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Abstract. The strong chromatic index x/,(G) of a graph G is the smallest
integer k such that G has a proper edge k-coloring with the condition that
any two edges at distance at most 2 receive distinct colors. It is known that
x5(G) < 3A — 2 for any K4-minor free graph G with A > 3. We give a
polynomial algorithm in order O(|E(G)|(nA? + 2n + 14A)) to strong color
the edges of a K4-minor free graph with 3A — 2 colors where A > 3.
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1 Introduction

Only simple graphs are considered in this paper. Let G be a graph with ver-
tex set V(G), edge set E(G), minimum degree ¢(G), and maximum degree
A(G). A vertex v is called a k-vertex (k*-vertex, k™ -vertez, respectively)
if the degree dg(v) of v is k (at least k, at most k, respectively). Let Ng(v)
and Ec(v) denote the set of vertices adjacent to v and the set of edges
incident to v, respectively. It is easy to see that dg(v) = |Ng(v)| = |Ec(v)|
for any vertex v of a simple graph G. If no ambiguity arises in the context,
§(G), A(G), dg(v), Ng(v), and Eg(v) are written as 4, A, d(v), N(v), and
E(v), respectively.

A proper edge k-coloring of a graph G is a mapping ¢ : E(G) —
{1,2,...,k} such that ¢(e) # ¢(e’) for any two adjacent edges e and e'.
The chromatic index x'(G) of G is the smallest integer k such that G has a
proper edge k-coloring. The coloring ¢ is called strong if any two edges at
distance at most two get distinct colors. Equivalently, each color class is an
induced matching. The strong chromatic indez x,(G) of G is the smallest
integer k such that G has a strong edge k-coloring.

Strong edge coloring of graphs was introduced by Fouquet and Jolivet
[11] in 1983. It holds trivially that x,(G) > x'(G) > A for any graph G.
In 1985, during a seminar in Prague, Erdds and Nesetfil put forward the
following conjecture.

Conjecture 1. For every graph G with mazimum degree A,

- %A2, if A is even;
xs(G) <
1(6AZ —2A +1), if A is odd.

Erdés and Nesetfil provided a construction showing that Conjecture 1
is tight if it were true. In 1997, using probabilistic methods, Molloy and
Reed [18] showed that x}(G) < 1.998A2 for a graph G with sufficiently
large A. The currently best known upper bound for a general graph G is
1.93A2, due to Bruhn and Joos [3].

A graph G is called d-degenerate if each subgraph of G contains a ver-
tex of degree at most d. Chang and Narayanan [5] proved that if G is
a 2-degenerate graph, then x;(G) < 10A — 10. Recently, T. Wang [23]
strengthened this result to x,(G) < 6A — 7 for any 2-degenerate graph G.
As a special case, Wang [23] also showed that if all the 3*-vertices in a
graph G induce a forest, then x,(G) < 4A — 3. Recall that a chord in a
graph is an edge that joins two nonconsecutive vertices of a cycle. A graph
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is said to be chordless if there is no cycle in the graph that has a chord.
Debski et al. [7] proved that if G is a chordless graph, then x'(G) < 4A —3.
More recently, Basavarajul and Francis [2] further improved this result to
x'(G) < 3A for any chordless graph G.

Suppose that G is a planar graph. Using the Four-Color Theorem [1]
and Vizing Theorem [25], Faudree et al. [10] gave an elegant proof to the
result that x,(G) < 4A +4. They also constructed a class of planar graphs
G with A > 2 and x,(G) = 4A — 4. They use their idea of turning an edge
coloring problem into a vertex coloring problem to find some polynomial
algorithms for some special family of graphs.

In this paper, we focus on the strong edge coloring of K4-minor free
graphs. A graph G has a graph H as a minor if H can be obtained from a
subgraph of G by contracting edges, and G is called H-minor free if G does
not have H as a minor. A planar graph is called outerplanar if it has an
embedding in the Euclidean plane such that all the vertices are located on
the boundary of the unbounded face. It is shown by Chartrand and Harary
(6] that a graph G is an outerplanar graph if and only if G is K4-minor free
and K 3-minor free. Thus, the class of K4-minor free graphs is a class of
planar graphs that contains the class of outerplanar graphs.

Very recently, Hocquard et al. [14] proved that if G is an outerplanar
graph with A > 3 then x,(G) < 3A — 3 and the upper bound 3A — 3 is
tight. On the other hand, it is easy to see that a K4-minor free graph G is
2-degenerate by the result of Duffin [8] and hence x,(G) < 6A — 7 by the
result of T. Wang [23]. Y.Q. Wang et al. [24] prove the following.

