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Abstract

A double Italian dominating function on a graph G with
vertex set V() is defined as a function f : V(G) — {0,1,2, 3}
such that each vertex u € V(G) with f(u) € {0,1} has the
property that 3 . niw f(®) = 3, where N[u] is the closed
neighborhood of u. A set {fi, f2,...,fa} of distinct dou-
ble Italian dominating functions on G with the property that
Z,_l fi{v) < 3 for each v € V(G) is called a double Italian
dominating family (of functions) on G. The maximum num-
ber of functions in a double Italian dominating family on G is
the double Italian domatic number of G, denoted by du;(G).
We initiate the study of the double Italian domatic number,
and we present different sharp bounds on dg;(G). In addi-
tion, we determine the double Italian domatic number of some
classes of graphs.

Keywords: Domination, Double Italian domination, Double
Italian domatic number.

MSC 2010: 05C69

1 Terminology and introduction

For notation and graph theory terminology, we in general follow
Haynes, Hedetniemi and Slater [7]. Specifically, let G be a graph
with vertex set V(G) = V and edge set E(G) = E. The integers
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n = n(G) = |V(G)| and m = m(G) = |E(G)| are the order and the
size of the graph G, respectively. The open neighborhood of a vertex
v is Ng(v) = N(v) = {u € V(G)|uww € E(G)}, and the closed neigh-
borhood of v is Ng[v] = N[v] = N(v) U {v}. The degree of a vertex v
is dg(v) = d(v) = |N(v)|. The minimum and mazimum degree of a
graph G are denoted by 6(G) = 6 and A(G) = A, respectively. The
complement of a graph G is denoted by G. Let K,, be the complete
graph of order n, C,, the cycle of order n, P, the path of order n,
and K,, the complete bipartite graph with partite sets X and Y,
where | X| =p and |[Y|=gq.

A set S of vertices of G is called a dominating set if N[S] =
Upes Nlv] = V(G). The domination number v(G) equals the min-
imum cardinality of a dominating set in G. A domatic partition
is a partition of V(G) into dominating sets, and the domatic num-
ber d(G) is the largest number of sets in a domatic partion. The
domatic number was introduced and investigated by Cockayne and
Hedetniemi [4].

In this paper we continue the study of Roman and Italian dom-
inating functions as well as Roman and Italian domatic numbers in
graphs and digraphs (see, for example, [2, 3, 5, 8, 12, 13, 14, 15,
18, 19]). A double Roman dominating function (DRD function) on
a graph G is defined by Beeler, Haynes and Hedetniemi in [1] as a
function f : V(G) — {0,1, 2,3} having the property that if f{v) =0,
then the vertex v must have at least two neighbors assigned 2 under
f or one neighbor w with f(w) = 3, and if f(v) = 1, then the vertex v
must have at least one neighbor u with f(u) > 2. The double Roman
domination number y4r(G) equals the minimum weight of a double
Roman dominating function on &, and a double Roman dominating
function of G with weight v4r(G) is called a yyr(G)-function of G.

A set {f1, fa,-.., fa} of distinct double Roman dominating func-
tions on G with the property that Zf___l fi(v) < 3 for each v € V(G)
is called in [16] a double Roman dominating family (of functions) on
G. The maximum number of functions in a double Roman dom-
inating family (DRD family) on G is the double Roman domatic
number of G, denoted by dgr(G). Further results on the double Ro-
man domination and domatic numbers can be found in the articles
[6, 9, 16, 17, 20, 21].



A double Italian dominating function on a graph G is defined
in [10] as a function f : V(G) — {0,1,2,3} such that each vertex
u € V(G) with f(u) € {0, 1} has the property that ), ~i f(@) = 3.
The double Italian domination number v4;(G) equals the minimum
weight of a double Italian dominating function on G, and a dou-
ble Italian dominating function of G with weight v4;(G) is called a
Ya1 (G)-function of G.

A set {f1, f2,..., fa} of distinct double Italian dominating func-
tions on G with the property that Ele fi(v) < 3 for each v € V(G)
is called a double Italian dominating family (of functions) on G.
The maximum number of functions in a double Italian dominating
family (DID family) on G is the double Italian domatic number of
G, denoted by dgr(G). According the definitions, we observe that

741(G) < var(G) and dyr(G) < dgr(G).

