A Note on the Parallel Cleaning of
Cliques

A. Angeli Ayello} M. E. Messinger'

Abstract

We disprove a conjecture proposed in [Gaspers et al., Discrete
Applied Mathematics, 2010] and provide a new upper bound for the
minimum number of brushes required to continually parallel clean a

clique.
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1 Introduction and Definitions

In a graph cleaning model, every vertex and edge of a graph is initally
considered to be contaminated or dirty and brushes are distributed to a
set of vertices. A vertex may be cleaned if it contains as many brushes as
dirty incident edges. When a vertex is cleaned, it sends exactly one brush
along each dirty incident edge, cleaning those edges. In the sequential
cleaning model (see [2, 7, 8] for example), at each step exactly one vertex
is cleaned and the brush number of a graph G is defined as the minimum
number of brushes needed to clean G using the sequential cleaning model.
In the parallel cleaning model (see [3, 7] for example), at each step every
vertex that may be cleaned, is cleaned simultaneously and the parallel brush
number for a graph G is the minimum number of brushes needed to clean
G using the parallel cleaning model. In [7], the authors showed that for
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any graph G, the sequential and parallel brush numbers coincide, thus we
denote by b(G), the brush number of G.

Figures 1 and 2 illustrate the sequential and parallel cleaning models
on a 5-cycle where one vertex initially has 2 brushes and all other vertices
initially have 0 brushes. The dotted lines and white vertices indicate clean
edges and clean vertices and for the end of each step, the distribution of
brushes (i.e. the number of brushes at each vertex) is given. The reader will
observe that in Figure 1, there is a choice as to the second vertex cleaned
(and also the third and fourth vertices cleaned). It was shown in (7] that
such decisions can be made arbitrarily as they do not affect whether all
vertices (and edges) of a graph can be cleaned; that is, whether a graph
can be cleaned depends entirely on the number and initial distribution of
brushes. We further observe that at the end of step 4, every edge has been
cleaned, but one vertex has not yet been cleaned. This example illustrates
that after all edges have been cleaned, one additional step may be required
to ensure all vertices are clean. Finally, in the parallel model, it is important
to note that if adjacent vertices are cleaned during the same step, both
vertices will send a brush along the common edge to the other vertex. This
can be observed in Figure 2.
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Figure 1: Sequential cleaning model with 2 brushes initially on one vertex
of C5.
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Figure 2: Parallel cleaning model with 2 brushes initially on one vertex of
Cs.
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In this note, we are concerned with the number of brushes required
to continually parallel clean a complete graph (clique). The sequential
cleaning model considers a network that must be cleaned periodically of a
regenerating contaminant. In practice, mechanized brushes are sometimes
used to remove regenerating contaminants such as algae and zebra mussels
from water pipes as routine maintenance [4, 5] because zebra mussels can
accumulate and restrict water flow in municipal, industrial, and private
water systems [1]. As a result, we are interested in whether locations of the
brushes after a system has been cleaned, can be used as starting locations
for the brushes to clean the system again. The sequential cleaning model is
inherently reversible (see Theorem 2.3 in [7]); that is, a final configuration
of brushes on a graph G is always a viable initial configuration of brushes
that can be used to clean G again. Although b(G) brushes can be used to
parallel clean a graph G once, the parallel model is not always “reversible”
(see for example, Figure 2). Thus, for many graphs, additional brushes
beyond b(G) are required in order to continually parallel clean the graph
and the continual parallel brush number is denoted cpb(G).

Formally, at each step ¢, w;(v) denotes the number of brushes at vertex
v (wy : V. — NU {0}) and D, denotes the set of dirty vertices. An edge
uv € E is dirty if and only if both v and v are dirty: {u,v} C D,. Finally,
let D;(v) denote the number of dirty edges incident to v at step t:

Do) = INw)N D if ve D,
¢ 0 otherwise.

We next formally define the parallel graph cleaning process, following
the definitions provided in [3].

