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Abstract

The diagnosability of a multiprocessor system is one important
study topic. In 2016, Zhang et al. proposed a new measure for fault
diagnosis of the system, namely, the g-extra diagnosability, which re-
strains that every fault-free component has at least (g + 1) fault-free
nodes. As a favorable topology structure of interconnection networks,
the n-dimensional alternating group graph AG,, has many good prop-
erties. In this paper, we prove that the 3-extra diagnosability of AG,
is 8n—25 for n > 5 under the PMC model and for n > 7 MM* model.

1 Introduction

Many multiprocessor systems have interconnection networks (networks for
short) as underlying topologies and a network is usually represented by a
graph where nodes represent processors and links represent communication
links between processors. We use graphs and networks interchangeably.
For a multiprocessor system, study of the topological properties of its net-
work is important. Furthermore, some processors may fail in the system,
so processor fault identification plays an important role for reliable com-
puting. The first step to deal with faults is to identify the faulty processors
from the fault-free ones. The identification process is called the diagnosis
of the system. A system is said to be t-diagnosable if all faulty proces-
sors can be identified without replacement, provided that the number of
faults presented does not exceed t. The diagnosability ¢(G) of a system
G is the maximum value of ¢ such that G is t-diagnosable [2, 3, 8]. For
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a t-diagnosable system, Dahbura and Masson [2] proposed an algorithm
with time complex O(n?%), which can effectively identify the set of faulty
processors.

Several diagnosis models were proposed to identify the faulty processors.
One major approach is the Preparata, Metze, and Chien’s (PMC) diagnosis
model introduced by Preparata et al. [12]. The diagnosis of the system is
achieved through two linked processors testing each other. Another major
approach, namely, the comparison diagnosis model (MM model), was pro-
posed by Maeng and Malek [10]. In the MM model, to diagnose a system, a
node sends the same task to two of its neighbors, and then compares their
responses. In 2005, Lai et al. [8] introduced a restricted diagnosability of
multiprocessor systems called conditional diagnosability. They consider the
situation that no fault set can contain all the neighbors of any vertex in a
system. In 2012, Peng et al. {11] proposed a measure for fault diagnosis
of the system, namely, g-good-neighbor diagnosability (which is also called
the g-good-neighbor conditional diagnosability), which requires that every
fault-free node has at least g fault-free neighbors. In [11], they studied the
g-good-neighbor diagnosability of the n-dimensional hypercube under the
PMC model. In [18], Wang and Han studied the g-good-neighbor diagnos-
ability of the n-dimensional hypercube under the MM* model. Numerous
studies have been investigated under the PMC and MM model or MM*
model for the condition: g-good-neighbor, see [15, 16, 21, 24, 28, 29, 30]. In
2016, Zhang et al. [31] proposed a new measure for fault diagnosis of the
system, namely, the g-extra diagnosability, which restrains that every fault-
free component has at least (g + 1) fault-free nodes. In [31], they studied
the g-extra diagnosability of the n-dimensional hypercube under the PMC
model and MM* model. Numerous studies have been investigated under the
PMC and MM* model for the condition: g-extra, see [14, 19, 20, 25, 26, 34].

As a favorable topology structure of interconnection networks, the n-
dimensional alternating group graph AG, has many good properties. In
this paper, we prove that the 3-extra diagnosability of AG,, is 8n — 25 for
n > 5 under the PMC model and for n > 7 MM* model.

2 Preliminaries

A multiprocessor system is modeled as an undirected simple graph G =
(V, E), whose vertices (nodes) represent processors and edges (links) rep-
resent communication links. Given a nonempty vertex subset V'’ of V, the
induced subgraph by V' in G, denoted by G[V’], is a graph, whose ver-
tex set is V'’ and the edge set is the set of all the edges of G with both



endpoints in V’. The degree di(v) of a vertex v is the number of edges
incident with v. The minimum degree of a vertex in G is denoted by §(G).
For any vertex v, we define the neighborhood N (v) of v in G to be the set
of vertices adjacent to v. u is called a neighbor vertex or a neighbor of v
for u € Ng(v). Let § C V. We use Ng(S) to denote the set U,csNg(v)\S.
For neighborhoods and degrees, we will usually omit the subscript for the
graph when no confusion arises. A graph G is said to be k-regular if for any
vertex v, dg(v) = k. The connectivity x(G) of a graph G is the minimum
number of vertices whose removal results in a disconnected graph or only
one vertex left when G is complete. A path of length [ in G is denoted by a
l-path. Let F} and F; be two distinct subsets of V, and let the symmetric
difference Fy 4 F2 = (Fy \ F2) U (F3 \ F1). Let F C V(G) and B,,..., By
(k > 2) be the components of G — F. If |[V(By)] < - < [V(Be)| (k 2 2),
then By is called the maximum component of G — F. For graph-theoretical
terminology and notation not defined here we follow [1].

Let G = (V,E) be a connected graph. A fault set ¥ C V is called a
g-good-neighbor faulty set if | N (v)N(V\F)| > g for every vertex v in V\ F.
A g-good-neighbor cut of G is a g-good-neighbor faulty set ¥ such that
G — F is disconnected. The minimum cardinality of g-good-neighbor cuts
is said to be the g-good-neighbor connectivity of G, denoted by x(9(G). A
fault set F' C V is called a g-extra faulty set if every component of G — F'
has at least (g + 1) vertices. A g-extra cut of G is a g-extra faulty set F
such that G — F is disconnected. The minimum cardinality of g-extra cuts
is said to be the g-extra connectivity of G, denoted by &(9)(G).

Proposition 1 ({13]) Let G be a connected graph. Then K9)(G) < k9(G).
Proposition 2 (/139]) Let G be a connected graph. Then «0)(G) = k()(G).