Theorem 1. x,(G) < 3A — 2 for any K4-minor free graph G with A > 3

Computationally, there are also some very interesting results. For a
given graph G = (V, F), an induced matching is a set of M C FE such that
there is no edge in E connecting two edges of M. A strong edge coloring of
G is an assignment of colors to the edges of GG such that each color classis an
induced matching. Thus, finding a partition of the edges of G into induced
matchings is equivalent to finding a strong edge coloring. It is well known
that there are efficient algorithms for finding the maximum matching, such
as the Jack Edmonds’ “blossom algorithm” [9]. But finding a maximum
induced matching is NP-complete, even for bipartite graphs with maximum
degree four [22], bipartite with fixed girth g [17] and for 3-regular graphs
(16]. It is, however, solvable in polynomial time for trees [12], chordal
graphs [4], weakly chordal graphs [21] and circular arc graphs [13]. Some of
these algorithms are developed based on the equivalency that an induced
matching of G corresponds to an independent set in L(G)2?. We can look
at the strong edge coloring problem from an equivalency standpoint. For
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any given graph G, form a new graph L(G) by replacing each edge of G
with a vertex, where two vertices in L(G) are adjacent if and only the two
associated edges are adjacent in G. So finding a partition of the edge set
into induced matchings in G is equivalent to finding the vertex coloring in
L(G)2. We note that this idea is used by Kloks et al. [15] for finding x(G)

where G is a chordal graph.

N. Robertson and P.D. Seymour [19] first introduced the concept of tree
width. M. R. Salavatipour [20] proved the following powerful theorem by
using the approach of tree-decomposition.

Theorem 2. For every fized integer k, there is a deterministic algorithm
that, given a graph G with tree width k on n vertices and an integer s,
determines in time O(n(s+1)24(k+l)+1) whether G has a strong edge coloring
using at most s colors or not, and if so, finds such a strong edge coloring.

We shall study the family of K4-minor free graphs in this paper. We use
the terms K4-minor free graphs and series-parallel graphs interchangeably
in this paper. We study the series-parallel graphs because they are an
interesting class of graphs; that is, they are simpler than planar graphs and
have some well described structural properties and, at the same time, they
are rich enough so that many problems are non-trivial even when restricted
to this class. In other words, series-parallel graphs can be a testing ground
for various algorithms.

Note that any K4-minor free graph has tree width two. Ifss =3A -2,
then the complexity of this algorithm becomes O(n(3A — 1)21 )

We develop a polynomial algorithm to strong edge color any K4-minor
free graph. Our algorithm is based on Theorem 1 and its proof, and provides
an improvement over the method based on Theorem 2 for the family of K-
minor free graphs.

2 A structural property of K; minor free graph
and its corresponding coloring

Let G be a graph. By a series-parallel reduction we mean any of the fol-
lowing operations:

(i) deletion of a loop,
(ii) deletion of a vertex of degree at most one,

(iii) deletion of a parallel edge, and
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iv) suppression of a vertex of degree two,
Pp

where suppression of a vertex v in a graph G means to delete it and add
an edge from u to w if u, w are distinct nonadjacent vertices which formed
the neighborhood of v.

It follows that a graph is a series-parallel graph if and only it can be
reduced to the null graph by repeatedly applying series-parallel reductions.
In turn, this yields a linear-time algorithm to test whether a graph is series-
parallel. Thus we can determine if a graph G is a K4-minor free graph in
linear time.

Now we are ready to explore some key features of Kj4-minor graphs.
First, it was proved by Duffin [8] that §(G) < 2 if G is a K4-minor free
graph. The following definition and more detailed structural theorem was
presented by Y.Q. Wang et al. [24].

For a vertex u € V(G), let n;(v) and n;+(u) denote the number of i-
vertices and it-vertices that are adjacent to u in G, respectively. For a
vertex v € V(G), we define:

De(v) = {y | d(y) > 3 s.t. vy € E(G) or path vzy exists with d(z) = 2}.

Theorem 3. Let G be a K4-minor free graph with A > 3. Then G contlains
one of the following configurations (B1), (B2) and (B3):

(B1) a vertex v with n1(v) > 1 and no+ (v) < 2;
(B2) two adjacent 2-vertices;
(B3) a vertezx v with d(v) > 3 and |D¢g(v)| < 2.

