
The Topological Trees with Extreme

Matula Numbers

Audace A. V. Dossou-Olory
Department of Mathematical Sciences

Stellenbosch University
Private Bag X1, Matieland 7602

South Africa
audace@aims.ac.za

Abstract

Denote by pm the m-th prime number (p1 = 2, p2 = 3, p3 =
5, p4 = 7, . . .). Let T be a rooted tree with branches T1, T2, . . . , Tr.
The Matula number M(T ) of T is pM(T1) ·pM(T2) ·. . .·pM(Tr), starting
with M(K1) = 1. This number was put forward half a century ago
by the American mathematician David Matula. In this paper, we
prove that the star (consisting of a root and leaves attached to it)
and the binary caterpillar (a binary tree whose internal vertices form
a path starting at the root) have the smallest and greatest Matula
number, respectively, over all topological trees (rooted trees without
vertices of outdegree 1) with a prescribed number of leaves – the
extreme values are also derived.

1 Introduction

Fifty years ago, the American mathematician David Matula gave an ex-
plicit bijection between the set of all rooted trees and the set of all posi-
tive integers [14]. The bijection is described by means of prime numbers.
Throughout, pm always means the m-th prime number (in ascending order);
for example,

p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, p6 = 13, . . .

The Matula number of the tree K1 that has only one vertex is defined to
be 1, and if T is a rooted tree with branches (the components that remain
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after deleting the root and all edges incident to it) T1, T2, . . . , Tr, then the
Matula number of T – henceforth denoted by M(T ) – is given by

M(T ) = pM(T1) · pM(T2) · . . . · pM(Tr) .

For example, consider the rooted tree T shown in Figure 1; T has three
branches T1, T2, T3. We have

M(T1) = pM(K1) = p1 = 2, M(T2) = pM(K1) · pM(K1) = p21 = 4,

M(T3) = M(K1) = 1 ,

from which

M(T ) = pM(T1) · pM(T2) · pM(T3) = p2 · p4 · p1 = 42

is obtained.

T1
T2

T3

Figure 1: A rooted tree T with three branches T1, T2, T3.

The definition of Matula numbers also suggests that for every positive
integer n, there is a unique rooted tree T whose Matula number is n. This
observation follows by induction on n. Indeed, if n > 1, then write n in its
(unique) prime decomposition, say n = t1 · t2 · . . . · tl, where t1, t2, . . . , tl are
all primes (not necessarily distinct!). Let mi be the unique positive integer
such that ti = pmi

; form a rooted tree T by joining the roots of the trees
with Matula numbers m1,m2, . . . ,ml to a new common vertex (the root
of T ). The Matula number of this tree is n. Hence, there is a bijection
between the set of all rooted trees and the set of all positive integers.

As mentioned by Ivan Gutman and Aleksandar Ivić in their 1994 pa-
per [10], at the time when the bijection was found by Matula, the mathe-
matics community had considered this discovery as ‘just’ a curiosity driven
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observation. One had to wait until two decades later when the American
chemist Seymour Elk proved in subsequent papers [5, 6, 7, 8] that Mat-
ula numbers can be useful for canonical nomenclatures of alkanes and all
potential combinations of polybenzene or polymantane modules. In 1992,
Gutman, Ivić and Elk [11] obtained further results on how the molecu-
lar structures of certain organic compounds can be encoded by means of
Matula numbers.

Since the Matula number also appears to be a natural (rooted) tree
invariant, Gutman and Yeh listed in their 1993 paper [12] ten different
parameters (such as the number of vertices, number of leaves, minimum
vertex degree, maximum vertex degree, diameter, etc.) of a rooted tree
that can be obtained directly from the associated Matula number. Three
years later, Gutman and Ivić [9] proved that for n ≥ 5, the rooted tree
obtained by taking a root path (rooted at one of its endvertices) on n− 3
vertices and attaching three leaves to the other endvertex of the path, is
the one that has the maximum Matula number over the set of all rooted
trees with n vertices. For the minimum, they showed that for n ≥ 3 and
depending on the residue of n modulo 3, the rooted tree depicted in Figure 2
is minimal among all n-vertex rooted trees.