Under the PMC model [10, 29], to diagnose a system G = (V(G), E(G)),
two adjacent nodes in G are capable to perform tests on each other. For two
adjacent nodes u and v in V(G), the test performed by u on v is represented
by the ordered pair (u,v). The outcome of a test (u,v) is 1 (resp. 0) if
evaluate v as faulty (resp. fault-free). We assume that the testing result
is reliable (resp. unreliable) if the node u is fault-free (resp. faulty). A
test assignment T for G is a collection of tests for every adjacent pair of
vertices. It can be modeled as a directed testing graph T = (V(G), L),
where (u,v) € L implies that u and v are adjacent in G. The collection of
all test results for a test assignment T is called a syndrome. Formally, a
syndrome is a function o : L — {0,1}. The set of all faulty processors in G
is called a faulty set. This can be any subset of V(G). For a given syndrome
o, a subset of vertices F' C V(G) is said to be consistent with o if syndrome

255



o can be produced from the situation that, for any (u,v) € L such that
u € V\F, o(u,v) = 1 if and only if v € F. This means that F is a possible
set of faulty processors. Since a test outcome produced by a faulty processor
is unreliable, a given set F of faulty vertices may produce a lot of different
syndromes. On the other hand, different faulty sets may produce the same
syndrome. Let o(F) denote the set of all syndromes which F is consistent
with. Under the PMC model, two distinct sets F} and Fy in V(G) are said
to be indistinguishable if o(F)) Na(F;) # O, otherwise, F and F; are said
to be distinguishable. Besides, we say (F), F3) is an indistinguishable pair
if o(Fy) No(Fy) # 0, else, (Fy, F,) is a distinguishable pair.

Using the MM model, the diagnosis is carried out by sending the same
testing task to a pair of processors and comparing their responses. We al-
ways assume the output of a comparison performed by a faulty processor is
unreliable. The comparison scheme of a system G = (V| E) is modeled as
a multigraph, denoted by M = (V(G), L), where L is the labeled-edge set.
A labeled edge (u,v),, € L represents a comparison in which two vertices u
and v are compared by a vertex w, which implies uw,vw € E(G). The col-
lection of all comparison results in M = (V(G), L) is called the syndrome,
denoted by ¢*, of the diagnosis. If the comparison (y, v),, disagrees, then
o*((u,v)y) = 1, otherwise, o*{(u, v)y) = 0. Hence, a syndrome is a func-
tion from L to {0,1}. The MM* model is a special case of the MM model.
In the MM* model, all comparisons of G are in the comparison scheme of
G, ie., if uw,vw € E(G), then (u,v), € L. Similarly to the PMC model,
we can define a subset of vertices ' C V() is consistent with a given
syndrome o* and two distinct sets F and F, in V() are indistinguishable
(resp. distinguishable) under the MM* model.

A system G = (V, E) is g-good-neighbor t-diagnosable if F| and F; are
distinguishable for each distinct pair of g-good-neighbor faulty subsets F)
and F; of V with |Fy| < t and |F;| < t. The g-good-neighbor diagnosability
t4(G) of G is the maximum value of ¢ such that G is g-good-neighbor ¢-
diagnosable.

Proposition 3 ([11]) For any given system G, t,(G) < t,(G) ifg < ¢

In a system G = (V,E), a faulty set F C V is called a conditional
faulty set if it does not contain all the neighbor vertices of any vertex in G.
A system G is conditional t-diagnosable if every two distinct conditional
faulty subsets Fy, F; CV with |Fy| < ¢t,|F3| < ¢, are distinguishable. The
conditional diagnosability ¢.(G) of G is the maximum number of ¢ such
that G is conditional t-diagnosable. By [6], t.(G) > ¢{(G).

Theorem 4 [15] For a system G = (V, E), t{G) = t,(G) < 4t,(G) < t.(G).



In [15], Wang et al. proved that the 1-good-neighbor diagnosability of
the Bubble-sort graph B, under the PMC model is 2n — 3 for n > 4. In
[33], Zhou et al. proved the conditional diagnosability of B,, is 4n — 11 for
n > 4 under the PMC model. Therefore, ¢,(B,) < t.(B,) when n > 5 and
t1(Bn) =t,(B,) when n = 4.

In a system G = (V, E), a faulty set F C V is called a g-extra faulty
set if every component of G — F has more than g nodes. G is g-extra
t-diagnosable if and only if for each pair of distinct faulty g-extra vertex
subsets Iy, Iy C V(G) such that |F;} < ¢, F{ and F5 are distinguishable.
The g-extra diagnosability of G, denoted by #,(G), is the maximum value
of ¢ such that G is g-extra t-diagnosable.

Proposition 5 [20] For any given system G, £,(G) < t,(G) ifg < g’
Theorem 6 [20] For a system G = (V, E), t{(G) = t,(G) < £,(C) < t,(G).
Theorem 7 [20] For a system G = (V, E), £(G) = ,(G).

2 o N
L P2 ... Pn
2 ... n
b; vei Pn. Ev-
PP ... Pa Y P P2 P
ery permutation can be denoted by a product of cycles [7]. For example,
1 2 3 . 1 2 ... #n
{ 3 1 9 } = (132). Specially, { 1 9 g } = (1). The product
o7 of two permutations is the composition of function 7 followed by o, that
is, (12)(13) = (132). For terminology and notation not defined here we
follow [7].