Our purpose in this work is to initiate the study of the dou-
ble Italian domatic number. We present basic properties and sharp
bounds for the double Italian domatic number of a graph. In par-
ticular, for each graph G of order n with §(G) > 2, we prove that
Y41(G) + da7(G) < n+ 3. In addition, we determine the double Ital-
ian domatic number of some classes of graphs.

2 Properties of the double Italian domatic
number

In this section we present basic properties and bounds on the double
Italian domatic number.

Theorem 1. If G is a graph of order n, then
Yar(G) - dg1(G) < 3n.

Moreover, if we have the equality v47(G) - dar(G) = 3n, then for
each DID family {fi, f2,..., fa} on G with d = dg;(G), each f; is
var (G)-function and 3¢ . fi(v) = 3 for all v € V(G).

Proof. Let {f1, fa,..., fa} be a DID family on G with d = dy;(G),



and let v € V(G). Then

d-var(G) = Z7dI(G)<>: > filw)

i=1 veV(G)
= ¥ Zfi('u)gi > 3=3n
veV(G) i=1 veV(G)

If v41(G) - dgr(G) = 3n, then the two inequalities occuring in the
proof become equalities. Hence for the DID family {f1, fa,---, fa}
on G and for each 1, EveV(G) fi(®) = v41(G). Thus each f; is a

~v41(G)-function, and Z 1 fi(v) = 3 for each v € V(G). O

Let A{UA2U...UA4 be a domatic partition of V(G) into dominat-
ing sets such that d = d(G). Then the set of functions { fi, fo, ..., fa}
with f;(v) = 3 for v € A; and f;(v) = 0 otherwise for 1 <i < d'is a
DID family on G. This shows that d(G) < dgr(G) for every graph G.
Since the definition of the double Italian domination number shows
easily that y4;(G) > 3 for each graph of order n > 2, Theorem 1
implies that dg;(G) < n. In [4], the authors note that d(K,) = n,
and therefore we obtain the following result.

Example 2. If K,, is the complete graph, then dg;(K,) = n.

The next observations shows that the double Italian domatic num-
ber is mostly less or equal (3n)/4.

Corollary 3. If G is a graph of order n > 2 with A(G) < n — 2,
then dgr(G) < (3n)/4.

Proof. Since A(G) < n — 2, it follows from [10] that v4(G) > 4.
Therefore Theorem 1 implies
3n 3n

dqr(G) < @) <

a

If G is a graph of order n, then we obtain by Zelinka [22] and
d(G) < dg;(G) the upper bound

I\F——%TG_)J < d(G) < dg; (G).
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In [16], one can find the following propositions.

Proposition 4. Let G be agraphof order n > 2. f Ghas 1 <p <
n — 1 vertices of degree n — 1, then dgr(G) > p+ 1.

Proposition 5. If G is a graph without isolated vertices, then
dar(G) > 2.

Using the fact that dgr(G) < dg;(G), Propositions 4 and 5 imply
the next two results immediately.

Proposition 6. Let G be a graph of order n > 2. If G has 1 <p <
n — 1 vertices of degree n — 1, then dgy(G) > p+ 1.

Proposition 7. If G is a graph without isolated vertices, then
dqr (G) > 2.

Theorem 8. If GG is a graph, then dg;(G) < §(G) + 1.

Proof. If dg;(G) = 1, then clearly dg;(G) < 8(G) + 1. Assume next
that dgr(G) > 2, and let {f1, fo,... f4} be a DID family on G such
that d = dgr(G). Assume that v is a vertex of minimum degree.
Since ZmeN{v} fi(x) = 2 holds for at most one index i € {1,2,...,d},
we deduce that

3d—1< Z Y fl@m= )Y Zf,(x) < > 3=3(8(G)+1).
i=1 zeN[v] z€N[v] i=1 z€Nv]
This implies d < §(G) + 4/3 and thus dg;(G) < 6(G) + 1. £l
Proposition 7 and Theorem 8 imply the next result immediately.
Corollary 9. If G is a graph with §(G) = 1, then dg;(G) = 2.

Corollary 10. Let G be a graph of order n > 2. Then dg;(G) =n
if and only if GG is isomorphic to the complete graph.

Proof. If G is the complete graph, then dgq;(G) = n by Example 2.
Conversely, assume that dy;(G) = n. If G is not complete, then

0(G) € n—2, and Theorem 8 leads to the contradiction n = dg;(G) <

n— 1. D
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Example 11. If C, is a cycle of length n, then dq;(Crn) = 3.

Proof. According to Theorem 8, we have dg;(Cr) < 3.

