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Abstract

A broadcast on a nontrivial connected graph G = (V,E) is a
function f : V — {0,1,...,diam(G)} such that f(v) < e(v) (the ec-
centricity of v) for all v € V. The weight of f is o(f) = > o\ f(v).
A vertex u hears f from v if f(v) > 0 and d(u,v) < f(v). A broad-
cast f is independent, or hearing independent, if no vertex u with
f(») > 0 hears f from any other vertex v. We define a different type
of independent broadcast, namely a boundary independent broad-
cast, as a broadcast f such that, if a vertex w hears f from vertices
V1,...,Vk, k > 2, then d(w,v;) = f(vi) for each . The maximum
weights of a hearing independent broadcast and a boundary inde-
pendent broadcast are the hearing independence broadcast number
op(G) and the boundary independence broadcast number apn(G),
respectively.

We prove that apn(G) = a(G) (the independence number) for any
2-connected bipartite graph G and that apn(G) < n—1 for all graphs
G of order n, characterizing graphs for which equality holds. We
compare o, and aj and prove that although the difference ap —ap,
can be arbitrary, the ratio is bounded, namely a) /oL, < 2, which
is asymptotically best possible. We deduce that an(G) < 2n — 5 for
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all connected graphs G # P, of order n, which improves an existing
upper bound for ax(G) when a(G) > n/2.
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dependence; boundary independence
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1 Introduction

In a search for the best way to generalize the concept of independent sets
in graphs to independent broadcasts, there are several ways to look at an
independent set X of a graph G. One way is from the point of view of the
vertices in X: no two vertices are adjacent — the usual definition. Another
way is from the point of view of the edges of G: no edge is incident with (or
covered by) more than one vertex in X. Using the latter approach we define
boundary independent broadcasts as an alternative to independent broad-
casts as defined by Erwin [9], which we refer to here as hearing independent
broadcasts. Among other results we show that the boundary independent
broadcast number ay, of any graph lies between its independence number
and its hearing independent broadcast number a;. We prove a tight upper
bound for ay, which leads to a new tight upper bound for a}.

1.1 Broadcast definitions

For undefined concepts we refer the reader to [7]. The study of broad-
cast domination was initiated by Erwin in his doctoral dissertation [9].
A broadcast on a nontrivial connected graph G = (V, E) is a function
f:V = {0,1,...,diam(G)} such that f(v) < e(v) (the eccentricity of v)
for all v € V. When G is disconnected, we define a broadcast on G as the
union of broadcasts on its components. Define Vf+ ={veV: f(v) >0}
and partition V;" into the two sets V} = {v € V : f(v) = 1} and
Vf“‘+ = VfJr —Vfl. A vertex in VfJr is called a broadcasting vertex. A vertex u
hears f from v € V', and v f-dominates wu, if the distance d(u,v) < f(v).
If d(u,v) < f(v), we also say that say that v overdominates u. Denote the
set of all vertices that do not hear f by U;. A broadcast f is dominating if

Uy = @. The weight of f is o(f) = >_ oy f(v), and the broadcast number
of G is

Y% (G) = min {o(f) : f is a dominating broadcast of G}.



When f and g are broadcasts on G such that g(v) < f(v) for eachv € V,
we write g < f. When in addition g(v) < f(v) for at least one v € V,
we write g < f. A dominating broadcast f on G is a minimal dominating
broadcast if no broadcast g < f is dominating. The upper broadcast number
of G is

[',(G) = max {o(f) : f is a minimal dominating broadcast of G},

and a dominating broadcast f of G such that o(f) = I',(G) is called a
I'y-broadcast. First defined by Erwin [9], the upper broadcast number
was also studied by Ahmadi, Fricke, Schroeder, Hedetniemi and Laskar
[1], Bouchemakh and Fergani [4], Dunbar, Erwin, Haynes, Hedetniemi and
Hedetniemi [8], Gemmrich and Mynhardt [10] and Mynhardt and Roux
[12].