Let [n] = {1,2,---,n}, and let S, be the symmetric group on [n] con-
taining all permutations p = pyp; - p, of [n]. The alternating group 4,
is the subgroup of S, containing all even permutations. It is well known
that {(12¢), (1¢2),3 < i < n} is a generating set for A,,. The n-dimensional
alternating group graph AG,, is the graph with vertex set V(AG,) = A, in
which two vertices u, v are adjacent if and only if u = v(12¢) or u = v(1:2),
3 € ¢ < n. The identity element of A, is (1). The graphs AG3 and AG,
are depicted in Fig. 1. It is easy to see from the definition that AG, is
a 2(n — 2)-regular graph on n!/2 vertices. We decompose AG,, along the
last position, denoted by AGL, AGZ,..., AG?. It is obvious that AG! is
isomorphic to AG,,_; for i € [n]. The edges joining vertices in the distinct
subgraphs AG? and AGY are called external edges (or cross-edges), and
the edges joining vertices in the same subgraph AG? are called internal

In the permutation { , ¢ — p;. For the convenience,

we denote the permutation {
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edges. There are many researches about alternating group graphs. See
[4, 5, 9, 22, 23, 25, 32].

1342 AG} 2143

123
3241 -

243 4321

AG2I4132 1423 43

231 312
1234 3124

- 231
P

3412 AG} 4213
Fig 1. AG; and AG,

As a favorable topology structure of interconnection networks, alternat-
ing group graphs have been shown to have many desirable properties such
as strong hierarchy, high connectivity, small diameter and average distance,
etc.. For details, see [5] for a comparison of the hypercube, the star graph
and the alternating group graph.

Proposition 8 [9] Let AG, be defined as above. Then there are (n — 2)!
independent cross-edges between two different AG: ’s.

Proposition 9 [9/ Let u,v be any two vertices of AG,,. Then (1) If uv €
E(AG,), then IN(u) N N(v)| = 1. (2) If wv ¢ E(AG,), then [N(u) N
N@)| <2

Proposition 10 /9] k(AG,) = 6(AG,)) =2n—4 forn > 3.

Proposition 11 [27] For u € V(AGY), ut € V(AG.), v~ € V(AGY) and
i,

Theorem 12 ([9]) The 3-extra connectivity of AG,,, &3 (AG,) = 8n—28
forn > 5.



A connected graph G is super g-extra connected if every minimum g-
extra cut F of G isolates one connected subgraph of order g + 1. If, in
addition, G — F has two components, one of which is the connected subgraph
of order g+ 1, then G is tightly |F| super g-extra connected.

Theorem 13 [27] For n > 4, the alternating group graph AG, is tightly
(8n — 28) super 3-extra connected.

Proposition 14 For n > 4, there is no induced subgraph of the alternating
group graph AG, which is a 5-cycle.

Proof. For an edge {v, v(12¢)}, AG,[{v(1¢2),v,v(12}}] is a triangle.
Therefore, every edge is in a triangle. It is easy to verify that there is
no induced subgraph of AG, which is a 5-cycle. We proceed by induction
on n. Assume n > 5 and the result holds for AG,_,. Since AG, is
a Cayley graph, AG, is vertex transitive. Therefore, we find a path P
from the identity element (1) = v in AG,, such that AG,[V(P)] a path.
~ Without loss of generality, let vy = (123). We consider vz = (123)(12n) =

(13)(2n) or v3 = (123)(1n2) = (1n3). We consider a possible 5-cycle in
AG,,. Then vsvyvs in AG%. Note the cross-edges incident with v; = (1)
are {(12n), v, } and {(1n2),v1}. If v3 = (123)(1n2) = (1n3), then there is
no induced subgraph of the alternating group graph AG,, which is a 5-cycle.
Suppose v3 = (123)(12n) = (13)(2n). Let vy = (123)(12n)(12:) and vs =
(123)(12n)(124)(12k) and i, k % n. Then ¢ 5 k. In (123)(12n)(12:)(12k), if
i3 3, then i — 3 and vs = (1n2). In (123)(12n)(12:){12k), if 2 = 3, then
k — n and vs = (1n2). So, in this case, there is no induced subgraph of
AG,, which is a 5-cycle.

By the inductive hypothesis, there is no induced subgraph of AGT which
is a 5-cycle. Therefore, there is no induced subgraph of AG, which is a
S5-cycle. O

3 The 3-extra diagnosability of alternating
group graphs under the PMC model

In this section, we will give 3-extra diagnosability of alternating group
graphs under the PMC model.

Theorem 15 ([29]) A system G = (V,E) is g-extru t-diagnosable under
the PMC model if and only if there is an edge uwv € E with v € V\(FUFy)
and v € Fy & Fy for each distinct pair of g-extra faulty subsets F; and Fo
of V with |[F1] <t and |Fy| < ¢.
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Theorem 16 [17] Let G = (V(G), E(G)) be a g-extra connected graph, and
iet V(G) # Fy UF; for each distinct pair of g-extra faulty subsets Fy and F;
of G with |Fy| < R9(G) + g and |Fy] < &9(G) + g. If there is connected
subgraph H of G with |V(H)| = g+ 1 such that N(V(H})) is a minimum
g-extra cut of G, then the g-extra diagnosability of G is &9 (G) + g under
the PMC model.

Lemma 17 Let A = {(1),(123),(13)(24),(142)}, n > 4 and let ] =
NAGn(A)’ Fo = AU NAG“(A). Then iFll = 8n — 28, !le = 8n — 24,
F, is a 8-extra cut of AG,,, and AG, — F\ has two components AG, — F,
and AG,[A].

