).

The signed total Roman and signed total Italian domination numbers
are well-defined for graphs G without isolated vertices, since the function
f:V(G) = {~1,1,2} with f(z) = 1 for each z € V(G) is an STRDF us
well as an STIDF. Thus we assume throughout this paper that §(G) > 1.
The definitions lead to v,;7(G) < Vatr(G) < n(G). Therefore each lower
bound of v5;/(G) is also a lower bound of v, (G).

In this paper we continue the study of signed (total) Roman (Italian)
domination in graphs (see, for example, (1, 3, 7, 8, 10, 11, 12]). Our purpose
in this work is to initiate the study of the signed total Italian domination
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number. We present basic properties and sharp bounds for the signed total
Italian domination number of a graph. In particular, we show that many
lower bounds on v, g(G) are also valid for v,7(G). In addition, we prove
Y5e1{G) > (11n—12m)/4 for connected graphs G of order n and size m, and
we characterize the graphs achieving equality. Furthermore, we show that
the difference v4 r(G) — vs¢1(G) can be arbitrarily large, and we determine
the signed total Italian domination number of some classes of graphs.

2 Preliminary results and first bounds

In this section we present basic properties and some first bounds on the
signed total Italian domination number.

Observation 1. If f = (V_,,V}, V3) is an STIDF of a graph G of order n
with §(G) > 1, then the following holds.

(@) [Voil+ Vi + V2| = n.
(b) w(f) = V1| +2|Vo| — |[V_4.
(¢) V1 UV, is a total dominating set of G.

Proof. Since (a) and (b) are immediate, we only prove (c). By the defini-
tion, each vertex of V_; is adjacent to a vertex of V; U V,. Suppose that
G[V1UV3] has an isolated vertex ». As §(G) > 1, the vertex v is adjacent to
a vertex in V_; and all its neighbors are in V_;. This leads to the contra-
diction f(N(v)) < —1. Therefore G[V; U V,] does not contain an isolated
vertex and hence V; UV, is a total dominating set of G. a

Proposition 2. If G is graph of order n with minimum degree § > 3, then
Yer(G) < m—2[(6 —1)/2].

Proof. Lett = |(§—1)/2], and let A = {v;,vs,...,v,} be a set of t vertices
of G. Define the function f : V(G) — {~1,1,2} by f(z) = —1forz € A
and f(z) =1 for z € V(G) \ A. Then

fINw)) 2 —t+(§—~t) =6 -2t =56-2|(6 —1)/2] > 1

for each w € V(G). Since § > 3, we observe that every vertex is adjacent to
at least two vertices of weight 1. Therefore f is an STIDF on G of weight
n — 2t and thus v, (G) < n — 2t. (]

Proposition 3. If G is graph of order n with §(G) > 1, then

Yor1{G) > max{A + 1 —n,é(G) + 3 — n}.
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Proof. Let let f be a v, ;(G)-function. If f(x) =1 for all z € V(G), then
Yor1(G) = n > max{A+1—n, §(G)+3—n}. Now assume that there exists
a vertex u with f(u) = —1. Then u has a neighbor w with f(w) > 1, and
it follows that

ver (@ = Y f@=fw+ Y. f@+ Y, fl@

zeV(G) zeN(w) €V (G)\N[w]

> 141+ Y, f(@) 22— (n~(dw)+1)
z€V(G)\N{u|
> 34 46(G) —n.

If w is a vertex of maximum degree, then we have

1ur(G) = Y. f@=fw+ Y. f@+ Y, f@

zeV(G) zeN(w) z€V(G)\N{w]
> ~1+14+ Y fl2) 2 —(n—(AG)+1))
€V (GC)\N|w)
= A(G)+1-—n,
and the proof is complete. O

Theorem 4. If G is graph of order n with §(G) > 1, then v,/(G) >
27:(G) — n, with equality if and only if G = sK for an integer s > 1.