Definition 1. The parallel cleaning process €(G,wp) = {(ws, D¢)}E , of
an undirected graph G = (V, E) with an initial configuration of brushes
wo s as follows:

(0) Initially, all vertices are dirty: Do =V ; sett:=0

(1) Let piy1 € D; be the set of vertices such that w,(v) > D.;(v) for
v € pry1- If pry1 = O, then stop the process (K = t), return the
parallel cleaning sequence p = (py, p2,...,pK), the final set of
dirty vertices Dg, and the final configuration of brushes wg

(2) Clean each vertex v € pyy1 and all dirty incident edges by traversing
a brush from v to each dirty neighbour. More precisely, Dy, = D, \
pet1, for every v € pey1, wip1(v) = we(v) — De(v) + [N (v) N peya],
and for every u € Dy, wiyg(u) = wy(u) + |N(uw) N pyy1| the other
values of wyy1 remain the same as in wy
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(3) t:=t+1 and go back to (1).

Definition 2. A graph G = (V, E) can be cleaned by the initial configu-
ration of brushes wyg if the cleaning process €(G,wp) returns an empty final
set of dirty vertices (D = 0).

Definition 3. Let G be a network with initial configuration w) = wy. Then
G can be continually cleaned using the parallel cleaning process beginning
from configuration wq if for each s € NU {0}, G can be cleaned in parallel
using initial configuration wj, yielding the final configuration wiy, where

The continual parallel brush number, cpb(G), of a network G is the

manimum number of brushes needed to continually clean G using a parallel
cleaning process.

In (3], the authors provided bounds for cpb for a number of graphs
and determined cpb exactly for some classes of graphs. In particular, they
showed

5 4
g7 +On) < cpb(K,) < gn’ +0(n). (1)
Based on these bounds and computational results, the authors [3] conjec-
tured bK.)

l- n

)
The main result of this note, stated below, provides an improved upper
bound for ¢pb(K,,) which disproves the above conjecture.

= 9/16. (2)

Theorem 11. Let ng be a non-negative integer and for i € Z*, let n; =
3n;_1 +d; for d; € {1,2,3}. Then
3 1 (2 i

cpb(K,,) < [? + o 5) - I]n? + O(n;).

In [7], it was determined that b(K,,) = L%Q—J Combined with the results
of Theorem 11, the following corollary is immediate.

Corollary 12. Let ng be a non-negative integer and for i € Z*t, let n; =
3n;_1 + d; for d; € {1,2,3}. Then
_ bKn) T
R s, B
im0 cpb(K,,) — 12

The proof of Theorem 11 can be found in Section 2.
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2 Results

Definition 4. Label the vertices of K,, as vg,v1,...,Vn—1 and let wy be
an initial configuration of brushes that will parallel clean K,,, leaving final
configuration wg . Then wp s a 1-clique configuration if

(1) wo(v;) <n—1 forallie {0,1,...,n— 1} and

(2) the following multisets are equal: {wo(vp), wo(v1), ..., wo(vn—1)}
and {wK(UO)F WK(UI): veey wK('vn—l)}'

For a 1-clique configuration wp, let S,,(wp) = Z?:—Ol wo(v;). Let S,, =
min S, (wg) where the minimum is taken over all 1-clique configurations.
Then certainly, cpb(K,,) < S,,.

For n = 1,2 (mod 3), the initial configurations given in [3] that achieve
the upper bound of (1) are l-clique configurations, however, the initial
configuration given for n = 0 (mod 3) in [3] is not a l-clique configura-
tion. Having 1-clique configurations are key to our main result later in this
section, so in Theorem 5, we provide a l-clique configuration for K,, for
n = 0 (mod 3) that uses 3n? + O(n) brushes (the proof is similar to that
of Theorem 4.8 in [3]).