Proof. By A = {(1),(123), (13)(24),(142)}, we have that AG,[4] is
a 4-cycle. Suppose n = 4. Then N(A) = {3124, 2431,1342,4213} in
AG, (see Fig. 1). We decompose AG, into n sub-alternating group
graph, AG., AG?,... AG?, where each AG! has a fixed i in the last
position of the label strings which represents the vertices and is isomor-
phic to AG,_;. Let F; = Nug (A) and let F! = F; N V(AG!) for
i € {1,2,...,n}. Then A C V(AG]). Suppose n = 5. Then A C
V(AGS) and {31245, 24315, 13425, 42135} C V(AGE). By Proposition 11,
IN(A)N(V(AGLYU---UV(AG?))| = 8. Thus, |F}| =4+8 =12 =8x5-28.
We prove this lemma (part) by induction on n. The result holds for
n = 5. Assume that n > 6 and the result holds for AG] = AG,_,, ie,
[Fr] =8(n—1)—28 = 8n—36. Note that A C V{AG?). By Proposition 11,
IN(AN(V(AGL)U- - .UV (AGR—1))| = 8. Thus, |F}| = 8n~36+8 = 8n-28
and !Fgl = 8n — 24.

Note that AG4 — Fj is two 4-cycles. We prove this lemma (part) by
induction on n. The result holds for n = 4. Assume n > 5 and the result
holds for AG. = AG, 4, ie., F} is a 3-extra cut of AG?, and AG} — F;,
has two components AG] — F} and AG}[A], where F] = F: U A. Note
that N(A) N (V(AGL)U - UV(AG? 1)) = {(12n), (1n2), (13)(2n), (1n3),
(2n4), (1n)(24), (142n3), (1n423)}. Therefore, [N(A) NV(AGL)| = .- =
IN(A)NV(AGS)] =2 and [IN(A)NV(AG:)| =0fori=5,...,n—1. Thus,
|[FY| = - = |F{| = 2 and |F}| = --- = |F}_,| = 0. By Proposition
10, AG: — F! is connected for ¢ = 1,2,...,n — 1. By Proposition 8,
AGLV(AG], —FYUV(AG? - F3)uU- - UV (AGr—! —F:_,)] is connected for
n > 5. By inductive hypothesis, AG? —F! has two components AG? —(F:U
A) and AGL[A]. By Proposition 11, AG,[V(AG? — F3)U V(AG) — F}Yu
V(AG? - F3Yyu- - .UV(AGT™' —F}_,)] is connected. Therefore, AG,~F; is
connected. Note that [V(AG, — F2)| > 4 and |V(AG,[A])] = 4. Therefore,
F| is a 3-extra cut of AG,,, and AG,, — F; has two components AG, — F;
and AG,[4]. O



Corollary 17.1 Let n > 5. Then the $-ertra diagnosability of the n-
dimensional alternating group graph AG,, under the PMC model is 8n—25.

Proof. Let F} and F; be two distinct 3-extra faulty subsets of AG,, with
[Fi} < 8n — 25 and |F3| < 8n — 25. Assume V(AG,) = F; U F;. By the
definition of A,, |F;UFy| = |4,| = n!/2. We claim that n!/2 > 16n —50 for
n 2 51e,n! >32n—100for n > 5. When n =5, n! = 120, 32n—100 = 60.
So n! > 32n — 100 for n = 5. Assume that n! > 32n — 100 for n > 5.
(n+1)! =nl(n+1) > (n+1)(32n—100) = n(32n— 100) + (32n —68) —32 =
[32(n+1) - 100} +n(32n —100) — 32 = [32(n+1) — 100]+ 4(8n%—25n—8). It
is sufficient to show that 8n?—25n—8 > O forn > 5. Let y = 8z% — 252 —8.
Then y = 822 — 25z — 8 is a quadratic function. When z > 5, y =
822 —252—8 > 0. Since n > 5, we have that n!/2 = |V (AG,)| = |F) UF;,| =
|F1|+ | Fo] = |[Fy N Fy| < |Fi |+ |Fo| < 2(8n—25) = 16n — 50, a contradiction
to n!/2 > 16n — 50. Therefore, V(AG,) # Fy U E,.

Let A be defined in Lemma 17. By Lemma 17, |4] = 3+ 1 = 4 such
that N(4) is a minimum 3-extra cut of AG,. By Theorem 16, the 3-extra
diagnosability of AG,, is &3 (AG, ) + 3 = 8n — 28 + 3 = 8n — 25 under the
PMC model. O

4 The 3-extra diagnosability of alternating
group graphs under the MM* model

It is a difficult problem to prove the g-extra diagnosability of a network. Be-
fore discussing the 3-extra diagnosability of the n-dimensional alternating
group graph AG,, under the MM* model, we first give a theorem.

Theorem 18 (2, 29]) A system G = (V, E) is g-extra t-diagnosable under
the MM* model if and only if for each distinct pair of g-extra faulty subsets
Fy and Fy of V with |Fi| < t and |F;| < t satisfies one of the following
conditions. (1) There are two vertices u,w € V \ (F, U F,) and there is
a vertezxv € Fy & F such that uw € E and vw € E. (2) There are two
vertices u,v € Fy \ I, and there is a vertez w € V \ (F} U F}) such that
uw € E and vw € E. (3) There are two vertices u,v € Fy \ Fy and there is
a vertez w € V' \ (F] UFy) such that uw € E and vw € E.