Proof. Let f = (V_1,V},V2) be a v,r(G)-function. Then it follows from
Observation 1 that

Yot1(G) = [V |+2|Va|=IV_| = 2|V3|+8[Ve|—n 2 2[ViUVal—n > 23(G) —n,
(1)
and the disired inequality is proved. Clearly, if G = sK; for an integer
s > 1, then 7,(G) = n and 7,:(G) = n and s0 Y./ (G) = 27:(G) — n.
If |V2| > 1, then it follows from (1) that

Va1 (G) = 2|Vi| + 3|V2| = n > 2|IV1 U Vo[ = n 2 2%(G) — n.

Therefore assume now that |[Vp| = 0. If |V_4| = 0, then V; = V(G) and
thus 447 (G) = n. Clearly, v.(G) < n and v:(G) = nif and only if G = sKj
for an integer s > 1 (see [2]). Consequently, ve:r(G) = 2%(G) — n if and
only if G = sK> for an integer s > 1 in this case.

Finally assume that |V_;| > 1. Let u» € V_;, and let 2,y € V; be two
neighbors of u. The condition f(N(z)) > 1 shows that = has at least two
neighbors in V; \ {x}. If V] \ {z} does not have an isolated vertex, then
Vi\{z} is a total dominating set of G, and (1) implies 74 /(G) = 2|Vi|—n >
27:(G) — n. Next assume that V; \ {z} has an isolated vertex z. If z has a
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neighbor in V_,, then we obtain the contradiction f(N(z)) < 0. Hence 2
is a leaf in G, and we observe that V} \ {z} is a total dominating set of G.
Again (1) leads to v4/(G) = 2[Vi| — n > 2%(G) — n. O

The proof of the next proposition is identically with the proof of Propo-
sition 8 in [10] and is therefore omitted.

Proposition 5. Let f = (V_1, V3, V2) be an STIDF of a graph G of order
n, A = A(G) and § = §(G) > 1. Then the following holds.

(a) 24— D)Val + (A DVA| > (6 + D)IVoal
(b) A+ )Vol+(A+8)Vi| > (64 1)n.
©) (A+8)w(f) > (5— A+ 2+ (6 — &)Vl
(d) w(f) > (6 — 22+ 2)n/(2A + 8) + [Val.

As an immediate consequence of Proposition 5 (c), we obtain a lower
bound on the signed total Italian domination number of regular graphs.

Corollary 6. If G is an r-regular graph of order n with r > 1, then
Yse1(G) > [n/r]'

In the case that G is not regular, Proposition 5 (c) and (d) lead to the
following lower bound.

Corollary 7. Let G be a graph of order », maximum degree A and mini-
mum degree § > 1. If § < A, then

—2A 4+26 43

s >

Proof. Multiplying both sides of the inequality in Proposition 5 (d) by A—§
and adding the resulting inequality to the inequality in Proposition 5 (c),
we yield the desired lower bound. a

The next example shows that Corollary 7 is sharp.

Example 8. Let p > 3 be an integer, and let vy,vs,...,v, be the ver-
tex set of the complete graph K,. Now let H be the graph consisting
of K, and the p(2p — 4) new vertices w!,w?,...,w?¥ 4 for 1 < i < p
such that v; is adjacent to the vertices w},wz?, e ,w?”"‘ for1<i:<p
and wlw? wiwd, ... ,w¥ w4 ¢ E(H) for 1 < i < p. Now define
f:V(H) - {-1,1,2} by f(v;) =2for 1 < i< pand f(xr) = —1 otherwise.
Then f is an STIDF on H of weight 6p — 2p? and thus ~,.; (H) < 6p— 2p2.
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Since n(H) = (2p — 3)p, A(H) = 3p — 5 and 6(H) = 2, it follows from
Corollary 7 that

—2A(H) + 23(H) + 3
Yoer (H) = I' 2A(H) + §(H) n(H)]
(17 — 6p)p(2p — 3)
[ 6p — 8 ]=6p~2p2'

3 Special classes of graphs

In this section, we determine the signed total italian domination number
for special classes of graphs.

Proposition 9. If n > 2, then v,/ (X,.) = 2 when n is even and v (K») =
3 when n is odd.