A vertex is said to be primed if it has at least as many brushes as
incident dirty edges. Vertices are cleaned in three phases: in phase 1, a
set of k vertices are cleaned, starting with the only primed vertex, then
two primed vertices, then four primed vertices, and so on (although the
cardinality of the last subset of vertices need not be a power of 2). In
phase 2, a set of k + 3 vertices are cleaned all in one step. In phase 3, the
remaining set of k vertices are cleaned in one step, but being a clique, the
number of brushes at each vertex does not change during this step.

Theorem 5. Let n = 3k + 3 for some non-negative integer k and label the
vertices of K,, as
Vo, V1, - -, U3k+2- If

wiles) = k+2 ifi=kk+1,...,2k+2
o i otherwise,

then wo is a 1-clique configuration of Kax 3, using a total of 4k2 +7Tk+6 =
an? + O(n) brushes.

Proof. For k € {0,1,...,8} we can manually check that wg is a l-clique
configuration. Thus, we consider k > 8.
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Consider the vertices cleaned in phase 1: {v3xj2,V3k41,V3k,- - - V2k+3}-
Only vsk 42 is cleaned during step 1. Suppose that 27! vertices are cleaned
during step j for 7 € {2,3,...,t—1} wheret < [log,(k+1)]. We inductively
show that during step ¢, 2! vertices are cleaned. Let v; be a vertex cleaned
during step t. Then

w1 () = i+ (2°+2' +- +2072)
= 3420711
> Dy_1(v;)

= 3k+2-(20"1-1)

which implies ¢ > 3k +4 — 2¢. As v; could not have been cleaned during the
previous step, wi_2(v;) < Dy_»(v;), which implies i < 3k +4 — 2¢~1. Thus,
during step t < [log,(k+1)], 28! vertices are cleaned. Finally, we observe
that for v; cleaned during step ¢t < [logs(k + 1)],

wt(v,-) = wt_l(v,;) — Dt_l(v,-) + (Zt-l — l) =1+ 3 2t“1 — 3k - 5.

We consider the remaining vertices of phase 1; that is, the vertices
cleaned during step ¢ = [log,(k + 1)]. Let v; be one such vertex. Then
we—1(v;) =1+ =1 _ 1 and De_1(v;) =3k+3— 2¢=1 Tt follows that

we_1(v;) — De—1(v;) > 2k+3+271-1—-3k+3-211)
20 — (k+1) > 2f — gloga(ctl)
0

AVARLY

since £ = [log,(k + 1)| > logy(k + 1). Therefore the remaining vertices of
phase 1 are cleaned during step £. Since there are a total of k— (21 -1)—1
vertices other than v; cleaned during step ¢,

we(v;)) =wp_1(v;) — (2k+3) =i+ 271 — 2k — 4.
We next consider the vertices cleaned during phase 2: {vory2, vori1,

..., U }. No vertex v; € {vak42,V2k+1,.- .,V } can be cleaned prior to step
£+1 as

we—1(vi) =wo(vs) + 27— 1=k + 142" < Dy_y(v;) = 3k + 3 — 201
However as exactly k vertices were cleaned during phase 1,
we(vi) = wo(vi) + k = 2k +2 > Do(v;) = 2k + 2,

and vertices v; € {vakt2,V2k+1,---,Vk} are all cleaned during step ¢ + 1.
Further, we note that these vertices will each have k+ 2 brushes in the final
configuration.
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Finally, we consider the vertices cleaned during phase 3: {vgx_1, vi_2,
.., vo}. No vertex v; € {vg_1,Vk_2,...,¥} can be cleaned prior to step
£+ 2 as
we(v)) =wo(v;) +k=1+k < De(v;) =2k + 2.

However, all v; € {vk_1,Vk—2,...,v0} are cleaned during step ¢ + 2 as

wet1(v;) =w0(vi) +2k+3=9+2k+32> Dey1(v;)) =k — 1.