1 n
3 − 1 1 n−1

3
n−2
3 − 11

Figure 2: The minimal trees among all n-vertex rooted trees according to
the residue of n modulo 3 (the root is the square vertex on top) [9].

In 2012, Deutsch [3] showed how to determine further properties (mostly
distance- and degree-based) of a rooted tree directly from the correspond-
ing Matula number. As such, we have the path length, number of subtrees,
Wiener index, terminal Wiener index, Wiener polynomial, first Zagreb in-
dex, second Zagreb index, just to mention a few.

In this short note, we are concerned with the Matula extremal trees
(and thus the Matula extreme numbers) among the so-called topological
trees, given the number of leaves.

In [2] a topological tree is defined as a tree without vertices of degree 2.
In this note (see also [4]), a rooted tree will be called a topological tree if it
does not have a vertex of outdegree 1. The purpose of avoiding vertices of
outdegree 1 in the tree is rather natural: we are collecting trees according
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to the number of leaves, and there are infinitely many trees with the same
number of leaves (e.g. all paths; more generally, one can subdivide any set
of edges in a given tree).

We mention that trees without vertices of degree 2 (also known as
series-reduced or homeomorphically irreducible trees) have already been ob-
ject of study in the past by mathematicians and theoretical biologists; see
e.g. Jamison [13], Bergeron et al. [2], Allman and Rhodes [1], or the se-
quence A000669 in [17].

2 Getting to the extremal trees

Let us first give more definitions.

• A binary tree is a rooted tree in which every vertex has outdegree
exactly 0 or 2;

• A star is a rooted tree in which all leaves are adjacent to the root
(see Figure 3);

• A binary caterpillar is a binary tree whose internal vertices lie on a
single path starting at the root (see Figure 3).

We denote the star with n leaves by K1,n and the n-leaf binary caterpillar
by Fn. We shall prove that the star K1,n minimises the Matula number and
the binary caterpillar Fn maximises the Matula number over all topological
trees with n leaves. We also derive the extreme values, i.e. an expression
for both M(K1,n) and M(Fn).

Figure 3: The binary caterpillar F5 with five leaves (left), and the star K1,6

with six leaves (right).

Note the following observation, which is analogous to a transformation
used by the authors of [9] in their context of trees with a given number of
vertices. Let us be given two arbitrary topological trees T1 and T2. Denote
by S1,2 the topological tree with the two branches T1 and T2. Then we have

pM(T1) · pM(T2) < pM(S1,2) .
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To see this, simply note that M(S1,2) = pM(T1) · pM(T2) by definition, and
thus

pM(S1,2) = ppM(T1)·pM(T2)
> pM(T1) · pM(T2)

as pm (the m-th prime number) is greater than m for all m.

Let T be a topological tree with branches T1, T2, . . . , Tr such that r ≥ 3.
Again, denote by S1,2 the topological tree whose branches are T1 and T2.
Further, denote by F (T ) the rooted tree whose branches are S1,2, T3, . . . , Tr;
see Figure 4 for a picture. Obviously, T and F (T ) have the same number
of leaves.

S1,2

T1 T2 T3 Tr

T1 T2 T3 Tr

Figure 4: Illustration of the tree transformation F : A topological tree T
(top figure) and the corresponding tree F (T ) (bottom figure).

Then it follows immediately from the previous observation and the def-
inition of the Matula number that

M(F (T )) > M(T ) .

Consequently, by repeatedly applying the tree transformation F , we then
obtain from T a new topological tree, say T ′ with exactly two branches
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and having the property that M(T ′) > M(T ). In the same way, repeated
application of the same tree transformation F to the branches of T ′ yields
a binary tree.