If f is a (minimal) dominating broadcast such that Vf =V}, then f is
the characteristic function of a (minimal) dominating set. Hence, denoting
the cardinalities of a minimum dominating set and a maximum minimal
dominating set by v(G) and I'(G) (the lower and upper domination numbers
of G), respectively, we see that 7,(G) < v(G) and I'(G) < I'y(G) for any
graph G.

We denote the independence number of G by (&) and the minimum
cardinality of a maximal independent set (the independent domination
number of G) by 2(G). To generalize the concept of independent sets,
Erwin [9] defined a broadcast f to be independent, or, for our purposes,
hearing independent, if no vertex u € Vf+ hears f from any other vertex
v E Vf+; that is, broadcasting vertices only hear themselves. This version
of broadcast independence was also considered by, among others, Ahmane,
Bouchemakh and Sopena [2], Bessy and Rautenbach [3], and Bouchemakh
and Zemir [5]. We show below that other definitions of broadcast indepen-
dence, which also generalize independent sets and lead to different indepen-
dent broadcast numbers, are feasible.

1.2 Neighbourhoods and boundaries

Following [12], for a broadcast f on G and v € V? , we define the

e f-neighbourhood of v by Nf(v) = {u € V : d(u,v) < f(v)},
e f-boundary of v by Bs(v) = {u € V : d(u,v) = f(v)},

e f-private neighbourhood of v by PN(v) = {u € Ny(v) : v & Ny(w)
for all w € Vf+ — {v}},

81



e f-private boundary of v by PBf(v) = {u € Ny(v) : u is not dominated
by (f = {(v, f(»)}) U {(v, f(v) = 1)}

Note that ifu € V} and u does not hear f from any vertex v € Vf+-{u},
then u € PBy(u), and if u € Vf++, then PBy(u) = By(u)NPNy(u). If fisa
broadcast such that every vertex z that hears more than one broadcasting
vertex also satisfies d(z,u) > f(u) for all u € Vf+, then the broadcast only
overlaps in boundaries. On the other hand, if f is a dominating broadcast
such that no vertex hears more than one broadcasting vertex, then f is
an efficient dominating broadcast. When zy € E(G) and z,y € N¢(u) for
some u € V' such that at least one of = and y does not belong to By(u),
we say that the edge zy is covered in f by u. When zy is not covered by
any u € V', we say that zy is uncovered by f.

Erwin [9] determined a necessary and sufficient condition for a domi-
nating broadcast to be minimal dominating. We restate it here in terms of
private boundaries.

Proposition 1.1 [9] A dominating broadcast f is a minimal dominating
broadcast if and only if PBf(v) # @ for each v € Vf+.

Ahmadi et al. [1] define a broadcast f to be irredundant if PBs(v) # @
for each v € Vf+. An irredundant broadcast f is maximal irredundant if no
broadcast g > f is irredundant. The lower and upper broadcast irredundant
numbers of G are

iry(G) = min{o(f) : f is a maximal irredundant broadcast of G}
and
IR3(G) = max {o(f) : f is an irredundant broadcast of G},

respectively. Proposition 1.1 and the above definitions imply the following
two results.

Corollary 1.2 [1] (z) Any minimal dominating broadcast is marimal
irredundant.

(it) For any graph G,

iry (G) < %(G) < ¥(G) < G) < a(G) < T(G) < T'e(G) < IRp(G).
(1)
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1.3 Independent broadcasts

The characteristic function of an independent set has the following features,
which we generalize to obtain three different types of broadcast indepen-
dence:

(a) boundary or bn-independent type: broadcasts overlap only in bound
aries.

(b) hearing or h-independent type [9]: broadcasting vertices hear only
themselves.

(c) set or s-independent type: broadcasting vertices form an indepen-
dent set.

Broadcasts of type (c) were considered by Neilson [13] and found to be
not very interesting. We now consider broadcasts of type (a) and define
three new types of broadcast independence. Additional types can be found
in [13]. If a broadcast f satisfies one of our definitions of independence and
there is no broadcast g such that ¢ > f and g also meets our definition of
independence, we say that f is a maximal independent broadcast for this
type of independence. Otherwise f is not maximal independent and can
be extended to a larger weight broadcast (for example to g) which satisfies
the given definition of independence.