Lemma 19 Letn > 5. Then the 3-extra diagnosability of the n-dimensional
alternating group graph AG, under the MM* maodel is less than or equal to
8n — 25, i.e., t3(AG,) < 8n — 25.
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Proof. Let A = {(1),(123),(13)(24),(142)}, and let F} = Nac,(4),
Fy = AUN g (A). By Lemma 17, |F}| =8n—28, |F;| =8n—24, F isa 3
extra cut of AC,,, and AG, —F has two components AG,, — F; and AG,[A].
Therefore, F; and F, are both 3-extra faulty sets of AG,, with |Fj| = 8n—28
and |Fy| = 8n — 24. By the definitions of F; and F;, F; & F; = A. Note
F\F, =0, F;\ F; = A and (V(AG,) \ (F1 U F3)) N A = 0. Therefore,
both F, and F, are not satisfied with any one condition in Theorem 18,
and AG, is not 3-extra (8n — 24)-diagnosable under MM" model. Hence,
t3(AG,) < 8n — 25. Thus, the proof is complete. O

A component of a graph G is odd according as it has an odd number of
vertices. We denote by o(G) the number of add components of G.

Lemma 20 ([1] Tutte’s Theorem) A graph G = (V, E) has a perfect match-
ing of and only 1f o(G —S) < |S| for il SC V.

Lemma 21 Letn > 7. Then the 3-extra diagnosability of the n-dimensional
alternating group graph AG,, under the MM* model 1s more than or equal
to 8n — 25, i.e., t3(AG,) > 8n — 25.

Proof. By the definition of 3-extra diagnosability, it is sufficient to show
that AG,, is 3-extra (8n — 25)-diagnosable.

Suppose, on the contrary, that there are two distinct 3-extra faulty
subsets F; and F; of AG, with |F}| < 8n — 25 and |F2] < 8n — 25, but the
vertex set pair (Fy, F3) is not satisfied with any one condition in Theorem
18. Without loss of generality, suppose that F2\ Fy # @), Assume V(4G,,) =
Fy U F,. By the definition of A,, |Fi U Fy| = |4,| = nl/2. Similarly to
the discussion on V(AG,) # F; U F; in Corollary 17.1, we can deduce
V(AG,) # Fy UF,.

Claim 1. AG,, — F, — F; has no isolated vertex.

Suppose, on the contrary, that AG, — F; — F, has at least one isolated
vertex w. Since F) is one 3-extra faulty set, there is a vertex u € Fo \ F}
such that » is adjacent to wy;. Meanwhile, since the vertex set pair (¥}, F2)
is not satisfied with any one condition in Theorem 18, by the condition
(3) of Theorem 18, there is at most one vertex u € Fy \ F} such that u
is adjacent to w;. Thus, there is just a vertex u € Fy \ F| such that u is
adjacent to w;. If F} \ F; = 0, then F} C F5. Since F, is a 3-extra faulty
set, every component G; of AG, — Fy — F; = AG,, — F; has |V(G;)| > 4.
Therefore, AG, — Fy — F> has no isolated vertex. Thus, £y \ F» # .
Similarly, we can deduce that there is just a vertex a € Fy \ F» such that
a is adjacent to w;. Let W C A4, \ (F} U F3) be the set of isolated vertices
in AG,[A, \ (F; U F3)], and let H be the induced subgraph by the vertex
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set A, \ (Fy UF, UW). Then for any w € W, there are (2n — 6) neighbors
in F1 N F;. By Lemmas 20, |W| < o(AG, —(FLUFR)) < |[RUE =
[Fi] + |Fa| — |Fy N Fp] < 2(8n — 25) — (2n — 6) = 14n — 44. Since n > 5,
n!/4 > 14n — 44 holds. Therefore, |W| < n!/4. Assume V(H) = §. Then
nl/2 = [V(AG,)| = |Fy U Fa| + |W| = |Fi| + |Fy| — |F1 n B] + [W)] <
2(8n —25) — (2n — 6) + |W| = 14n — 44+ |W| < n!/4 4 14n — 44 and hence
n!/4 < 14n — 44, a contradiction to that n > 5. So V(H) # 0.

Since the vertex set pair (F}, F») is not satisfied with the condition (1)
of Theorem 18, and any vertex of V(H) is not isolated in H, we induce
that there is no edge between V(H) and Fy A F;. Note F5\F; # 0. Since
[F1 N Fy > 2n — 6, then Fy N Fy # @. Thus, F; N Fy is a cut of AG,,.
Since F} is a 3-extra faulty set of AG,,, we have that every component H;
of H has |V(H;)| > 4 and every component B; of AG,[W U (F; \ F)])
has [V(B;)| > 4. Since F; is a 3-extra faulty set of AG,, we have that
every component B] of AG,[W U (F; \ F3)]) has |V(B!)| > 4. Note that
AG,, —(FyNF3) has two parts (for convenience): H and AG, [WU(F,\F,)U
(F2\F1)]). Let B; be a component of AG,[WU(F, \ Fo)U(F2\ F1)]) and let
b; € V(B;). If b; € W, then there is a component B; of AG,[(F,\ F})UW]
(IV(B;)| = 4) and a component B of AG.[(F \ F2) UW] (JV(B))] > 4)
such that b; € V(B;) and b; € V(B!). It follows that B; U B! is connected
in AG.[W U (Fy \ F2) U (F2 \ F)]) and b; € V(B; U B!). Since connection
is an equivalence relation on the vertex set W U (F} \ F3) U (Fy \ Fy),
Bi = B; U B; holds. Therefore, |[V(B;)| > 4. If b; € (F2\ F}), then there
is a component G; of AG.([F2\ F1]) (|V(G:)| > 4) such that b; € V(G;).
It follows that G; is connected in AG,[W U (Fy \ Fy) U (F, \ F,)]) and
b; € V(G;). Since connection is an equivalence relation on the vertex set
WU (F \ F2) U (F2 \ Fy), we have that G, is a subgraph of B;. Therefore,
V(B:)| = 4. Similarly, if b; € (Fy \ F3), then [V(B;)] = 4. Therefore,
Fy N F; is a 3-extra cut of AG,,. By Theorem 12, |Fi N Fz| = 8n — 28.