Here we outline an algorithm that will locate configurations (B1), (B2),
and (B3) in a given graph G. Then some elements, vertices or edges of this
graph will be removed, and an edge may be added to G. Overall, the size
of resultant graph, the total number of vertices and edges, will be reduced.
When operating on a graph, the adjacency between vertices of G is either
stored in the form of adjacency matrix or in the form of a link list. In this
paper, we assume it is stored in the form of linked list. We first sort the
degrees into an increasing degree sequence, d(v;) < d(vg) < --- < d(vn).
This can be done with nlog(n) comparisons where n = |V (G)|. The reason
we sort it is that we repeatedly have to find a vertex of degree one. In this
case, if one exists, it would be the first vertex in the degree sequence. When
an edge or a vertex is deleted or an edge added, the action of updating the
linked list and the degree sequence can be done in at most A time. The
other operation frequently employed by the algorithm is to find a particular
edge uv € E(G). Clearly, this can also be done in at most A time.
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Graph Reduction Procedure

Reduction (I): Locating B1 in G and reducing G

We search the neighbours of v; if d(v;) = 1 to determine if nyy (vq) < 2.
Let H = G — v;. This can be done in at most A time.

Reduction (II): Locating B2 in G and reducing G

Locating B2 in G. We can find a 2-vertex and check its two neighbours.

This can be done in 2n time.

Let x and y denote the two adjacent 2-vertices. Let x; denote the neighbour
of z other than y, and y; the neighbour of y other than z. If z; = v, then
let H =G — zy, otherwise let H =G —y+ zy,.
Reduction (III): Locating B3 and reducing G
(B3): a vertex v with d(v) > 3 and |D¢(v)| < 2.
First we have to find Dg(v) for each vertex v € V(G).
This implies we have to check the neighbours of v and the neighbours of
vertices in N(v). This can be done in at most nA(A — 1) time.
(IIla): |Dg(v)| =1 and Dg(v) = {z}
If v has a neighbor z which is a leaf, let H = G — z.
Else let u be a 2-vertex in N(v), uwv,uz € E(G), and let H = G —uv.
To check whether a vertex has a leaf adjacent to it,
one has to go through the linked list of v.

This can be done at most A time, so at most 2A time in total.

(ITIb): |Dg(v)| =2 and Dg(v) = {z,y}.
Let No(v) N No(z) = {21, -+ ,Zm}, Ne(v) N Na(y) = {y1,- - ,vn}.

We may assume that m > n.

If v has a leaf, z, then H = G — z.

By symmetry, we can be sure both |D¢(z)| = |De(y)| = 2.
(IIIbi): If vz € E(G), then let H = G — vz;.
(ITIbii): Else we may assume vz ¢ E(G).

If vy ¢ E(G), then let H = G — z, + vz.
If n>1, thenlet H =G — vy.
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If one of d(v),d(z),d(y) is less or equal to A — 1,

Then let H = G — z1 + vz.

It follows that m = A —1 and there exists £’ € Ng(z)\ Na(v).
fdiz')<A-1,let H=G —zz;.

fzr'ye E(G),lee H=G — {x1--- ,za_1-

Ifz'y ¢ E(G),let H=G —{v,z1, - ,za-1,2} + Z'y.

Among the nine if statements in (III), six of them involves checking
whether a particular edge is in G or there is a leaf adjacent to it. This can
be done in at most 6 x 2A + 3A = 13A time. Hence, (III) can be done in
at most nA(A — 1) + maz{2A,13A} < nA? + 13A time.

Clearly, H would remain to be a Kjy-minor if an edge or a vertex is
deleted from G. It is also easy to check H is still K -minor free even when
an edge is added to H because the existence of an uv-path in G before uv
is added to H. Since at least one edge will be removed from G in each
iteration, so this reduction algorithm will yield the following complexity.

W(n) < A+2n+nA%2+13A + W(|E(G)| —1)

and
W(n) < |E(G)| (rA? 4 2n + 14A)

3 Coloring Algorithm

Let G be a Ky-minor free graph with A > 3. Theorem [24] shows that
Xs < 3A —2 and the upper bound of x/, is tight. Let C = {1,2,...,3A— 2}
denote a set of 3A — 2 colors where A > 3. Since A > 3, it follows that
|C| =3A —2 > 7 and thus we can strong color G with |G| < 7.

Observation 4. Let P, be a path with n > 2 vertices. Then x,(P,) =1 if
n=2 x.(Pn)=2in=3, and X',(P,) =3 ifn > 4.

Observation 5. Let C, be a cycle with n > 3 vertices. Then x,(Cp,) =5
ifn =75, x,(Cr) =3 if n =0 (mod 3), and x',(C,) = 4 otherwise.
Using Observations 4 and 5, we have the following result on the strong

chromatic index of a graph with maximum degree at most two.

Observation 6. Let G be a graph with A < 2. Then x,(G) < 5, and the
equality holds if and only if G contains a component that is a 5-cycle.
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Note that it is trivial to strong edge color of G with 3A — 2 colors if
A < 2or |V(G)| < 7. Thus we shall use these two as two stop conditions
for the algorithm below.