Definition 1.1 [13] A broadcast is bn-independent if it overlaps only in
boundaries. The maximum (minimum) weight of a (maximal) bn-indepen-
dent broadcast on G is apn(G) ((bn(G)); such a broadcast is called an
apn-broadcast (ipy-broadcast).

Definition 1.2 [13] A broadcast is bnr-independent if it is bn-independent
and irredundant. The maximum (minimum) weight of a (maximal) bnr-
independent broadcast is abnr(G) (ibnr(G)); such a broadcast is called an
Qpnr-broadcast (ipnr-broadcast).

Definition 1.3 [13] A broadcast is bnd-independent if it is minimal dom-
inating and bn-independent. The maximum (minimum) weight of a bnd-
independent broadcast is apna(G) (tbna(G)); such a broadcast is called an
pnd-broadcast (ipna-broadcast).

Definition 1.4 [9] The maximum (minimum) weight of a (maximal) h-
independent broadcast is a,(G) (in(G)); such a broadcast is called an «y, -
broadcast (in-broadcast).



A bnd-independent broadcast, because it is minimal dominating, is max-
imal irredundant (Corollary 1.2), and because it is irredundant and domi-
nating, it is minimal dominating (Proposition 1.1). The parameters oy, (G)
and apy, (G) are also called the hearing or h-independence broadcast number
and the boundary or bn-independence broadcast number, respectively.

Since the characteristic function of an independent set is a bnd-, bnr-,
bn- and h-independent broadcast, it follows from Definitions 1.1 — 1.4 that

a(G) < abnd(G) < abnr(G) < abn(G) < an(G) (2)

for any graph G.

When two parameters m and 7’ are incomparable, we denote this fact
by mo 7’. For the path P,, where n > 4, it is easy to see that [',(P,) =
IRy (P,) = diam(FP,,) = n—1, whereas o (P,,) = 2(n—2) > I'y(P,). On the
other hand, for the grid graph G, ,, = P, O P,, if n is large enough, then

i Gum) = [—"52—] ([5]; see Theorem 4.2 below), but Mynhardt and Roux

[12] showed that I'y(G,,n) = IRy(Gr,n) = n(n — 1) > ap(Gyn,n). Therefore
ap oIy and ap, 0 IRy, hence ap does not fit neatly into the inequality chain
(1). Our definitions of boundary independent broadcasts were partially
motivated by the aim of finding a definition of broadcast independence
for which the associated parameters could be inserted in (1). Neilson [13]
showed that ap, ©I'y and apnr ¢y, but, since a bnd-independent broadcast
is minimal dominating, apnd(G) < T'p(G) (strict inequality is possible).
Hence

iry(G) < ibna(G) < W(G) < ¥(G) <i(G)
< a(G) < apna(G) < To(G) < IRy (G) 3)

for any graph G. Therefore, with bnd-independent broadcasts we have
achieved this goal.

The graph G in Figure 1 is an example of a tree T for which apnq(T) <
apnr(T) < apn(T); details can be found in [13]. Broadcasting from each leaf
with a strength of 5 we obtain an h-independent broadcast with a weight
of 30, hence o, (T") > 30 > ap, (7).

For the lower parameters iy, etc., the characteristic function of a max-
imal independent set is not necessarily a maximal bn- or h-independent
broadcast. For example, consider the path Py : vy,...,v6, having maxi-
mal independent set {vq,vs}. This set has characteristic function f, where
f(v2) = f(vs) = 1 and f(z) = O otherwise. The broadcast g = (f —
{(v2,1)}) U {(v2,2)} is bn- and h-independent and it is not difficult to ver-
ify that ipn(FPs) = in(Ps) = 3 > i(FPs) = 2. On the other hand, the corona
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Figure 1: A tree T with a(T) = apnd(T") < abnr(T) < apn(T). A maximum
independent set is shown in (a), maximum bnd-broadcasts with weight 13
in (a) and (b), a maximum bnr-broadcast with weight 14 in (c), and a
maximum bn-broadcast with weight 19 in (d). In (b) and (c), vertices in
private boundaries of broadcasting vertices are indicated by squares, and
in (d), vertices in shared boundaries by triangles.
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K,, o K; for any complete graph K,,, n > 4, satisfies i(K,, 0o K;) =n > 4
but i, (K, o K1), tbn(K, o K1) < 3. Therefore i, ¢7 and ip, 0 1.