Since |Fj| < 8n — 25, |Fy| < 8n — 25 and |Fy N F;| > 8n — 28, we have
12\ Fi|=|F| = | NF,| <8n—25~ (8 —28) =3 and |F, \ F3| <3.

Let |[F2\ Fi| = 3. Then |[F; N F;| = 8n — 28 = i®(A4G,) and F, N F>
is a minimum 3-extra cut of AG,. Recall |W| < 14n — 44. Therefore,
5 < R\ A+ |F\ B+ |W| < 14n — 38. By Theorem 13, AG, is
tightly (8n — 28) super 3-extra connected, i.e., AG, — (Fi N F;) has two
components, one of which is a subgraph of order 4. Therefore, we have that
V(AG, ~F| = F, —~W)| = 4. Thus, n!/2 = |V(AG,)| = |V(AG, —F, —Fo—
WHHIEB\F |+ |\ Fo|+|W|+|FonFy| € 4+14n—38+48n—28 = 29n—62,
a contradiction to n > 5.

Let |F;\ Fy| = 2. Then [F, N Fy| = 8n — 28 = &®)(AG..) or |F; N By =
8n — 27. Suppose |Fy N Fy| = 8n — 28 = R®)(4G,,). Similarly to above, we
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Since |F1NE,| = 8n—26and |Fy| < 8n—25, |1\ F2| = 1. Let z € F2\ Fy.
Since F) is a 3-extra faulty set of AG,,, we have that every component B; of
AG,[WU(F,\ F))]) has [V(B;)| > 4. Since z € F>\ Fy, AG.[WU(F:\ FY))])
has a component B;. Let z € V(B;). Since |V(B;)| > 4, |[W| = 3 and there
are a,b,c € W such that za, zb, zc € E(AG,). Let y € Fy \ F3. Since F;
is a 3-extra faulty set of AG,, va,yb,yc € E(AG,), a contradiction to
Proposition 9.

Case 8. |Fi N Fo| = 8n — 27.

Let z € F, \ F}. Since F} is a 3-extra faulty set of AG,, we have
that every component B; of AG,[W U (F; \ F)]) has |V(B;)| > 4. Since
e € B\ By, AG,.[W U (F2 \ F1)]) has a component B;. Let z € V(By).
Since |V(B;)] > 4, |W| > 3 and there are a,b,c € W such that za,zb,zc €
E(AG,). Since |Fi N Fy| = 8n ~ 27 and |F2] < 8n — 25, |3 \ 2] < 2.
Suppose |Fy \ Fo| = 1 and y € Fy \ F2. Since F; is a 3-extra faulty set
of AG,,, ya,yb,yc € E(AG,), a contradiction to Proposition 9. Suppose
[Fi \ F3| = 2 and y,z € F} \ F,. Let yz ¢ E(AG,). Since there is just
a vertex of F; \ Fy such that it is adjacent to a vertex of W, this is a
contradiction to Proposition 9. Let yz € E(AG,). If ya, yb, yc € E(AG,)
or za,zb,zc € E(AG,), then this case is the same to |F} \ F3| = 1. If
ya, zb € E(AG,,), then this case is a contradiction to Proposition 14. The
proof of Claim 1 is complete.

Let u € V(AG,,) \ (F; U F2). By Claim 1, u has at least one neighbor
vertex in AG, — F} — F,. Since the vertex set pair (F}, F,) is not satisfied
with any one condition in Theorem 18, by the condition (1) of Theorem
18, for any pair of adjacent vertices u,w € V(AG,)\ (F; U F3), there is no
vertex v € F} A F; such that vw € E(AG,) and vw € E(AG,,). It follows
that u has no neighbor in F} A F,. By the arbitrariness of u, there is no
edge between V(AG,) \ (Fy UFy) and Fy & Fo. If Fy N F,; = 0, then this
is a contradiction to that AG,, is connected. Therefore, F) N Fy # ) and
FiNF, is acut of AG,,. Since F5\ F] # 0 and F] is a 3-extra faulty set, we
have that every component H; of AG, — F, — F; has |V(H;)| > 4 and every
component G; of AG,,([F2\ Fi]) has [V(G;)| > 4. Suppose that F} \ F; = 0.
Then Fy N F, = F;. Since F} is a 3-extra faulty set of AG,,, we have that
FynFy; = F) is a 3-extra faulty set of AG,. Since there is no edge between
V(AG,) \ (Fi U F2) and F; \ Fy, we have that F} N F, = F) is a 3-extra
cut of AG,. Suppose that F} \ Fy # 0. Similarly, every component B; of
AG,([F\ \ F;)) has |V(B;)| = 4. Note that AG, — (F; N F2) has three parts
(for convenience): H, AG,[F\ \ F;] and AG,[F;\ Fy]. Therefore, F} N F;
is a 3-extra cut of AG,. By Theorem 12, we have |F} N F3| > 8n — 28.
Therefore, |F>| = |Fo \ Fi| + |Fi N F2| = 4+ (8n — 28) = 8n — 24, which
contradicts |F>| < 8n —25. Therefore, AG,, is 3-extra (8n —25)-diagnosable
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have that n!/2 = [V(AG,)| = |V(AG, — F} — F, = W)| +|F2 \ Fy| + |F1 \
B+ W[+ |FnF| <44 14n — 38 + 8n — 28 = 22n — 62, a contradiction
ton > 5. Suppose [F] N Fy| = 8n — 27.