Hence, the tree that has the maximum Matula number among all topo-
logical trees with a prescribed number of leaves must be a binary tree. On
the other hand, it also follows from our discussion that the tree that min-
imises the Matula number among all topological trees with n ≥ 2 leaves
must have n branches. We have then proved the following theorem:

Theorem 1. The star K1,n (consisting of a root with n leaves attached to
it) is the topological tree that has the smallest Matula number among all
n-leaf topological trees. Moreover, M(K1,n) = 2n for all n > 1.

3 Finding the maximal topological tree

We begin with a lemma:

Lemma 2. Let the sequence (qk)k≥1 of positive integers be defined recur-
sively by

q1 = 1 and qk = 2pqk−1
for k > 1 .

Then we have

pqk1
· pqk2

≤ qk1+k2

for all pairs (k1, k2) of positive integers.

The first few values of the sequence (qk)k≥1 are

q1 = 1, q2 = 2p1 = 4, q3 = 2p4 = 14, q4 = 2p14 = 86, q5 = 2p86 = 886,

q6 = 2p886 = 13766

since p14 = 43, p86 = 443 and p886 = 6883.

To prove the lemma, we shall need the following two theorems concern-
ing primes:

Theorem 3 (Robin [15]). For any integer m ≥ 2, we have

pm ≥ m
(

ln(m) + ln(ln(m))− 1.0072629
)
.

Theorem 4 (Rosser-Schoenfeld [16]). For any integer m ≥ 20, we have

pm ≤ m
(

ln(m) + ln(ln(m))− 0.5
)
.
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Proof of Lemma 2. We may assume that k1 ≤ k2. Set k = k1 + k2. For
k = 2, we have k1 = k2 = 1 and pqk1

· pqk2
= p2q1 = p21 = 4 = 2p1 =

2pq1 = q2 = qk1+k2
. For k = 3, we have k1 = 1, k2 = 2 and pqk1

· pqk2
=

pq1 · pq2 = p1 · p4 = 14 = 2p4 = 2pq2 = q3 = qk1+k2
. So the inequality holds

for k ∈ {2, 3}. In fact, for k ≤ 6, the inequality is easily verified; see Table 1
and the values of q1, . . . , q6 given above. We then assume that k > 6 and
continue the proof of the inequality by induction on k.

Table 1: k1 + k2 ∈ {4, 5, 6}

(k1, k2) (1,3) (2,2) (1,4) (2,3) (1,5) (2,4) (3,3)
pqk1
· pqk2

86 49 886 301 13766 3101 1849

Let k1, k2 be two arbitrary positive integers such that k1 ≤ k2 and
k1 + k2 = k. We may assume that k1 ≥ 2 because for k1 = 1, the lemma
clearly holds with equality. We may also assume that k2 ≥ 4 because k > 6
by assumption.

Now note that pqk1
≥ 4 (since k1 ≥ 2 implies that qk1

≥ 4) and thus

ln(pqk1
· pqk2−1

) + ln(ln(pqk1
· pqk2−1

))− 1.0072629

≥ ln(2) + ln(2pqk2−1
) + ln(ln(2pqk2−1

))− 1.0072629

≥ ln(2pqk2−1
) + ln(ln(2pqk2−1

))− 0.5

= ln(qk2) + ln(ln(qk2))− 0.5

since ln(2)− 1.0072629 = −0.314116 . . .. Thus, we have

2pqk2−1

(
ln(pqk1

· pqk2−1
) + ln(ln(pqk1

· pqk2−1
))− 1.0072629

)
≥ qk2

(
ln(qk2

) + ln(ln(qk2
))− 0.5

)
≥ pqk2

,

where the inequality in the last step follows from Theorem 4 since k2 ≥ 4
implies that qk2

≥ 20.