Proof. According to Proposition 3, we have v4;(Ky) > 2. If nis even, then
assign to (n + 2)/2 vertices the weight 1 and to the remaining (n — 2)/2
vertices the weight -1. This is an STIDF of weight 2 and so e 1(K,) < 2.
We deduce that «y,;(K,) = 2 when n is even.

Let now n = 2p+1 with p > 1 odd, and let f be a vy /{K,)-function. If
f(z) =1 for all z € V(K,,), then w(f) =n > 3. Let now f(w) = —1 for at
least one vertex w € V(K,,). If there exist a vertex u with f(u) = 2, then
w(f) = f(u) + f(N(u)) > 3. Next assume that f(z) =1or f(z) = —1 for
each = € V(K,), and let f(u) = 1. Since f(N(u)) > 1 and |N(u}| is even,
we deduce that f(N(u)) is even and therefore w(f) = f(u) + f(N(u)) >
1+ 2 = 3. Conversely, assign to p + 2 vertices the weight 1 and to the
remaining p — 1 vertices the weight -1. This is an STIDF of weight 3 and
50 Yars (K,) < 3. We deduce that v, (K,,) = 3 when n is odd. a

For even n, Proposition 9 shows that Proposition 3 is sharp.
Proposition 10. If n > 3, then 4/ (K n—1) = 3.

Proof. Let G = Ky 5,1, and let f be a 7,7 (G)-function. If w is the central
vertex of the star G, then clearly f(w) > 1. If f(w) = 1, then 7,7 (G) =
n > 3. If f(w) = 2, then v5(G) = f(w) + f(N(w)) = 3. In addition,
it follows from Example 1 in [10] that v,(G) < ve:r(G) = 3 and thus
’Ystl'(Kl,n~—1) = 3. O

Proposition 11. If p, ¢ > 2 are integers, then v4(Kpq) = 2.

Proof. Let G = K, 4, and let f be a 7,7 (G)-function. In addition, let X,Y
be a bipartition of G. If z € X and y € Y, then v,;(G) = f(V(G)) =
F(N(z)) + F(N(y)) = 2.
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Conversely, assume that p = |X| and ¢ = |Y| are even. Assign to p/2
vertices the weight -1, to one vertex the weight 2 and to the remaining
(p — 2)/2 vertices of X the weight 1. In addition, assign to ¢/2 vertices
the weight -1, to one vertex the weight 2 and to the remaiming (¢ — 2)/2
vertices of ¥ the weight 1. This produces an STIDF on G of weight 2 and
thus v,4:7(G) = 2 in this case.

Next assume that |X| = 2t + 1 and [Y| = 2s + 1 are odd. Assign to ¢
vertices the weight -1 and to the remaiming ¢ + 1 vertices of X the weight
1. In addition, assign to s vertices the weight -1 and to the remaiming s+ 1
vertices of Y the weight 1. This produces an STIDF on G of weight 2 and
thus v, (G) = 2 in this case.

The cases p even and q odd as well as p odd and q even are analogously,
and are therefore omitted. "

Proposition 12. If S(r,s) is the double star such that »,s > 3, then
Vo1 (S(r,s)) = 2.

Proof. Let u and v be two adjacent vertices of S(r, s) such that u is adjacent
to r leaves and v is adjacent to s leaves. If g is a 7,,;(S(r, s))-function, then
the definition implies 47 (S(r, s)) = w(g) = g(N(w)) + g(N(v)) > 2.

Conversely, let 7 = 2p + 1 and s = 2¢ + 1 be odd. Define f by f(u) =
f(v) = 2. In addition, we assign the weight -1 to p + 1 leaves of u, the
weight 1 to p leaves of u, the weight -1 to g 4 1 leaves of v and the weight
1 to g leaves of v. Then f is an STIDF on S(r,s) of weight 2 and thus
Yot1(S(r,8)) < 2. Therefore g1 (S(r,s)) = 2 in this case.

