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Abstract. Let F be a (possibly improper) edge-coloring of a graph G; a vertex coloring of
G is adapted to F if no color appears at the same time on an edge and on its two endpoints.
If for some integer k, a graph G is such that given any list assignment L to the vertices of
G, with |L(v)| ≥ k for all v, and any edge-coloring F of G, G admits a coloring c adapted
to F where c(v) ∈ L(v) for all v, then G is said to be adaptably k-choosable. A (k, d)-list
assignment for a graph G is a map that assigns to each vertex v a list L(v) of at least k

colors such that |L(x)∩L(y)| ≤ d whenever x and y are adjacent. A graph is (k, d)-choosable
if for every (k, d)-list assignment L there is an L-coloring of G. It has been conjectured
that planar graphs are (3, 1)-choosable. We give some progress on this conjecture by giving
sufficient conditions for a planar graph to be adaptably 3-choosable. Since (k, 1)-choosability
is a special case of adaptable k-choosablity, this implies that a planar graph satisfying these
conditions is (3, 1)-choosable.
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1 Introduction

Given a graph G, assign to each vertex v of G a set L(v) of colors (positive integers). Such an
assignment L is called a list assignment for G and the sets L(v) are referred to as lists or color
lists. We then want to find a proper vertex coloring ϕ of G, such that ϕ(v) ∈ L(v) for all v ∈ V (G).
If such a coloring ϕ exists then G is L-colorable and ϕ is called an L-coloring. Furthermore, G is
called k-choosable if it is L-colorable for every k-list assignment L.

This particular variant of vertex coloring is known as list coloring or choosability of graphs and
was introduced by Vizing [19] and independently by Erdős et al. [7].

A recent variation on list coloring is the so-called model of choosability with separation where
we require that lists of adjacent vertices have a bounded number of common colors. A (k, d)-list
assignment for a graph G is a map that assigns to each vertex v a list L(v) of at least k colors
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such that |L(x) ∩ L(y)| ≤ d whenever x and y are adjacent. A graph is (k, d)-choosable if for every
(k, d)-list assignment L of G there is an L-coloring of G. Note that G is (k, k)-choosable if and only
if G is k-choosable. Moreover, if G is (k, d)-choosable, then G is also (k′, d′)-choosable for all k′ ≥ k
and d′ ≤ d.

Choosability with separation was first considered by Kratochvil et al. [15]. Among other things
they proved that every planar graph is (4, 1)-choosable, which is a refinement for choosability of
separation of Thomassen’s well-known result that planar graphs are 5-choosable [18]. By an example
of Voigt [20], Thomassen’s result is best possible.

Skrekovski [17] gave examples of triangle-free planar graphs that are not (3, 2)-choosable, and
posed the following question:

Problem 1.1. Is every planar graph (3, 1)-choosable?

It follows from a result of Kratochvil et al. [15] that this question has a positive answer for the
case of triangle-free graphs. Recently, Choi et al. [4] proved that planar graphs without 4-cycles
are (3, 1)-choosable. This was slightly improved by Chen et al. [3] who proved that planar graphs
with no adjacent 4-cycles and no adjacent 3- and 4-cycles are (3, 1)-choosable, where two cycles of
a graph are adjacent if they share a common edge; two cycles are intersecting if they have at least
one common vertex.

The main purpose of this note is to give some further progress on Problem 1.1. In particular
we prove that a planar graph G is (3, 1)-choosable if G satisfies that

(i) no two triangles are intersecting, and every triangle is adjacent to at most one 4-cycle, or

(ii) no triangle is adjacent to a triangle or a 4-cycle, and every 5-cycle is adjacent to at most three
triangles.

Further related results on Problem 1.1 appear in [4, 2, 13, 1].

Let G be a graph and let F be a (possibly improper) coloring of the edges of G with integers.
A k-coloring c : V (G) → {1, . . . , k} of the vertices of G is adapted to F if for every uv ∈ E(G),
c(u) 6= c(v) or c(v) 6= F (uv). In other words, there is no monochromatic edge i.e. an edge whose
two ends are colored with the same color as the edge itself. If there is an integer k such that for any
edge coloring F of G, there exists a vertex k-coloring of G adapted to F , we say that G is adaptably
k-colorable. The smallest k such that G is adaptably k-colorable is called the adaptable chromatic
number of G, denoted by χad(G). The concept of adapted coloring of graphs was introduced by
Hell and Zhu in [12].