It follows that

2pqk1
· pqk2−1

(
ln(pqk1

· pqk2−1
) + ln(ln(pqk1

· pqk2−1
))− 1.0072629

)
≥ pqk1

· pqk2
,
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so that Theorem 3 together with the induction hypothesis gives us

qk = 2pqk−1
≥ 2qk−1

(
ln(qk−1) + ln(ln(qk−1))− 1.0072629

)
≥ 2pqk1

· pqk2−1(
ln(pqk1

· pqk2−1
) + ln(ln(pqk1

· pqk2−1
))− 1.0072629

)
≥ pqk1

· pqk2

since k1 + k2 = k and k > 6 implies that qk−1 ≥ 2. Therefore, we obtain

qk = qk1+k2
≥ pqk1

· pqk2

for all pairs (k1, k2) of positive integers. This completes the induction step
as well as the proof of the lemma.

We can now state and prove our next theorem:

Theorem 5. Among all topological trees with n leaves, the binary caterpil-
lar Fn has the greatest Matula number. Furthermore, M(Fn) = qn, where
qn is the positive integer defined in Lemma 2.

Proof. First of all, note that for k > 1, we have M(Fk) = p1 · pM(Fk−1) and
by iteration on k, we obtain M(Fk) = qk for every k.

It is shown in Section 2 that the tree that maximises the Matula number
among all topological trees with a prescribed number of leaves must be a
binary tree. Now, let us use induction on k to prove that M(B) ≤ M(Fk)
for every binary tree B with k leaves.

The statement of the theorem is trivial for k ≤ 3 since in this case,
there is only one possibility for the shape of the binary tree. Assume that
the statement holds for all binary trees with at most k − 1 ≥ 3 leaves
and consider a binary tree B with k leaves. Denote by B1 and B2 the
two branches of B. Since M(B) = pM(B1) · pM(B2), we obtain M(B) ≤
pM(F|B1|)

· pM(F|B2|)
by the induction hypothesis. Consequently, invoking

Lemma 2, one obtains

M(B) ≤ pM(F|B1|)
· pM(F|B2|)

≤M(F|B|)

since M(Fk) = qk. The theorem follows.

4 Conclusion

The fact that the binary caterpillar Fn is maximal in the set of all n-leaf
topological trees with respect to the Matula number, also shows that Fn
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is maximal in the set of all n-leaf binary trees with respect to the Matula
number. Probably, the next natural problem for a future study will be
to characterise the tree that minimises the Matula number over all binary
trees (rooted trees in which every vertex has outdegree exactly 0 or 2) with
a given number of leaves.

Given a positive integer k > 1, let s be the unique nonnegative integer
satisfying 2s+1 ≤ k < 2s+2. Then write k = r + 21+s with r the residue of
k modulo 21+s. Define the sequence (lk)k≥1 of positive integers recursively
by

lk = lr+21+s =

{
pl2s · plr+2s

if r ≤ 2s

plr · pl21+s if r > 2s ,

starting with l1 = 1. The sequence begins

1, 4, 14, 49, 301, 1589, 9761, 51529, 452411, 3041573, 23140153, . . . .

Calculations suggest that M(B) ≥ lk for every binary tree B with k ≤
18 leaves. The k-leaf minimal binary tree Sk in this case is also obtained
in the same recursive way: the branches of Sk = Sr+21+s are the binary
trees S2s and Sr+2s if r ≤ 2s, and the binary trees Sr and S21+s if r > 2s,
the starting tree being the tree K1. For example, we show in Figure 5 the
minimal binary trees S6 and S13.

Note that the numbers lk soon get really large; for instance, the Matula
number of S18 is 32078140605053. So it is difficult to check our evidence
for more values of k; although

1.07555× 1015 ≤ p32078140605053 ≤ 1.09182× 1015 ,

a ‘standard’ computer already fails to produce the prime number

p32078140605053.

On the other hand, since “weak” binary trees (every vertex has degree
at most 3) are more realistic molecular graphs, the problem of finding the
extremal tree structures among these trees, given the number of vertices,
may also be of interest. Recall that for the more general case of rooted
trees, the problem has already been solved by Gutman and Ivić [9].
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S6

S13

Figure 5: The minimal binary trees S6 and S13.
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