Let z,y € F; \ F}. Suppose zy ¢ E(AG,,). Since F) is a 3-extra faulty
set of AG,,, we have that every component B; of AG,[W U (F2 \ F})]) has
|[V(B;)| > 4. Since zy ¢ E(AG,), AG,[WU(F2\ F})]) has two components
By and By. Let = € V(B;). Since |V(B;)|] = 4, |W| > 3 and there are
a,b,c € W such that za,zb,zc € F(AG,). The same reason, there are
d,e, f € W such that yd, ye, yf € E(AG,). Since there is just a vertex of
F; \ F; such that it is adjacent to a vertex of W, |W| > 6. If |F} \ F2| = 3,
then, by the above proof, there is a contradiction. If |F; \ Fo| = 1, then
there is a contradiction to Proposition . When F, \ F; = {u,v} and
uv € E(AG,), we will discuss it below. Therefore, suppose uv & E(AG,,).
Note N(WW\((F2\ )V (F \ F2)) € FinFy and IN(W)\((Fo \ F1) U (F1\
F3))| =2 6(2n —6) — 18 = 12n — 54 > 8n — 27 when n > 7, a contradiction
to ’F] n le = 8n — 27.

Suppose zy € E(AG,). Let AG, — F, — F, have one isolated vertex.
Since there is just a vertex of F, \ F} such that it is adjacent to a vertex
of W, [W U (F2 \ Fi)| = 3, a contradiction to that F is a 3-extra faulty
set of AG,. Therefore, |W| > 2. Without loss of generality, let |W| = 2
and a,b € W. Since F} is a 3-extra faulty set of AG,, za, zb € E(AG,,) or
za,yb € E(AG,,). Since |FiNF,| =8n—27and |Fy| <8n—25,|F \F,| < 2.
Since F; is a 3-extra faulty set of AG,,, |Fy\Fz| = 2. Let ¢,d € F}\ F5. Since
F; is a 3-extra faulty set of AG,, and there is just a vertex of F} \ F such that
it is adjacent to a vertex of W, we have cd € E(AG,). Therefore, ac,bc €
E(AG,) or ac,bd € E(AG,.). If za,rb € E(AG,) and ac,bc € E(AG,),
then |l NF| > 22n—6)+2(2n —7)+2(2n — 5) — 12 = 12n — 48 >
8n — 27 = |F1 N F;| when n > 7, a contradiction. If za,yb € E(AG,)
and ac,bc € E(AG,), then this case is a contradiction to Proposition 14.
Suppose za,yb € E(AG,) and ac,bd € E(AG,). If e € N(a) N N(b),
then aebyza is a 5-cycle, a contradiction to Proposition 14. Therefore,
N(a)NN(b) = 0. The same reason, N(z)N\N(d) = @ and N(y)NN(c) = §.
Therefore, |Fo N Fi| > 6(2n — 6) — 12 = 12n — 48 > 8n — 27 = |F} N F3|
when n > 6, a contradiction.

Let |F3\ Fi| = 1. Then |Fi N F;| = 8n — 28 = R®)(AG,) or |F) NF| =
8n ~ 27 or |Fy N Fy| = 8n — 26. We consider the following cases.

Case 1. |Fy N F3| = 8n — 28.
Similarly to above, there is a a contradiction.
Case 2. |Fy N F,| = 8n — 26.
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and £3(AG,,) > 8n — 25. The proof is complete. O
Combining Lemmas 19 and 21, we have the following theorem.

Theorem 22 Let n > 7. Then the 3-extra diagnosability of the the n-
dimensional alternating group graph AG, under the MM® model 1s 8n —25.

5 Conclusions

The conditional diagnosability are one important metrics for fault tolerance
of a multiprocessor system. In this paper, we investigate the problems of
the 3-extra diagnosability of alternating group graphs. It is proved that the
3-extra diagnosability of the n-dimensional alternating group graph AG,
under the PMC model and MM* model is 8n — 25, where n > 7. The above
results show that the 3-extra diagnosability is several times larger than
the classical diagnosability of AG,, depending on the condition: 3-extra.
The work will help engineers to develop more different measures of 3-extra
diagnosability based on application under environment, network topology,
network reliability, and statistics related to fault patterns.

Acknowledgment

This work is supported by the National Natural Science Foundation of
China (61772010).

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2007.

[2] A.T. Dahbura, G.M. Masson, An O(n*%) fault identification algo-
rithm for diagnosable systems, IEEE Transactions on Computers 33
{6) (1984) 486-492.

[3] Jianxi Fan, Diagnosability of crossed cubes under the comparison diag-
nosis model, IEEE Transactions on Parallel and Distributed Systems
13 (10) (2002) 1099-1104.

[4] Wei Feng, Shiying Wang, The 2-good-neighbor diagnosability of alter-
nating group graphs under the PMC model and MM* model, Journal of
Combinatorial Mathematics and Combinatorial Computing 107 (2018)
59-71.

266



[17] Shiying Wang, Mujiangshan Wang, The g-good-neighbor and g-extra

(18]

(19]

23]

[24]

[25]

(26]

(27]

diagnosability of networks, Theoretical Computer Science 773 (2019)
107-114.

Shiying Wang, Weiping Han, The g-good-neighbor conditional diag-
nosability of n-dimensional hypercubes under the MM* model, Infor-
mation Processing Letters 116 (2016) 574-577.

Shiying Wang, Yuxing Yang, The 2-good-neighbor (2-extra) diagnos-
ability of alternating group graph networks under the PMC model
and MM* model, Applied Mathematics and Computation 305 (2017)
241-250.

Shiying Wang, Zhenhua Wang, Mujiangshan Wang, The 2-extra con-
nectivity and 2-extra diagnosability of bubble-sort star graph networks,
The Computer Journal 59 (12) (2016) 1839-1856.