Dunbar et al. [8] showed that every graph has a minimum weight dom-
inating broadcast f such that Ny (u)NNs(v) = @ for all u,v € V. Such a
broadcast is maximal bnr-independent. Since any bnr-independent broad-
cast is irredundant by definition, it follows that

iry(G) < ibnd(G) < tbnr(G) < W(G) < 7(G) < 4(G) (4)

for any graph G. Further, although any maximal bn-independent broadcast
is dominating (see Observation 2.1 below), it is not necessarily minimal
dominating, hence it is possible that ip, > 7. Neilson [13] showed that
ibn(G) < [3%(G)] for all graphs G.

We show in Section 2 that ap, (G) < n—1 for all graphs G of order n and
characterize graphs for which equality holds. In Section 3 we compare ayp,
and apnr to o, and prove that although the differences oy, — app, and oy, —
apnr can be arbitrary, the ratios ap/ap, and ap /opyr are bounded by 2 and
3, respectively, and that these ratios are asymptotically best possible. We
deduce that a,(G) < 2n—5 whenever G is a connected n-vertex graph that
is not a path. In Section 4 we show that ap,(G) = apnr(G) = apna(G) =
a(G) for any 2-connected bipartite graph G.

2 Boundary independence

Suppose f is a bn-independent broadcast on a graph G such that U; # &;
say u € Uy. Consider the broadcast g, = (f —{(%,0)})U{(u, 1)} and notice
that if any vertex z of G hears u as well as another vertex v € V', then
z € By, (u) N By, (v). Therefore g, is bn-independent and o(g,) > o(f),
from which we deduce that f is not maximal bn-independent. When U, #
& we can repeat this process until we obtain a maximal bn-independent
broadcast g, i.e., one having U, = @. We state this fact as an observation
for referencing.

Observation 2.1 Any mazimal bn-independent broadcast is dominating.

We use Observation 2.1 to prove a necessary and sufficient condition for
a bn-independent broadcast to be maximal bn-independent.

Proposition 2.2 A bn-independent broadcast f on a graph G is maximal
bn-independent if and only if it is dominating, and either V;L = {v} or
Bj(v) — PBf(v) # @ for each v € V.



Proof. Consider a maximal bn-independent broadcast f of G. By Obser-
vation 2.1, f is dominating. Suppose |Vf+| > 2 and there exists a vertex
v € V! such that Bs(v) — PBs(v) = @. Since f(v) < e(v), the bound-
ary By(v) # @. Since |Vf+] > 2, there exists a vertex w € Vf — {v}.
By the definition of bn-independence, d(v,w) > f(v); this implies that
f(v) < e(v). Hence we may increase the strength of the broadcast from
v to obtain the broadcast f' = (f — {(v, f(v))}) U {(v, f(v) + 1)}. Since
B¢(v) — PBy(v) = @, By(v) € PBy(v). Hence no vertex hears f from v as
well as from another vertex in Vf+ . Thus f’ is a bn-independent broadcast
such that f/ > f. This contradicts the maximality of f. Hence, if |Vf+f =2

then By(v) — PBy(v) # @ for each v € V.

Conversely, suppose f is a dominating bn-independent broadcast such
that either Vf+ = {v} or Bf(v)—PB¢(v) # @ foreach v € Vf+. If Vf+ = {o},
then, since f is dominating, f(v) = e(v) and f is maximal bn-independent
by definition. Hence assume |V;'| > 2 and By (v) —PBy(v) # @ for each v €
Vf+. Consider any v € V(G) and define f' = (f — {(v, f(v))}) U{(v, f(v) +
1)}. Ifv e VJ;*, then Bf(v) — PBg(v) # @. Let u € By(v) — PBg(v)
and let w € V/F — {v} be a vertex such that u € Ny(w). Since f is bn-
independent, u € Bf(w). Then u € (N (v) N Ny (w)) — By (v), hence f’
is not bn-independent. If f(v) = 0, then v € Ny(w) for some w € Vf+.
Then v ¢ By/(v) but v € Ng/(v) N Ng/(w). This implies that f’ is not
bn-independent. B