Assume now that n = 2p with an integer p > 2 and let C,, =
T1T2...TopT1. Define fi(z) = 1 for each z € V(Cy), falwoi1) =
2 and fo(zy;) = 0 and fa(zoi—1) = 0 and fi(ze) = 2 for i €
{1,2,...,p}. Then {fi, f2, f3} is a DID family on C, with fi(z) +
fo(x) + f3(z) = 3 for each z € V(C,,) and thus dg;(Cy) = 3 in this
case.

Assume next that n = 2p + 1 with an integer p > 1 and let C,, =
Z1Z2 ... ZTop+121. Define fi(z) = 1 for each z € V(Cy), fa(z2i1) =
2, fz(mgi) = and f2($2p+1) =1 and f3($2¢'_1) = 0., f3(:82i) =2 and
fa(wap+1) =1 for i € {1,2,...,p}. Then {f1, f2, f3} is a DID family
on C, with fi(x) + fa(x) + fs(z) = 3 for each z € V(C,,) and thus
dy;(Cr) = 3 in that case. O

Example 12. Let K,, be the complete graph with n > 3 and vertex
set {v1,v2,...,vn}, and let k be an integer with 1 < k < n—2. Define
the graph G = K, — {UnUn—1,VnUn—2,..-,UnUn-k}. Then §(G) =
n — k — 1, and thus it follows from Theorem 8 that dg;(G) < n — k.
Since vy, v, ..., Up—k-1 are vertices of degree n — 1, we deduce from
Proposition 6 that d4;(G) > n—k and thus dg; (G) = n—k = 6(G)+1.

Examples 11 and 12 show that Theorem 8 is sharp. Example 2
demonstrates that Theorems 1 and 8 are sharp.

Example 13. If K, , is the complete bipartite graph with p > 3,
then dq(Kpp) = p.

Proof. If p = 3, then v4;(K33) = 5. Thus Theorem 1 implies that

dar(K33) < [%%%J = [};J =3.

If p > 4, then it is straightforward to verify that v4;(Kpp) = 6, and
therefore Theorem 1 implies that dg;(Kpp) < p.

Let now X = {u1,ug,...,up} and Y = {v1,ug,...,vp} be a bipar-
tition of Kp,p,. Define f; : V(Kypp) — {0,1,2,3} by fi(u:) = fi(v;) =
3 and fi(u;) = fi(v;) =0for1 <i,j <pandi# j. Then f; isa DID
function on K, p, for 1 < ¢ < psuch that fi(z)+ fo(z)+...+ fp(x) =3
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for each x € V(K ). Therefore {f1, fo,..., fp} is a double Italian
dominating family on K, and thus dg;(Kpp) > p. This yields to

dar(Kp,p) = p. L
Also Example 13 shows that Theorems 1 is sharp.

Example 14. Let G = Kp, n,,..n, be the complete r-partite graph

.....

with 7 > 2 and n; =ng = ... = n, = 2. Then dg;(G) = IF’%QZJ =
L7
Proof. Let X1, X, ..., X, be the partite sets of G. If r = 2, then G
is a cycle of length 4, and the result follows from Example 11.
Let now r > 3. Corollary 3 implies dy;(G) < [%@J = [%J
Define now fi(x) = 2 for x € X; and fi(z) =0 for z € V(G) \ X;
for 1 < i < raswell as fryj(z) = 1forz € X2j—1 U Xa; and
frej(z) = 0 for z € V(G) \ (X251 U ng) for1 <7< [g—j Then
{fi, for- -, Fri 2y} is a DID family on G with S7472 f(z) < 3
for each z € V(G) and thus dgr(G) > r+ | 5| = |2F]. This yields
the desired result, and the proof is complete. O

Example 14 demostrates that Corollary 3 is sharp. If §(G) > 1,
then dyr(G) > 2, by Proposition 7. Next we prove that dg;(G) > 3
when 6(G) > 3.

Theorem 15. If G is a graph of minimum degree § > 3, then
dar(G) = 3.

Proof. Let u and v be two different vertices of G, Define f)(z) =
1 for each z € V(G), fa(u) = 2, fo(v) = 0 and fo(x) = 1 for
z € V(G) \ {u,v} and fz(u) = 0, f3(v) = 2 and fa(z) = 1 for
x € V(G)\ {u,v}. Since § > 3, we observe that {f1, fa, fa} is a DID
family on G with fi(z) + fo(z) + f3(z) = 3 for each z € V(G) and
thus dgr(G) > 3. O

3 Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the
sum or product of a parameter on a graph and its complement. In
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their classical paper [11], Nordhaus and Gaddum discussed this prob-
lem for the chromatic number. We establish such inequalities for the
double Italian domatic number.