Let r = 2p and s = 2¢ be even with p, ¢ > 2. Define f by f(u) = f(v) =
2. In addition, we assign the weight -1 to p + 1 leaves of u, the weight 1
to p — 2 leaves of u, the weight 2 to one leaf of u, the weight -1 to ¢ + 1
leaves of v, the weight 1 to ¢ — 2 leaves of v and the weight 2 to one leaf of
v. Then f is an STIDF on S(r, s) of weight 2 and thus +,.;(S(r, s)) < 2.
Therefore 7,1 (S(r, s)) = 2 in this case.

The cases  even and s odd or ~ odd and s even are similar to the cases
above and are therefore omitted. O

Similar to the proof of Proposition 12, one can show that ¥5e1(S(1, 8)) =
2fors=1ors>3.

Proposition 13. If S(2,s) is the double star such that s > 3, then
Yaer(S(2, 5)) = 3.

Proof. Let u and v be two adjacent vertices of $(2, s) such that u is adjacent
to the leaves z and y, and v is adjacent to s leaves. If g is a v/ (S(r, s))-
function, then we observe first that g(u),g(v) > 1. If g(u) = 1, then
9(z),9(y) > 1, and we obtain 7,1 (S(2, 5)) = w(g) = 9(N(u)) + g(N(v)) >
3+1=4. If g(v) =1, then g(w) > 1 for all leaves adjacent to v, and we

297



obtain v,:7(5(2, 5)) = w(g) = g(N(u)) + g(N(v)) = 1+ s+ 1 > 5. Assume
now that g(u) = g{v) = 2. Then we observe that g(z) 4+ g(y) > 0 and thus
9(N(u)) 2 2, and 50 151 (5(2, 5)) = w(g) = g(N(u)) +g(N({v)) 2 2+1 =3.

Conversely, let s = 2¢+1 be odd. Define f by f(u) = f(v) =2, f(z) = 1
and f(y) = —1. In addition, we assign the weight -1 to g+ 1 leaves of v,
and the weight 1 to q leaves of v. Then f is an STIDF on S(2, s} of weight
3 and thus v,7(5(2,5)) < 3. Therefore v,:(S(2,5)) = 3 in this case.

Let s = 2q be even with g > 2. Define f by f(u) = f(v) =2, f(z) =1
and f(y) = —1. In addition, we assign the weight -1 to g + 1 leaves of v,
the weight 1 to ¢ — 2 leaves of v and the weight 2 to one leaf of v. Then f
is an STIDF on S(2,s) of weight 3 and thus 7,,(S(2,s)} < 3. Therefore
Yor1 (S(2, 8)) = 3 in this case. O

The proof of Propositions 12 and 13 demonstrate that v, z(S(r,s)) = 2
for r,s > 3, yar(S8(1,s)) = 2 for s = 1 or s > 3 and v5r(5(2,s)) = 3
for s > 3. For the sake of completeness, we note that v,(5(1,2)) =
Y¥str{S(1,2)) = 3 and Ys1(S(2,2)) = Y r(S(2,2)) = 4.

The next lemma is easy to prove but useful.

Lemma 14. Let G be a graph without isolated vertices, and let f be an
STIDF on G. If vquouavy is a path of G with d(vg) = d(vs) = 2, then
fv1) + f(v2) + flus) + flva) = 2.

Proof. Since f is an STIDF on G and d(vs) = d(v3) = 2, we observe that
f(v1) + fv2) + fvs) + f(va) = f(N(v2)} + fF(N(v3)) 2 2. o

Proposition 15. If C,, is a cycle of length n > 3, then v,/ (Cy) = n/2
when n = 0(mod4), v5:/(Crn) = (n + 3)/2 when n = 1,3(mod4) and
Yst1{Crn) = (n + 6)/2 when n = 2 (mod 4).

Proof. Let C,, = viva...v,v1, and let f be a v4(Cy)-function.

Assume first that n = 0(mod4). Applying Corollary 6, we observe
that ~,(C,) > n/2. Conversely, it follows from [10] that v, (C,) <
YotR{Cn) = n/2 and thus v4;(Cp) = n/2 in this case.