Let ¢ is a strong edge coloring of H where ¢: E(H) - C = {1,2,...,3A—
2}. Then we will extend this strong edge coloring ¢ from H to G accord-
ing the graph reduction operation preformed on G described in the pre-
vious section. For an edge e € E(G) \ E(H), we use F(e) to denote the
set of colors forbidden on e when e is considered to be colored. That is,
F(e) = {¢(e') € C | ¢ € E(H) has distance at most two to e in G}. More-
over, let f(e) = |F(e)|. When e € E(G) is considered to be colored, it is
proved in [24] that there is always a color in C'\ F(e) available to color e
by showing f(e) < A — 3. Since the set different C'\ F(e) is used here, we
have to consider the complexity of this operation. For any color in F(e) it
will take no more than 3A — 2 comparisons to delete it from C. Hence, this
operation can be done in at most (3A — 2)? time.

Algorithm Color(G)
Input: A K4-minor free graph G.
Output: A strong edge (3A — 2)-coloring of G.

1: if A(G) <2 then > Observation 6
2: Construct a strong edge 5-coloring as per Observation 6
3: else if G contains a l-vertex u with wv € G > I

and the number of 2" -vertices in N(v) is at most 2 then

4: Remove u and uv from G

5: Color(G)

6: Add » and uv back to G

% Color wv with a color in C \ F(vw) where w # u

8: else if G contains two adjacent 2-vertices r and y then

9: if z and y have a common neighbour z then > II
10: Remove zy from G

11: Color(G)

12: Add zy back to G

13: Color zy with a color in C \ F(zy)

14: else > 11
15: Where edges uz,yv € G where u# v, u # y, T # v:

16: Contract edge zy in G producing vertex z

17: Color(G)

18: Split vertex z to  and y recreating edges ux,ry,yv € G

19: Color zy with a color in C \ F(zy)
20: Color uz with color of uz
21 Color yv with color of uv

22: end if
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23: else if G contains a vertex v with d(v) > 3 and |Dg(v)| < 2 then

24: if |[Dc(v)| =1, say Dg(v) = {z} then > IIla
25: if v is adjacent to a leaf z then
26: Remove 2z and vz from G
27 Color(G)
28: Add z and vz back to G
290: Color vz with a color in C \ F(vz)
30: else
31: Where u is a 2-vertex that is adjacent to both v and z:
32: Remove uv from G
33: Color(G)
34: Add uv back to G
35: Color uwv with a color in C'\ F(uv)
36: end if
37: else if |Dq(v)| = 2, say Dg(v) = {z,y} then > IIIb
38: if v is adjacent to a leaf z then
39: Remove z and vz from G
40: Color(G)
41: Add 2z and vz back to G
42: Color vz with a color in C' \ F(vz)
43: else
44: Where z1,z2,...Tm € N(v) are degree 2 and adjacent to x:
45: Where vy, Y2, . .. yn € N(v) are degree 2 and adjacent to y:
46: if vz € E(G) then > ITITbi
47: Remove vz, from G
48: Color(G)
49: Add vz; back to G
50: Color vz, with a color in C \ F(vz;)
51: else > IIIbii
52; Add vz to G
53: Remove x,, vz, and zz; from G
54: Color(G)
55: Add z,, vz,, and zz; back to G
56: Color zz; with color of vz
57: Remove vz from G
58: if vy ¢ E(G) orn>1 or zy € E(G)
or d(v) <A ord(z) <A or d(y) <A then
59: Color vz with a color in C' \ F(vz,)
60: else
61: Where =’ # z,1,..., 2, is adjacent to x:
62: if z'y € E(G) then
63: Color zz1,zx2,. .., TTm-1 with C(y) \ {#(c'y), #(vy)}
64: Color vz, vZa, . .., vTm—1 With C(z') \ {¢(z'y), (zz')}
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65: Color zz,, vE,, with colors not on E(y) U E(z')
66: else

67 Color both zz’ and vy with ¢(z'y)

68 Color zz1,xZ2,...,zT, with C(y) \ {¢(z'y)}

69; Color vz, vz, . .., vy With C(z') \ {¢(z'y), ¢(xz1)}

70: end if
71: end if

72 end if

73: end if

74: end if

75: end if

This algorithm can color any K4-minor graph with at most 3A—2 colors.
Note that x! < 3A — 2 is a tight upper bound for x/,. The complexity is
O(|E(G| (9nA*)). This is substantially better than the previous known
result O(n * (3A —1)2) in [20] if A is a function of n. As one can see that
graph reduction, that is, locating configurations (B1), (B2), and (B3)
in G is the most costly part. Furthermore, with minor modifications, this
algorithm can be used to find a partition of the edges of G into induced
matchings.
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