2.1 Bounds on boundary independence

In this subsection we find an upper bound on the weight of a bn-independent
broadcast on a graph G in terms of the size of G and the sum of the degrees
of the broadcast vertices. When G is a tree, this bound immediately gives an
upper bound on ap,(G). Suppose f is a bn- or bnr-independent broadcast
on G and an edge zy of G is covered by vertices u,v € Vf+ . By the definition
of covered, {z,y} € Bf(u) and {z,y} C Ns(u) N Nf(v). This violates the
bn-independence of f. Hence we have the following observation.

Observation 2.3 If f is a bn- or bnr-independent broadcast on a graph
G, then each edge of G is covered by at most one vertex in V.

Proposition 2.4 Given a graph G of size m, if f is a bn-independent
broadcast on G, then o(f) < m — Evev;f deg(v) + |Vf+|.

Proof. By Observation 2.3, every edge of G is covered by at most one
broadcast vertex. Since f(v) < e(v) for each v € Vf+, there is at least one
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vertex z at distance f(v) from v. The f(v) edges along the v — z geodesic
are all covered by v, as are the remaining deg(v) edges incident with v.
Therefore each broadcast vertex v covers at least f(v) + deg(v) — 1 edges.
Counting edges we obtain

S (f(v) +deg(v) — 1) < m,

+
vGVf

which simplifies to

o(fy<m— Y deg(v)+|V/|
'UEV;

For a broadcast f on a nontrivial tree of order n, Zvevf* deg(v) > |V, f+ l

hence the bound in Proposition 2.4 simplifies to the following bound for
trees.

Corollary 2.5 If T is a tree of order n > 2, then apnd(T) < apnc(T) <
oapn(T) <n—1.

Broadcasting from a single leaf to the whole path, it is easy to see
thiat apnalP) = Gomd P ) = Gpn(FL) = B — 1. foF any pith P,

Let f be an ap,-broadcast on a graph G and let T be a spanning tree of
G. Removing the edges in E(G) — E(T) does not affect bn-independence,
hence f is also a bn-independent broadcast on T. Therefore op,(T) >
apn(G), and the result below follows from Corollary 2.5.

Corollary 2.6 For any connected graph G of order n > 2,

abn(G) < min{ap,(T) : T is a spanning tree of G} < n — 1.

The proof of Proposition 2.4 also shows that o(f) = n — 1 if and only
if every vertex in Vf+ is a leaf and the edge sets of the subtrees induced by
the f-neighbourhoods form a partition of E(T). We use this observation to
characterize graphs of order n for which ey, = n— 1. This characterization
involves a class of trees called spiders. As we also use spiders to show in
Section 3.1 that the differences o), — oy, @) — apnr and ap;, — opye can be
arbitrary, in Section 3.2 that the bounds for the ratios ap,/®pbnr, @n/obn
and oy, /apng are asymptotically best possible, and in Section 3.3 to prove a
bound for «;, we define these graphs and present results on their broadcast
independence numbers in the next subsection.



2.2 Spiders

For k> 3andn; > 1, i € {1, ..., k}, the (generalized) spider Sp(n;, ..., ng) is
the tree which has exactly one vertex b, called the head, having deg(b) = k,
and for which the k components of Sp(n1,...,nx) — b are paths of lengths
ny—1,...,nr —1, respectively. The legs Ly, ..., Ly of the spider are the paths
from b to the leaves. Let t; be theleaf of L;, i =1, ..., k. If n; = r for each
i, we write Sp(r*) for Sp(nq, ..., nk).

Corollary 2.7 If G is a connected graph of order n > 2, then apy(G) =
n — 1 if and only if G is a path or a spider.