Let L be a list assignment for the vertices of a graph G, and F be a (possibly improper) edge
coloring of G. A coloring c of G adapted to F is an L-coloring adapted to F if for any vertex
v ∈ V (G), we have c(v) ∈ L(v). If for any edge coloring F of G and any list assignment L with
|L(v)| ≥ k for all v ∈ V (G) there exists an L-coloring of G adapted to F , we say that G is adaptably
k-choosable. The smallest k such that G is adaptably k-choosable is called the adaptable choosability
(or the adaptable choice number) of G, denoted by chad(G). The concept of adapted list coloring
of graphs and hypergraphs was introduced by Kostochka and Zhu in [14].

The following observation was first made in [8].

Observation 1.2. If G is adaptably k-choosable, then G is (k, 1)-choosable.
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Proof. Assume that G is adaptably k-choosable. Let L be a (k, 1)-list assignment for G. For any
edge e = xy of G we color xy with the unique element in L(x) ∩ L(y); let F be this edge coloring
of G. Since G is adaptably k-choosable, there is a coloring of G from the lists which is adapted to
F . Since any two adjacent vertices of G have at most one common color in their lists, this coloring
is proper. Hence, G is (k, 1)-choosable.

Our results on (3, 1)-choosability are based on this connection; thus any planar graph satisfying
(i) or (ii) is adaptably 3-choosable. In Section 2 we give some further connections between adaptable
choosability and (3, 1)-choosability based on the edge-arboricity of a graph.

Our main results are proved in Section 3. Our proofs are based on connections between the
maximum average degree of a graph and orientations of the underlying graph. A benefit of our
method is that it yields rather short proofs; many results in this area are based on rather lengthy
discharging arguments, or uses precoloring extension techniques based on the proof of Thomassen’s
celebrated theorem on 5-choosability of planar graphs [18] combined with a detailed structural
analysis of the graph (cf. [4, 2, 3, 1]).

In Section 4 we note that yet another family of planar graphs are (3, 1)-choosable, namely the
so-called Halin graphs.

2 Edge arboricity and Adaptable choosability

The edge-arboricity a(G) of a graph G is the minimum number of forests into which its edges can
be partitioned. It is well-known that if a graph has arboricity at most d, then it has an orientation
with out-degree at most d (see e.g. [6]).

The following proposition demonstrates the connection between adaptable choosability (and
thus (k, 1)-choosability) and orientations.

Proposition 2.1. If a(G) ≤ k, then G is adaptably (k+1)-choosable, and thus (k+1, 1)-choosable.

Proof. By assumption, G has an orientation in which each vertex xi has d
+(xi) ≤ k. Assume each

vertex xi is given a list L(xi) of k+1 colors and F is an edge coloring of G. Let c(xi) be any color in
L(xi) which does not appear on any outgoing edges of xi. Then it is obvious that c is an L-coloring
of G adapted to F . This completes the proof of Proposition 2.1.

Since the edge-arboricity of a triangle-free planar graph is at most 2 and the edge-arboricity
of planar graphs is at most 3, the preceding proposition yields yet another immediate proof of
the facts that every triangle-free planar graph is (3, 1)-choosable, and that every planar graph is
(4, 1)-choosable [15].

As pointed out above, Choi et al. [4] proved that planar graphs without 4-cycles are (3, 1)-
choosable, but there are planar graphs without 4-cycles which are not adaptably 3-colorable [9].

However, as follows from Proposition 2.1, every planar graph is adaptably 4-choosable. We note
that this in fact holds for any graph with no K5-minor; which was first established in in [9].

Corollary 2.2. Every K5-minor free (simple) graph is adaptably 4-choosable.

As noted in [16], it is easy to prove that the edge-arboricity of a K5-minor free (simple) graph
G is at most 3 (this follows since such a graph satisfies |E(G)| ≤ 3|V (G)| − 6); so Proposition 2.1
implies Corollary 2.2. The latter statement yields the following.

Corollary 2.3. If G is a K5-minor free graph, then G is (4, 1)-choosable.
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3 Sufficient conditions for adaptable 3-choosability and

(3, 1)-choosability of planar graphs

In this section we prove our main results on adaptable 3-choosability and (3, 1)-choosability of
planar graphs.

Given a graph G, the maximum average degree of G, denoted by Mad(G), is the maximum of
the average degrees of all subgraphs of G, i.e.,

Mad(G) = max{2|E(H)|/|V (H)| : H is a subgraph of G}.