Assume second that n = 1(mod4). Let n = 4¢ + 1 for an integer £ > 1.
If flv;) > 1forall 1 <i < n, then 75;(Cp) > n > {(n+ 3)/2. Hence

assume now, without loss of generality, that f(ve) = —1. It follows that
f{vary1) = 2. Using Lemma 14, we obtain
Yat1{Cn) = flvats1)
4 f(f(v4i+1) + flvais2) + f(vaivs) + f(vaira))
=0
> 24%= ?__;;3
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Conversely, we deduce from [10] that v,/ (Cy) < Y5t r(Cr) = (n+3)/2 and
thus ve¢7(Cy) = (n + 3)/2 in this case.

Assume third that n = 2(mod4). Let n = 4t + 2 for an integer ¢t > 1.
If f(v;) > 1for all 1 < ¢ < n, then v,4:(Cn) > n > (n+ 6)/2. Hence
assume now, without loss of generality, that f(vg) = —1. It follows that
fvaer2) = f(vg) = 2. If f(vy1) =2 or f(vgeq1) =2, say f(vaey1) = 2, then
we deduce from Lemma 14 that

Ys:1(Cr) = f(vars2) + f(vaes1)

t—1

+ Y (fvaiv1) + faige) + flvairs) + fF(Vaiva))
=0

e

> 4+2t=

Hence assume that f(v), f(var4+1) < 1. This implies f(vy) = f(vg41) =1
and f(vz) > 1. Therefore Lemma 14 yields to

Voer(Cn) = f(v1) + f(w2) + fvg) + fva) + f(vaes2) + F(vaeq1)

)
+ Z(f(v4i+1) + f(vaiy2) + f(vairs) + f(vaiya))
i=1

> 6+42(¢—1)= 1"‘-—;29
Otherwise, we deduce from [10] that vs;/(Cp) < Yetr(Cr) = (n+ 6)/2 and
thus v47(Cy) = (n + 6)/2 in this case.

Finally, assume that n = 3 (mod4). Let n = 4¢ + 3 for an integer ¢ > 0.
If flv;) > 1forall 1 < i < n, then v,,(Cn) > n > (n+ 3)/2. Hence
assume now, without loss of generality, that f(vs) = —1. It follows that
flogys) = 2. If f(v1) = 2 or f(vary2) = 2, say f(vary2) = 2, then we
deduce from Lemma 14 that

Yot1(Cn) = f(vae43) + f(vaes2) + F(vazs1)

t—1
% Z(f (vait1) + f(vair2) + f(vaigs) + f(vaiga))
i=0

> 3+2t.—.”";'3.

Hence assume next that f(v1), f(vare2) < 1. Then f(vq) = f(vgeqgo) = 1,
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and therefore Lemma 14 leads to

Yot1(Cn) = flv1) + fvaess) + f(vae+2)
i
+ ) (Flogia) + fvaica) + F(vai) + f(vair1))
=1
> 4+2= nj 3

£

In addition, it follows from [10] that v,/(Cy) < Ystr(Cn) = (n+3)/2 and
thus v,:7(Cp) = (n + 3)/2 in this case. This completes the proof. O

Analogously to the proof of Example 6 in [10], one can determine the
signed total Italian domination number of paths.

Proposition 16. Let P, be a path of order n > 3. Then 41 (Fn) = n/2
when n = 0 (mod 4) and v, /(Py) = [(n+ 3)/2] otherwise.

If G is 1-regular of order n, then v, {(G) = n. Corollary 6 implies
Yst1{G) > [n/2] when G is 2-regular, and it follows from Proposition 15
that v,.7(Cr) = n/2 when n = 0 (mod 4). Therefore Corollary 6 is tight if
r = 1,2. By Proposition 9, the lower bound of Corollary 6 is also tight if
r = n— 1. Proposition 11 implies v, ;(K, ) = 2, and thus Corollary 6 is
tight for » = n/2. Next we will show that Corollary 6 is tight for r > n/2.

Example 17. Let H be the complete k-partite graph with & > 2 and
the partite sets X, Xo,..., X} such that |[X;] = s > 2for 1l <1 < k.
Then H is an (n — s)-regular graph of order n = ks. Corollary 6 implies
Yotr (H) > [n/(n— s)] = 2.