Proof. Let f be a bn-independent broadcast on G and assume first that
G is a tree. As shown in the proof of Proposition 2.4, o(f) = n — 1 if and
only if all edges of G are covered by f and the number of edges covered by
v equals f(v) for each v € V7. This holds if and only if

(1) each v € Vf is a leaf and the subgraph induced by N¢(v) is a path
of length f(v).

Since G is connected and f is bn-independent,

(2) the subpaths induced by Ny(v) for each v € VJ,+ all have exactly one
vertex in common, namely their non-broadcasting leaf.

This is possible if and only if G is a path or a generalized spider.

Now assume that G has a cycle and that ap,(G) = n — 1. If G has a
spanning tree which is not a Hamiltonian path or a spider, then the above
result for trees and Corollary 2.6 imply that ap,(G) < n—1, which is not the
case. Suppose G has a Hamiltonian path P : vy, ...,v,. Since G has a cycle,
v;u; € E(G) for some 4, j such that j > i +2. Now T’ = (P — v;v;41) +v;v,
is a spanning tree of G that is not a path. Since ap,(G) = n — 1, we may
assume that 7T is a spider, otherwise we have a contradiction as above.

Assume therefore that G has a spanning spider S = Sp(n,, ..., nx) (with
notation as defined above). Consider any ap,(G)-broadcast f on G and let
f’ be the restriction of f to S. Then o(f’) = o(f) =n — 1 and by (1) and
(2), fo = ‘Vf+ = {t1,...,tx} and f(¢;) = n; for each ¢. Since G has a cycle,
there is an edge uw € E(G) — E(S). If u and w belong to the same leg L;
of S, then dg(t;,b) < f(t;), thus edges of L;, j # i, hear f from both ¢;
and ¢;. If u and w belong to different legs L;, L;, then uw hears f from
both ¢; and ¢;. Both instances contradict f being bn-independent.
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We deduce that if G is not a tree, then opn(G) <n —2. W

It follows from a result in [8] that a; (Sp(r*)) = k(2r —1). By Corollary
2.7, opn(Sp(r*)) = kr, and Neilson [13, special case of Proposition 2.3.8]
showed that ap. (Sp(rF)) > opnd (Sp(r*)) > kr — k 4+ 1. Although there
are spiders, for example Sp(1,n2,n3), where na,ng > 2, whose bnd- and
bnr-independence numbers exceed Neilson’s general lower bound, it follows
from our next proposition that apnr(Sp(r*)) = apna(Sp(r*)) = kr —k + 1
when 7 > 2 and k£ > 3.

Proposition 2.8 If S = Sp(n,...,nk) is a spider of ordern = Zle n:+1,
where k > 3 andn; > 2 for each 1 <1 < k, then appd(S) = apnr(S) =n—k.

Proof. Again we follow the notation for spiders as defined above. Define
a broadcast g on S by g(t;) = n1, g(t;) = n; — 1 for 2 < i < k, and
g(z) = O otherwise. Notice that g is a dominating broadcast and o(g) =
n — k. No broadcasting vertex of g overdominates b and there is exactly
one broadcasting vertex on each path L; for 1 < i < k. Hence g is bn-
independent. Further, PB,(¢;) = {b} and for 2 < i < k, the private
boundary of t; consists of the vertex adjacent to b on the path L;. Hence g
is a bnr-independent and dominating broadcast. It follows that ap,(S) >
abnd(S) >n—k.

For the opposite inequality, let F be the set of apn,-broadcasts on S
that minimize the number of non-leaf broadcasting vertices. We claim that
there exists a broadcast in F such that b is not overdominated. Suppose
this is not the case and consider any f € F. Since f is bn-independent
and b is overdominated, b hears f from exactly one vertex v € VfJr , where
possibly v = b. Since f(v) < e(v), Bf(v) # @. We consider two cases,
depending on whether there exists a vertex v’ € By(v) such that v and v’
belong to the same leg of S or not.