Theorem 16. If G is a graph of order n, then

dg1(G) + dgr1(G) < n+ 1.
If dg; (G) + dgr(G) = n + 1, then G is regular.
Proof. Theorem 8 implies that

dar(G) +dgr(G) < (6(G)+1)+ (6(G) +1)
= §G)+1+(n—AG)—1)+1<n+1,

and this is the desired bound. If G is not regular, then A(G) —
8(G) > 1, and the inequality chain above leads to the better bound
da1(G) + dgr(G) < n. O

If G = K,,, then Example 2 leads to dg;(K,) + dar(Kp) =n + 1,
and therefore equality in the inequality of this theorem. According
to Corollary 9 and Example 11, we deduce that dg;(Cy) +dgr(Cy) =
3+ 2 =5 and dg;(Cs) + dg;(Cs) = 3+ 3 = 6. All these examples
demonstrate that Theorem 16 is sharp.

Corollary 17. Let G be a graph of order n. If G is not regular,
then dgr(G) + dgr(G) < n.

If G = K, — e for n > 3, where e is an arbitray edge of K, then
it follows from Example 12 that dg;(G) + dg;(G) =n—1+1=n.
This example shows that Corollary 17 is sharp.

For some regular graphs we can improve Theorem 16 slightly.

Theorem 18. Let G be a é-regular graph of order n. If 1 < < %
or 3 — 1 <6< n—2 then
4 — !

dqr(G) + ddI(—G—) < n.

Proof. Assume first that 1 < < 7. Then G is (n — & — 1)-regular
with n—§ -1 < n—2. Thus it follows from Corollary 3 and Theorem
8 that

R A4 28 pep,

— 3n
ddI(G)-FddI(G)Sa-{-l“i“*a*( n 1
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Second assume that 22 —1 < § < n—2. Then G is (n—&— 1)-regular,
and we deduce from from Corollary 3 and Theorem 8 that

. 3 3
dgi(G) +dg(G) < Tn-i-n——é—l—{-l:—??—}-n—d
g B e
4 4 B '

Therefore dg;(G) + dqr(G) < m in both cases, and the proof is com-
plete. »

4 Bounds on ’)’dI(G) + ddI(G)

The upper bound on the product 47 (G) - dg; (G) < 3n in Theorem
1 leads to upper bounds on the sum of these two parameters.

Theorem 19. If G is a graph of order n without isolated vertices,

then
3n

2

Proof. Proposition 7 and the fact that v47(G) > 3, imply the lower
bound immediately.
It follows from Theorem 1 that

5 < a1(G) +dus(G) < — +2.

3n

dar(C) + dg1(G).

Yar(G) + dar(G) <

According to Proposition 7 and Theorem 8, we have 2 < dg;(G) < n.
Using these bounds and the fact that the function g(z) = x+ (3n)/z
is decreasing for 2 < z < v3n and increasing for ViIn<z< n, the
inequality above leads to

3n
Yar(G) + dgr(G) < 3 (©)

3
& max{ifz+2,3+n} =-2§+2,

+dg1(G)

2

and the upper bound is proved. Ll
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Example 20. If H is isomorphic to pK, with an integer p > 2, then
Yar(H) = 3p = (3n(H))/2 and dgr(H) = 2. Thus g;(H)+da(H) =
(3n(H))/2+2. This example shows that the upper bound in Theorem
19 is sharp.

If Kl,n——l is the star with n > 2, then 7dI(K1,n——1) = 3, and
we conclude from Corollary 9 that dg;(Kin-1) = 2. This yields
t0 Va1 (K1n-1) + das(K1n—1) = 5, and hence equality in the left
inequality of Theorem 19.

Next we improve Theorem 19 for connected graphs. We use the
following result given in [1].

Theorem 21. If G is a connected graph of order n > 3, then
v4r(G) < (5n)/4.

Theorem 22. If G is a connected graph of order n > 3, then

5n
’YdI(G) -+ dd[(G) < T + 2,

with exception of the case that G = K3, in which case v47(K3) +
dar(K3) = 6.