First let s = 2p be even. We assign the weight 2 to one vertex, the
weight -1 to p vertices and the weight 1 to the remaining p — 1 vertices
of Xy and X;. In addition, we assign the weight -1 to p vertices and the
weight 1 to the remaining p vertices of X; for 3 <1 < k. This is an STIDF
on H of weight 2 and thus v, (H) < 2 and so v, ;(H) = 2 in this case.

Second let s = 2p + 1 be odd. We assign the weight -1 to p vertices and
the weight 1 to the remaining p + 1 vertices of X; and X,. In addition, we
assign the weight 2 to one vertex, the weight -1 to p + 1 vertices and the
weight 1 to the remaining p — 1 vertices of X; for 3 < ¢ < k. This is an
STIDF on H of weight 2 and thus v, ;(H) < 2 and so 7,7 (H) = 2 in the
odd case.

The next example will demonstrate that the difference 5t (G) =751 (G)
can be arbitrarily large.

Example 18. Let F be an arbitrary graph of order ¢ > 1, and for each
vertex v € V(F) add a vertex-disjoint copy of a complete graph K, with
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s > 6 even and identify the vertex v with one vertex of the added complete
graph. Let H be the resulting graph. Furthermore, let Hy, Hy, ..., H; be
the added copies of K,. For i = 1,2,...,t, let v; be the vertex of H; that
is identified with a vertex of F'.

First we construct an STIDF on H as follows. For each ¢ = 1,2,...,¢,
let f; : V(H;) — {—1,1,2} be the STIDF on the complete graph defined
as in Proposition 9 such that f;(v;) > 1. As shown in Proposition 9, we
have w(f;) = 2. Now let f: V(H) — {~1,1,2} be the function defined by
f(v) = fi(v) for each v € V(H;). Then f is an STIDF of H of weight 2¢
and hence g, ;(H) < 2t.

Now let g be a v, gr(H)-function. We show that g(V (H;)) > 3 for each
1 <<t If g(x) = —1 for at most one z € V(H;), then g(V(H;)) >
s—2 > 4. Hence assume that there exist at least two vertices z,y € V(H;)
such that g{z) = g(y) = —1. This implies that there exixsts a vertex
w € V(H;) with g(w) = 2. If w # v;, then we deduce that g(V(H;)) =
g{w) + g(N(w)) > 3. Next assume that w = v; and g(z) = 1 or g(z) = —1
for x € V(H;) \ {w}. If z is a vertex in V(H,) with g(z) = 1, then assume
that z has exactly 7 neighbors of weight 1 and s — 7 — 2 neighbors of weight
-1. We deduce that g(N(z)) =2+ —(s—j—2) =4+2j—s > 1, and since
s is even, it follows that g(N(z)) = 4+2j —s > 2. Thus ¢(V(H;)) = g(z)+
9(N(2)) 2 3, and we obtain yur(H) = g(V(H)) = Yi_; o(V(H;)) > 3t.
Consequently, we see that v p(H) — yer(H) > 8t — 2t = ¢.

4 A lower bound in terms of order and size

For a subset S C V(G), we let dg(v) denote the number of vertices in
S that are adjacent to the vertex ». For disjoint subsets U and W of
vertices, we let [U, W] denote the set of edges between U and W. Now
let f = (V_1,V1,V5) be an STIDF. For notational convenience, we let
Viz = ViU VW, |Vig| = ny2, |[Vi| = ny and |V,| = ny. Furthermore, let
[V_il=n_; and so n_y = n — ny3. Let Gyo = G|[Viz] be the subgraph
induced by Vi and let G2 have size mys. For i = 1,2, if V; # 0, let
G; = G[V;] be the subgraph induced by V; and let G; have size m;. Hence
my2 = my +ma + |[V4, V2]|.