Case 1: there exists a vertex v’ € By(v) such that v and v’ belong to the
same leg of S; say v,v’ € V(L;). (This includes the case where v = b, as b
belongs to each leg.) Since v overdominates b, d(v,b) < d(v’,b) and v # t;.
Say V(L1) N VJEF = {v,uy,...,u¢}. Define the broadcast f; by fi(t;) =
2f(v) — 14+ 5, fw), filz) = 0if x € V(L) — {t1}, and fi(z) = f(2)
otherwise. Then Ny, (1) N V(L;) & Ny(v) N V(L;) for each i such that
2 < ¢ < k, which implies that f; is bn-independent and PNy, (z) # ©
for each =z € Vf"l'; that is, f; is bnr-independent. However, if f(v) > 1,
then o(f;1) > o(f), which is impossible. We deduce that f(v) = 1. Since
b is overdominated, the only possibility is that v = b. But now f; is an



opnr-broadcast containing fewer non-leaf broadcasting vertices than f, a
contradiction.

Case 2: no vertex in By(v) belongs to the same leg as v; assume without
loss of generality that v € V(L) — {b} and v/ € V(L) — {b}. Observe that
f(v) > 2 and v overdominates ¢;. This implies that V(L) N V; = {v}
and also that some vertex of L;, where ¢ > 1, belongs to PBf(v). We may
assume that v’ € PBf(v). Say f(v) = d(b,v) + ¢, where ¢ > 0. For i = 2, 3,
let w; be the vertex on L; adjacent to b.

e Suppose first that v’ # t2. Then the edge e incident with v’ on the
v’ — to-path is uncovered. Let V(Lg) N Vf+ = {uy,...,u¢} and define

f2 by fa(v) = f(v) — g, falts) = T4y f(ws) + ¢, file) =0ifz €
V(L2) — {t2}, and fo(z) = f(z) otherwise. Note that o(f2) = o(f).
Since e is uncovered, b € PBy,(v) and some vertex on the we — %5
path belongs to PBy, (t2); furthermore, PBy,(z) 2 PBy(z) for all
z € Vi — ({v} UV(Ly)). It follows that f; is an o, -broadeast such
that b is not overdominated, contrary to our assumption.

e Now suppose that v = ¢;. Then ¢ = ng. Since no > 2, ¢ > 2.
Let V(L3) N V" = {u1,...,ue} and define f3 by fa(v) = f(v) — g,
fa(te) = q— 1, fa(ts) = iy f(ws) + 1, fa(z) =0 if = € V(La) —
{ta}, and f3(z) = f(z) otherwise. As for f;, o(f3) = o(f). Clearly,
b ¢ Ny, (t2), and since g > 2, b ¢ Ny, (t3). Therefore b € PBy,(v),
wy € PBy, (t2), some vertex on the ws — t3 path belongs to PBy, (¢3),
and PBy, (z) D PBy(z) for all z € Vg — ({v} UV (L) U V(Ls)). As
in the case of fs, it follows that f3 is an «, _-broadcast such that b is
not overdominated, contrary to our assumption.

This completes the proof of the claim. Thus, let f be an ap,-broadcast
on S such that b is not overdominated. (Possibly, b is not dominated at
all.) Then f(b) = 0. If b is f-dominated, we may assume without loss of
generality that b is dominated by a vertex v € V/(L;)NV. Let L} = L; and
L, = L, — {b} for each 2 < i < k. Note that these paths from a partition of
V(S). Restricting f to each L, we obtain k separate broadcasts f; = f 1 L
for 1 <1 < k. Since f is bn-independent, each f; is bn-independent. Since
f is bnr-independent, PBs(w) # @ for each w € V. Also, since b is
not overdominated, and by the definition of L{, if w € VJ,Jr NV (L;), then
PB(w) C V(L;). Thus @ # PBy,(w) C V(L]). Hence the broadcasts f;
are bnr-independent. Since apn,(P) = |V (P)| — 1 for any path P,

k

k
abnd(S) < apne(S) = o(f) = a(f1)+ Y _o(fi) Sm+Y (ni—1) =n—k. H
=2

=2
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We next determine an upper bound for ay,(Sp(n;,...,nt)). This result
generalizes the upper bound for a; (Sp(r*)) in [8].