We denote by d(v) the degree of a vertex v in G and by r(f) the degree of a face f , i.e. the
number of edges incident with it. A k-face is a face of degree k, and a k+-face (respectively, k−-face)
is a face with degree at least k (respectively, at most k).

In [16] the following theorem is proved using the orientation method presented in Section 2 (see
[5] for a detailed introduction to orientation and Mad).

Theorem 3.1. For any graph G,

chad(G) ≤ ⌈Mad(G)/2⌉ + 1.

By using Obervation 1.2 we have the following.

Lemma 3.2. Every graph G is (⌈Mad(G)/2⌉ + 1, 1)-choosable.

Now we prove the following theorem.

Theorem 3.3. If G is a planar graph with no intersecting triangles and where every triangle is
adjacent to at most one 4-cycle, then Mad(G) < 4.

Proof. Suppose, for a contradiction, that there is a subgraph H of G with average degree at least
4. Clearly, we may assume that H is connected. We shall use a discharging argument for proving
that H has average degree less than 4, thus yielding the desired contradiction.

Let V,E, F be the sets of vertices, edges and faces of H, respectively. By Euler’s formula
|V | − |E|+ |F | = 2, we have

4|E| − 4|V | − 4|F | = −8.

Rewriting this yields ∑

v∈V

(d(v) − 4) +
∑

f∈F

(r(f)− 4) = −8. (1)

We now define a weight function ω : V ∪ F → R by setting w(v) = d(v) − 4 if v ∈ V , and
w(f) = r(f)− 4 if f ∈ F .

A 3-face that shares two edges with an adjacent 5-face is called a bad 3-face for this 5-face; a
3-face that shares one edge with an adjacent 5-face is called an ordinary 3-face for this 5-face. Note
that a 5-face has at most one bad 3-face.

Our discharging procedure is simple.

(R1) A 5-face gives 1

2
to each adjacent 3-face if none of them are bad; if one adjacent 3-face is bad,

then the 5-face gives 1 to this bad 3-face, and nothing to any other adjacent ordinary 3-face.

(R2) A 6+-face gives 1

2
to every adjacent 3-face that it shares one edge with, and it gives 1 to every

3-face that it shares at least two edges with.
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Let w′ be the weight function obtained by applying (R1) and (R2) to the graph H and the
function w. We shall prove that w′(f) ≥ 0 for any face f of H.

Now, since G has no intersecting triangles and every triangle is adjacent to at most one 4-cycle,
each 3-face in H is adjacent to no 3-face, and at most one 4-face (via at most one edge). We consider
some cases.

• If a 3-face f is adjacent to two 5+-faces with no bad 3-faces, then w′(f) ≥ −1 + 2× 1/2 = 0.

• If a 3-face f is adjacent to a 5-face with a bad 3-face via one edge, then the other two edges of
f do not lie on 4-faces or on 5-faces with bad 3-faces; because every triangle in G is adjacent
to at most one 4-cycle. Thus, we have w′(f) = −1 + 2× 1/2 = 0.

• If a 3-face f is a bad 3-face for an adjacent 5-face, then it receives 1 from this 5-face. Hence,
w′(f) ≥ −1 + 1 = 0.

In conclusion, every 3-face f satisfies that w′(f) ≥ 0.
Every 4-face f clearly satisfies w′(f) = 0. If a 5-face f is adjacent to a bad 3-face then it satisfies

w′(f) = 1 − 1 = 0; if it is not adjacent to a bad 3-face, then it is adjacent to at most two distinct
3-faces, since no pair of triangles intersect in G; thus w′(f) ≥ 1− 2× 1

2
= 0.

Consider a 2k-face f , where k ≥ 3. The face f gives 1 to an adjacent 3-face that it shares
at least two edges with, and it gives 1

2
to a 3-face that it shares one edge with. Since no pair of

triangles intersect, f is adjacent to 3-faces via at most 4k
3

edges if f shares at most two edges with
every adjacent 3-face. Since a 3-face which shares two or three edges with f receives 1 from f , it
follows that w′(f) ≥ 2k − 4− 2k

3
≥ 0 if k ≥ 3. A similar calculation shows that w′(f) ≥ 0 if f is a

(2k + 1)-face, where k ≥ 3.
By (1), we have that ∑

v∈V

w(v) +
∑

f∈F

w(f) < 0.