For k > 2, let Ly be the graph obtained from a connected graph H of
order k by adding 2dy(v) — 1 pendant edges to each v of H. Let F =
{Li |k = 2}

Theorem 19. If G is a connected graph of order n > 3 and size m, then

11n — 12m

Afstl(G) = 4
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with equality if and only if G € F.

Proof. Let f = (V_1,V;,Va) be a v, (G)-function, and let V2, C V_; be
the maximum set such that each vertex v € V%, has at least one neighbor
in V5. In addition, let V!, = V_; \ V2. Since each vertex of V1, has at
least two neighbors in Vj, we observe that

VLI < (V2L il = ) dvs, (v).

vEWV;

For each v € V;, we have 1 < f(N(v)) = 2dy, (v) +dy, (v) — dv_, (v} and so
dy_, (v) < 2dy,(v) + dy, (v) — 1. Hence we obtain

AVY| < D dya (@)<Y dv, ()

veV; vEWV;
< ) (2dw () +dv, (v) — 1) = 2|[Vi, V| + 2mq — s
vEWV

Since each vertex of V2, has at least one neighbor in V3, we have

V2 <|[V2, Vel = > dvz (v).
veVy
For each v € V,, we have 1 < f(N(v)) = 2dy, (v) + dv, (v) — dv_, (v) and so
dyv_, (v) < 2dy, (v) + dy, (v} — 1. This leads to

V23] < D dve ()<Y dyv,(v)

veEVy veEV,
< D (2d,(v) +dy, (v) — 1) = dma + |[V3, V2] — ma
veEV;

= 4myy —ny —4my - 3|[V}, B]].

Combining the corresponding inequalities, we obtain

Il

V21 + V2
s
< |[Vi, Vall +my — - + dmag — ng — 4my — 3{[W4, V3|

n_y

n
= 4myg — 3my — 2|[V}, V2]| —na — “:,2'1'

and so my2 > (n_y + 3my + 2|[V}, V2]| + n2 + n1/2)/4. Hence we deduce
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that

m > maa+ |[V_1, Vig]]

> i(n_l g+ 5 4 3my + 2|2, Vi) +noy
= $6n1+ i — 2L 3my 421V, VAl
= J0n—dnn — 2 4 3m + 2V, Vil

This yields
iz > 3(5m — dm -+ 3my + 2|[Vi, Vo]l -

and thus

Yoel(G) = 2mp+nyp—n_1=3n2+2n —n=3n12—n-n

> 2(5n—dm + 3m, +2![V1,V:ali ~Hynn
= —(5n — 4m — ———) 4 (3m1 + 2|[V1, Va]| — “1:“1“”1)
- 51‘—;-53”‘— = @my + 2Vi, V]| — o).

Let ¢(ny) = 3m+2|[V1, V2] ]- n1. It suffices to show that ¢(ny) > 0, since
then ve¢r(G) > (11n— 12m) /4, Whlch is the desired bound. If n; = 0, then
#(n1) = 0, and we are done. Assume now that ny > 1. Let Hy, Ha, ..., H;
be the components of the induced subgraph G[V;] of order hy,hs, ..., Ay
and size py,ps, ..., p. Since G is connected, each component H; contains a
vertex adjacent to a vertex of V5 or to a vertex of V_; for 1 < i < ¢t. Assume
that Hy, Hy,...,H, are the components which does not contain a vertex
adjacent to a vertex of V and that H, .y, Hyyo,..., H, 3 are the components
whlch contain a vertex adjacent to a vertex m Vs. Let nI hi+hot.. . +h,,
n? =ny —n}, m} =p1+p2+...+p, and m? = my —m!. We observe that
h; 23for1§z$sandthusnl > 3s. This leads to

2

37 (2)

= p1+p2t+.. . +pe > (h1—1)+(ho—1)+.. +(hs—1) = nj—s > 3

In addition, we observe that
mi+ Vi, Vall 2 (has1 — 1)+ (horz— 1) +...+ (he — 1)+ (¢ —s) =ni. (3)

Combining the inequalities (2) and (3), we obtain
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11
$(n1) = 3my +2|[V, Vol - K
> 3ml 4+ 3m? 42|V, V]| — 2n] — 20}

> 3m! — 2nd 4 2mi +2|[Vi, V]| — 2nf >0,

and 50 v4/(G) > (11n — 12m)/4 when n; > 1.