The final configuration is

i+3-20"1_3k—-5 fori=3k—20"14+4 ... 3k+2

- P48l ok 4 for i =2k+3,...,3k—2¢"14+3
w ;) =
S k42 fori—=rk,k+1,...,2k+2

i1+ 2k+3 fort=0,1,...k—1

where t* = [log,(3k — i + 4)] is the step at which v; was cleaned. By a
relabeling of vertices, configuration weo is equivalent to wg. We further
note that at each step of the cleaning process, no vertex had more than
n — 1 = 3k + 2 brushes. I3

In the next lemma, we start with a l-clique configuration of K,, and
use it, along with the previous theorem, to build a 1-clique configuration
of K3, 3. In Theorem 5, vertices of K3, 3 were cleaned in 3 phases, with
n vertices cleaned during phase 1.

Lemma 6. Let n € N. There exists a 1-clique configuration that cleans
K3, 13 using 25,, + 3n? 4+ 8n + 6 brushes.

Proof. Let n € N and label the vertices of K,, as vy,v1,...,v,_;. Let
wp be a l-clique configuration of K. Label the vertices of Ka,,3 as
UQ, U, U2, - - -, U3n+2, and set

wo(v4) if 0<j7<n-1
wo(u;) =< n+2 if n<;3<2n+2
wé(vj_gn_3)+2n+3 if 2n+3§3§3n+2

Let A ={u; [2n+3 < j < 3n+2}, B={y; |n £ j < 2n+ 2},
C={u; |0<j<n-—1} Sets A, B, and C are cleaned during phases 1,
2, and 3, respectively.

We first observe that no vertex of B U C can be cleaned until n vertices
of K3,43 have been cleaned. If only n — 1 vertices have been cleaned, then
a vertex in BU C will have at most (n +2) + (n — 1) = 2n+ 1 brushes, but
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will have 2n + 3 dirty incident neighbours. Thus, in phase 1, only vertices
of A will be cleaned.

Phase 1: Let j € {2n + 3,...,3n + 2}. We aim to show that if v; 2,3
is cleaned during step ¢ in K,, then u; is cleaned during step ¢ in K3y, 3.
Suppose n > 1 (one can manually check that the configuration is a 1-clique
configuration for n = 1). Obviously, the previous statement holds for ¢ = 1
and suppose that the statement holds for all t < t’ for some step t'. By
induction, we prove the statement holds for t = t’. In K,,, suppose vertex
v; _2,,—3 is cleaned during step t’ and z vertices were cleaned during earlier
steps; then

wé(’vj_zn__;g) +zTz>n-— l—z = w(f)(’U:"_Qn_;g) >n— 1-—2z. (3)

Using (3), we see that vertex u; in K3, 3 is cleaned during step #':

wyr—1(us) = wo(uj) +2 = wy(vj—2n—3)+2n+3+2z > 3n+2—z = Dy _1(u;).

Suppose the vertices of A (and of K,,) are cleaned by step x. Since wj
is a 1-clique configuration in K,,, the multisets {w;(usnt2), Wx(Usnt1), - - -,
wi(u2n3)} and {w§(vo), wh(v1), - - ,wy(ve—1)} are equal. Further, since
wj_1(vj—2n-3) < n—1 (aswy is a 1-clique configuration) and w;_; (v;_2,_3) =
w§(vj—2n—3) + x, we conclude

wi—1(u;) = wo(Vj—2n-3)+z+2n+3) < (n—1)+(2n+3) =3n+ 2.

Thus, a vertex in A has at most 3n + 2 brushes at any step.

Phase 2: Next, we observe that no vertex of C can be cleaned at step k + 1:
each vertex of C has at most (n — 1) +n = 2n — 1 brushes, but 2n 4 2 dirty
incident neighbours (since |A| = n and |B| = n + 3). Similarly for u; € B,
wr—1(u;) <2n+1 < De_1(u;) and Dy_;(u;) > 2n + 3, so no vertex of set
B can be cleaned at step x (or earlier).