Hence, the same holds for the weight function w′ obtained by redistributing the charge. Now, since
w′(f) ≥ 0 for any face f in H, we have that

∑
v∈V w′(v) < 0, which means that

∑
v∈V (d(v)−4) < 0,

and so the average degree in H is less than 4, contrary to our assumption.

Theorem 3.1 and Lemma 3.2 yield the following.

Theorem 3.4. If G is a planar graph with no intersecting triangles and where every triangle is
adjacent to at most one 4-cycle, then chad(G) ≤ 3, and thus G is (3, 1)-choosable.

Remark 3.5. It is easily verified that the proof of Theorem 3.3 (with the exact same discharging
rules and calculations) is valid if the following two conditions hold:

(i) every triangle satisfies that at most one of its edges lie on another cycle of length at most
four;

(ii) every 5-, 6-, and 7-cycle satisfies that at most two, four, and six of its edges lie on triangles,
respectively.

Hence, every planar graph G satisfying these conditions is adaptably 3-choosable, and also (3, 1)-
choosable.

Another immediate consequence of the preceding theorem is the following.
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Corollary 3.6. If G is a planar graph with no intersecting triangles and no intersecting 4-cycles,
then G is adaptably 3-choosable, and thus (3, 1)-choosable.

Using a similar argument as in the proof of Theorem 3.3 we can prove the following.

Theorem 3.7. If G is a planar graph where no triangle of G is adjacent to a triangle or a 4-cycle,
and each 5-cycle is adjacent to at most three triangles, then Mad(G) < 4. Hence, G is adaptably
3-choosable and (3, 1)-choosable.

Proof. The proof of Theorem 3.7 is similar to the proof of Theorem 3.3. The only substantial
difference is that instead of the discharging rules (R1) and (R2) we apply the following.

(R3) For each edge between a 5+-face and a triangle, the 5+-face gives 1

3
to the adjacent triangle.

Similar calculations as in the proof of Theorem 3.3 then yield the desired contradiction; the details
are omitted.

We have to notice that our Theorem 3.4 gives a very short proof of the following theorem proved
in [10].

Theorem 3.8. Suppose G is a planar graph. Then G is adaptably 3-choosable if any two triangles
in G have distance at least 2 and no triangle is adjacent to a 4-cycle.

4 Halin graphs

A Halin graph is a planar graph constructed from a planar drawing of a tree with at least four
vertices and with no vertices of degree two by connecting its leaves by a cycle that crosses none of
its edges. The following lemma is well-known and easy to prove.

Lemma 4.1. Every cycle is (2, 1)-choosable.

Proposition 4.2. Every Halin graph is (3, 1)-choosable.

Proof. Let G = T ∪ C be a Halin graph, where T is the spanning tree, and C is the outer cycle.
Consider a (3, 1)-list assignment L for G. Now, any tree is trivially (2, 1)-choosable; thus, we can
pick an L-coloring ϕ of the tree T ′ obtained from T by removing all leaves. Now, for every vertex v
of C we define a new list assignment L′ by removing any color from L(v) that is used on a neighbor
of v in T ′. Note that L′ is (2, 1)-list assignment for C. By Lemma 4.1, C is L′-colorable. By taking
an L′-coloring of C together with the coloring ϕ of T ′, we obtain an L-coloring of G.

Since K4 is (3, 1)-choosable, but not (2, 1)-choosable, Proposition 4.2 is in fact sharp.
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[16] Mickael Montassier, André Raspaud, Xuding Zhu, An upper bound on adaptable choosability
of graphs, European Journal of Combinatorics 30 (2009), 351–355.

[17] R. Skrekovski, A note on choosability with separation for planar graphs, Ars Combinatoria 58
(2001), 169–174.

710



[18] C. Thomassen, Every Planar Graph is 5-Choosable, J Combin Theory Ser B, 62 (1994), 180–
181.

[19] V. G. Vizing, Coloring the vertices of a graph with prescribed colors, Metody Diskretnogo
Analiza Teorii Kodov i Skhem 29 (1976), 3–10 (in Russian).

[20] M. Voigt, List colourings of planar graphs, Discrete Math, 120 (1993), 215–219.

810



109

This
 pa

ge
 is

 in
ten

tio
na

lly 
lef

t b
lan

k.


	1 Introduction
	2 Edge arboricity and Adaptable choosability
	3 Sufficient conditions for adaptable 3-choosability and (3,1)-choosability of planar graphs
	4 Halin graphs
	5 Acknowledgement
	Bibliography