Proof. It follows from Theorem 1 that
3n
Ya1(G)

According to Theorem 21, we have 3 < v47(G) < vr(G) < (5n)/4.
Using these bounds and the fact that the function g(z) = z+(3n)/z
is decreasing for 3 < z < v/3n and increasing for v3n < z < (5n)/4,
the inequality above leads to

Y41(G) + dar(G) < v41(G) +

3n
G d i (G) < G
Yar(G) + dar(G) < ~yar( )+’Yd1(G)
¢ mafan 2] 02
= HEITR T TS 15

and therefore

+w

5n 12
4 5]

7ar(C) + dar(C) < [
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It is straightforward to verify that

5n 12 5n
bl Wik, [ it
[4+5J_ 9 8

when n # 3 (mod4). Assume next that n = 3 (mod 4), say n = 4p+3
with an integer p > 0. If p = 0, then G is isomorphic to K3 or
P3. Using Example 2 and Corollary 9, we observe that yg47(K3) +
ddI(Ka) = 6 and "yd[(P;;) +dgr(P3) =5 < (15)/4 + 2. If p > 1, then
Theorem 21 implies v4;(G) < v4r(G) < 5p + 3, and hence it follows
as above that

3n
G) +dg(G) < G) +
Ya1(G) + dar(G) var(G) e
12p+9
ot 4
< ma.x{ p+6,5p4+ 3+ 5p+3}
12p4+9
= B 3
Fr ok op + 3
and thus
12p+9 S5n
G dgi(G)Y < |5 3 o 2< — 4 2.
Yar(G) + dar( )_[P+ % 5p+3J S5p+3+2< y

This completes the proof. 1

In [1], the authors show that the following family F of trees attain
the bound in Theorem 21. A tree T in F can be built from k copies
of P4 by adding k — 1 edges incident to support vertices of the kPy
to connect the graph. Now it is easy to see that v4;(T) = (bn)/4 for
each T' € F. Since Corollary 9 implies that dg;(T) = 2, we deduce
that v47(T) + dgr(T) = %" + 2 for T' € F. Therefore Theorem 22 is
sharp too.

Finally, we improve Theorems 19 and 22 for graphs with minimum
degree at least 2. We use the following result given in [20].

Theorem 23. If D is a digraph with 67 (D) > 2, then ~4;(D) <
V(D) +2 -6 (D).

Corollary 24. If G is a graph with 6(G) > 2, then ~4;(G) <
IV(G)| +2 - 8(G) < n.

107



Theorem 25. If G is a graph of order n with 6(G) > 2, then
'YdI(G) -+ ddI(G) <n+3.

Proof. According to Corollary 24, we have 3 < v;;(G) < n. Hence
it follows from Theorem 1 that

7ar(G) + dar(G) < WKGHji%ﬁ

3n
< max{3+§2,n+—z}=n+3,
3 n

and the proof is complete. O

Example 26. If H is isomorphic to pK3 with an integer p > 1,
then v4;(H) = 3p = n(H) and dg;(H) = 3 by Example 11. Thus
Yar(H) + dgr(H) = n(H) + 3. This example shows that Theorem 25
is sharp. An another example which shows the sharpness of Theorem
25 is the complete graph, since yqr(Kp) + dgr(Kn) =n+3 forn > 2
by Example 2.

Theorem 27. Let G be a graph of order n with minimum degre ¢
and maximum degree A. f 3<d <A <n-2andn > 46~ 8, then

Y41 (G) + dar(G) < n+5— 4.

Proof. Since A < n — 2, it follows from [10] that v4(G) > 4. In
addition, Corollary 24 implies v4;(G)) < n+ 2 — §, and hence we
have 4 < v4;(G) < n + 2 — 4. Therefore we deduce from Theorem 1
that

3n
Yar (G)

3n 3n
< bt ..o
< max{4+ 4,n+2 5+n+2—5}

Yar(G) +dar(G) < v (G) +

Using the condition n > 44 — 8, it is straightforward to verify that

max{4+§ﬁ,n+2~—5+ e

1 ;:§t3}<"+6—&

and thus we obtain v47(G) + dg;(G) <n+5— 4. O
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By Example 13, we observe that v47(K33) + dg;(Ks3) = 8 =
n(K3,3) +5— (K3 3) and therefore equality in the inequality of The-
orem 27. On the other hand, var(Ky4) + dar(Kgq) = 10 > 9 =
n(K4,4)+5—3(Ky4) and hence we see that the condition n > 46 — 8
in Theorem 27 is important.
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