Suppose that v,¢7(G) = (11n— 12m)/4. Then all the inequalities above
must be equalities. In particular, V_'“_’1 =V_1,ny =0, nig =ngandso Vyip =
Va and V(G) = V, U V_;. Furthermore, mjp = my, m = my + |[V_y, V2|
and |[V_1,V2]| = n_;. This implies that for each vertex v € V_;, we have
dv,(v) = 1 and thus dy_, (v) = 0. Hence each vertex of V_; is a leaf in G.
Moreover, the identity n_; = [V2| = [V_i| = 3 oy, (2dv, (v} — 1) shows
that dy_, (v) = 2dv,(v) — 1 for each v € V5 and therefore G € F.

Conversely, assume that G € F. Then G = L, for some k > 2. Thus
G is obtained from a connected graph H of order k by adding 2dy(v) — 1
pendant edges to each vertex v of of H. Then

n(G)=n(H)+ »  (2du(v)—1)=4m(H)

veV(H)

and
m(G) =m(H)+ Y (2du(v) - 1) = 5m(H) — n(H).
veV{H)

Assigning to every vertex in V(H) the weight 2 and to every vertex in
V(G) \ V(H) the weight -1 produces an STIDF f of weight

w(f) = WmH)- ) (2du(v)-1)

veV (H)
—  3n(H) — 4m(H) = i(lln((;) — 12m(G)).

Hence 7,:1(G) < w(f) = (11n(G) — 12m(G))/4 and consequently 7,1 (G) =
(11n(G) — 12m(@)) /4. [

Corollary 20. If G is a connected graph of order n > 3 and size m, then

11n — 12
YstrR(G) 2 ____‘_1____71_1_

with equality if and only if G € F.

Proof. Since v, {G) < Ys:r(G), Theorem 19 leads to the desired bound
immediately. If y,:r(G) = (11n — 12m)/4, then it follows from Theorem

19 phat 11n — 12 11n — 12
mn — m 1 — I
e Yt R{G) = Vo1 (G) > ————
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Therefore equality in Theorem 19 and thus G € F. In addition, the proof
of Theorem 19 shows that v, p(G) = (11n(G) — 12m(G))/4 when G € F,
and the proof is complete. O

The lower bound in Corollary 20 can be found in [10].

References

1]

2]

Bl

9]
[10]

[11]

H. Abdollahzadeh Ahangar, M.A. Henning, C. Lowenstein, Y. Zhao
and V. Samodivkin, Signed Roman domination in graphs, J. Comb.
Optin. 27 (2014), 241-255.

E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination
in graphs, Networks 10 (1980), 211-219.

N. Dehgardi and L. Volkmann, Nonnegative signed Roman domi-
nation in graphs, J. Combin. Math. Combin. Comput 110 (2019),
259.277.

T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of
Domanation in Graphs, Marcel Dekker, Inc., New York (1998).

T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds.), Domination
in Graphs, Advanced Topics, Marcel Dekker, Inc., New York (1998).

M.A. Henning, Recent results on total domination in graphs Discrete
Math. 309 (2009), 62-93.

M.A. Henning and L. Volkmann, Signed Roman k-domination in
trees, Discrete Appl. Math. 186 (2015), 98-105.

M.A. Henning and L. Volkmann, Signed Roman k-domination in
graphs, Graphs Combin. 32 (2016), 175-190.

M.A. Henning and A. Yeo, Total Domination in Graphs, Springer
Monographs in Mathematics (2013).

L. Volkmann, Signed total Roman domination in graphs, J. Comb.
Optim. 32 (2016), 855-871.

L. Volkmann, On the signed total Roman domination and domatic
numbers of graphs, Discrete Appl. Math. 214 (2016), 179-186.

[12] L. Volkmann, Signed total Roman k-domination in graphs, J. Com-

bin. Math. Combin. Comput 105 (2018), 105-116.

305