However, for each u; € B, wx(u;) = 2n + 2. Thus, each vertex of
B is cleaned at step K + 1, leaving wey1(u;) = n + 2 for each v; €
B. Clearly the multisets {wxt1(un),wWrt1Unt1),-- -, Wei1(uont2)} and
{wo(un), wo(Unt1),- .., wo(usny2)} are equal. Further, we note that a ver-
tex in B has at most 2n 4+ 2 < 3n + 2 brushes at any step.

Phase 3: Finally, we consider the vertices of C. For u; € C, wy41(u;) =
wh(vi) + 2n+ 3 > 2n + 3 and since |C| = n, every vertex of C is cleaned at
step kK + 2. Thus, the multisets

{wit2(v0), wet2(u1), - - -, Wat2(un—1)} and {wo(uzn4s), wo(uznta), -, wolusn
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are equal. Further, we note that a vertex in C has at most 3n + 2 brushes
at any step. O

Lemma 7. Let n € N. There exists a 1-cligue configuration that cleans
Ks, 41 using 25, + 3n? + 2n brushes where S, is a 1-clique configuration
for K,,.

Lemma 8. Let n € N. There ezists an initial 1-clique configuration that
cleans Kz, o using 25, + 3n? + 5n + 2 brushes where S, is a l-clique
configuration for K,.

The proofs of Lemmas 7 and 8 are extremely similar to the proof of
Lemma 6 and consequently have been omitted. We do, however, provide
the initial configurations used to prove Lemmas 7 and 8. Label the vertices

of K,, as vo,v1,...,U,_1- and let wj be a l-clique configuration of K,,.
Label the vertices of K3,,41 as ug,u1,ug,...,us, and set
wo(v;) fo<j<n-1
wo(uj) =4¢n ifn<j<2n

wo(Vj—gn—1)+2n+1 if2n+1<j < 3n.

Label the vertices of Kg,, 2 as ug,u1,us2,...,us,4+1, and set
wp(vy) if 0<j<n-—1
wo(uj)=4¢ n+1 if n<j<2n+1

Wh(Wj—an—2)+2n+2 if 2n+2< < 3n+1.

Iteratively applying Lemmas 6-8, yields the next corollary.

Corollary 9. Let ng € N and fori € N, let n; = 3n;_; + d; for d; €
{1,2,3}. Then there exists an initial 1-clique configuration that cleans K,,
using 2 - S,,_, + in? + O(n;) brushes.

Theorem 10. Let ngo € N and fori € N, let n; = 3n;_, + d; for d; €
{1,2,3}. Then
3 1 /2x%
< |=4+—=(= < :

Sne <[5+ 55(5) |t +0ma). 4)
Proof. Let ng € N and for i € N, let n; = 3n;,_; + d; for d; € {1,2,3}. By
Theorem 5 along with Theorems 4.8 [3] and 4.10 [3], we know there exists
an initial 1-clique configuration that cleans K,,, using $ng+O(ng) brushes:
80 Sp, < gng + O(no).
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Assume (4) holds for all ¢ < k for i,k € Z*. Now consider ¢ = k+ 1
then from Corollary 9 and the inductive hypothesis it follows that:

1
Snk+1 <2-8:, + gni+1 + O(nyk)

(G5 (3) o] koo @

2
< [+ ()" ok roton

-2
- 63

Theorem 11 follows immediately from Theorem 10.

Theorem 11. Let ny be a non-negative integer and for i € Z1, let n; =
3n; 1 +d; ford; € {1,2,3}. Then

3 1,2\ ,

A A =T ey ™ A

Pb(Kn,) < [7 T 53 (9) ]n% )

Corollary 12. Let ng be a non-negative integer and fori € Z*, let n; =
3n;_1+d; ford; € {1,2,3}. Then

i 2 7
i cpb(Kn,) = 12

Corollary 12 disproves the conjecture (2) of [3].

3 Conclusion

We have provided an improved upper bound for cpb(K,,), however, we note
there remains a gap between the upper bound of Theorem 11 and the lower
bound of epb(K,). In (3], the authors showed cpb(K,) > n® + O(n). As
an open question, we ask: can the lower bound be improved?
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