Shiying Wang, Zhenhua Wang, Mujiangshan Wang, The 2-good-
neighbor connectivity and 2-good-neighbor diagnosability of bubble-
sort star graph networks, Discrete Applied Mathematics 217 (2017)
691-706.

Shiying Wang, Xiaolei Ma, Diagnosability of alternating group graphs
with missing edges, Recent Advances in Electrical and Electronic En-
gineering 11 (1) ( 2018) 51-57.

Shiying Wang, Linggi Zhao, A note on the nature diagnosability of al-
ternating group graphs under the PMC model and MM* model, Jour-
nal of Interconnection Networks 18 (1) (2018) 1850005.

Shiying Wang, Zhenhua Wang, Mujiangshan Wang, and Weiping Han,
The g-good-neighbor conditional diagnosability of star graph networks
under the PMC model and MM* model, Frontiers of Mathematics in
China 12 (5) (2017) 1221-1234.

Shiying Wang, Xiaolei Ma, The g-extra connectivity and diagnosability
of crossed cubes, Applied Mathematics and Computation 336 (2018)
60-66.

Shiying Wang, Yunxia Ren, The 2-extra diagnosability of alternating
group graphs under the PMC model and MM* model, American Jour-
nal of Computational Mathematics 8 (2018) 42-54.

Yunxia Ren, Shiying Wang, The tightly super 3-extra connectivity of
alternating group graphs, ARS Combinatoria (to appear).

267



{5] Jung-Sing Jwo, S. Lakshmivarahan, S.K. Dhall, A new class of in-
terconnection networks based on the alternating group, Networks 23
(1993) 315-326.

[6] Sun-Yuan Hsieh, Chi-Ya Kao, The conditional diagnosability of k-ary
n-cubes under the comparison diagnosis model, IEEE Transactions on
Computers 62 (4) (2013) 839-843.

[7] Thomas W. Hungerford, Algebra, Springer-Verlag, New York, 1974.

[8] Pao-Lien Lai, Jimmy J.M. Tan, Chien-Ping Chang, Lih-Hsing Hsu,
Conditional Diagnosability Measures for Large Multiprocessor Sys-
tems, IEEE Transactions on Computers 54 (2) (2005) 165-175.

[9] Limei Lin, Shuming Zhou, Li Xu, The extra connectivity and condi-
tional diagnosability of alternating group networks, IEEE Transactions
on Parallel and Distributed Systems 26 (8) (2015) 2352-2362.

[10] J. Maeng, M. Malek, A comparison connection assignment for self-
diagnosis of multiprocessor systems, in: Proceeding of 11th Interna-
tional Symposium on Fault-Tolerant Computing, 1981, pp. 173-175.

[11] Shao-Lun Peng, Cheng-Kuan Lin, Jimmy J.M. Tan, Lih-Hsing Hsu,
The g-good-neighbor conditional diagnosability of hypercube under
PMC model, Applied Mathematics and Computation 218 (21) (2012)
10406-10412.

[12] F.P. Preparata, G. Metze, R.T. Chien, On the connection assignment
problem of diagnosable systems, IEEE Transactions on Computers EC-
16 (1967) 848-854.

[13] Yunxia Ren, Shiying Wang, Some properties of the g-good-neighbor
(g-extra) diagnosability of a multiprocessor system, American Journal
of Computational Mathematics 6 (2016) 259-266.

[14] Yunxia Ren, Shiying Wang, The tightly super 2-extra connectivity and
2-extra diagnosability of locally twisted cubes, Journal of Interconnec-
tion Networks 17 (2) (2017} 1750006.

[15] Mujiangshan Wang, Yubao Guo, Shiying Wang, The 1-good-neighbor
diagnosability of Cayley graphs generated by transposition trees under
the PMC model and MM* model, International Journal of Computer
Mathematics 94 (3) (2017) 620-631.

[16] Mujiangshan Wang, Yuging Lin, Shiying Wang, The 2-good-neighbor
diagnosability of Cayley graphs generated by transposition trees under
the PMC model and MM* model, Theoretical Computer Science 628
(2016) 92-100.

268



[28] Xiang Xu, Shuming Zhou, Jingiang Li, Reliability of complete cubic

[29]

(30]

[31]

[32]

(33]

(34]

networks under the condition of g-good-neighbor, The Computer Jour-
nal 60 (5) (2017) 625-635.

Jun Yuan, Aixia Liu, Xue Ma, Xiuli Liu, Xiao Qin, Jifu Zhang, The
g-good-neighbor conditional diagnosability of k-ary n-cubes under the
PMC model and MM* model, IEEE Transactions on Parallel and Dis-
tributed Systems 26 (2015) 1165-1177.

Jun Yuan, Aixia Liu, Xiao Qin, Jifu Zhang, Jing Li, g-Good-neighbor
conditional diagnosability measures for 3-ary n-cube networks, Theo-
retical Computer Science 622 (2016) 144-162.

Shurong Zhang, Weihua Yang, The g-extra conditional diagnosability
and sequential ¢/k-diagnosability of hypercubes, International Journal
of Computer Mathematics 93 (3) (2016) 482-497.

Zhao Zhang, Wei Xiong, Weihua Yang, A kind of conditional fault
tolerance of alternating group graphs, Information Processing Letters
110 (22) (2010) 998-1002.

Shuming Zhou, Jian Wang, Xirong Xu, Jun-Ming Xu, Conditional
fault diagnosis of bubble sort graphs under the PMC model, Intelli-
gence Computation and Evolutionary Computation, AISC 180 (2013)
53-59.

Mengjie Lv, Shuming Zhou, Xueli Sun, Guangin Lian, Jiafei Liu, Re-
liability of (n, k)-star network based on g-extra conditional fault, The-
oretical Computer Science 757 (2019) 44-55.

269