Proposition 2.9 If S is a spider Sp(ni,...,nk) of order n, where k > 3,
then ap(S) < 2n —2 — k.

Proof. Assume that n; <--- < ni and note that n =1+ Zle n;. Let f
be an ap-broadeast on S. If |V;'| = 1, then o(f) < diam(S) <n—k+1 <

2n — 2 — k since n > 3. Hence assume |Vf+| > 2. If the leg L; contains a
broadcast vertex other than its leaf ¢;, let v be the broadcast vertex on L;
nearest to ¢t;. Then

=0 —Aw, f(v), (t;, f(&)}) U {(v,0), &, £ ) + f(v) + 1)}

is an h-independent broadcast such that o(f’) > o(f), which is impossible.
Therefore VJ;F C {t1,...,tk}. If the leaves t; and t; are broadcasting vertices,
then max{ f(¢;), f(t;)} < d(t;,t;) — 1 =n; +n; — 1. Let | be the smallest
index such that t; € Vf+ . Since |Vf*| > 2, there exists an index !’ > [ such

that ¢t € VfJr . Since f is h-independent, t;; does not hear the broadcast
from t;, so tx also does not hear the broadcast from ¢;. This means that
f(t)) £ ng +ng — 1. Moreover, f(t;) < n;+n; —1for i > l. Hence

k k k
o(f)=> f)=FE)+ D> fE)<(u+ne—1)+ Y (n+n—1).
=l

i=l+41 i=l+1

This inequality simplifies to
k
o(f) <me+mk—0+> ni—(k—1)— 1 (5)
1=l

If { = 1, then, noting that n; < n;, (5) becomes o(f) < 22?21 n, — k=
2n —2 — k. If Il > 1, then, noting also that n; > 1, (5) becomes

k k -1
o(f)<2Y mi—(k—0)—1=2Y n;—2> n;—(k—1) -1
=1 t=1

=1

k k
<2) mi-20-1)—-(k=0)-1=2 n;—(k+1)+1
=1 =1

k
<2) ni—k=2n-2—k

=1

Hence o, (S) = o(f) < 2n — 2 — k and our proof is complete. B
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3 Comparing ap, and ap,r to o

In this section we show that the differences oy —apyn, ap —apnr and apn—apnr
can be arbitrary, whereas the ratios apn/abnr, @n/@pn and ap/apy, are
bounded.

3.1 The differences

When r» > 2 and k > 3, it follows from Proposition 2.8 that

ap(Sp(r*)) — apn(Sp(rF)) = k(2r — 1) —kr =k (r — 1),
ah(Sp(rk)) — abm(Sp('rk)) =k(2r—1)—(kr—k+1)=kr—-1
and o, (Sp(r*)) — apne(Sp(r*)) = kr — (kr —k+1) =k — 1.

Therefore the differences ap — apn, @n — opnr and op, — apnr can be
arbitrary.

3.2 The ratios

We show next that the ratios apn/@bnr, ®h/abn and o /apyr are bounded.
When f is a bnr-broadcast, PBs(v) # @ for each v € Vf+, but when f is an
h- or bn-independent broadcast, it is possible that PB;(v) = & for some
v E Vf+. For each of these three types of broadcasts, if f(v) = 1, then
v € PBf(v). Therefore we have the following observation.

Observation 3.1 If f is an h- or a bn-independent broadcast such that
PBs(v) = @ for some v € Vf+, then v € thL.

Theorem 3.2 For any graph G, opn(G)/opnr(G) < 2, and this bound is
asymptotically best possible.

Proof. Let f be an ap,-broadcast on G. If PBy(v) # & for each v € Vf+,
then f is bnr-independent and o, (G) = apnr (G). Hence assume PB(v) =
& for some v € V;‘. Then |Vf+| > 2 and, by Observation 3.1, v € Vf++. If

Vf1 = &, choose an arbitrary vertex u € V),fr *. Define the broadcast g by
f(z)—1 iijclzzanderj?L+—{u}

g(x) =4 f(@)-1 ifV}#£@andzeV}!
f(=z) otherwise.
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Then o(g) > o(f) — |V++| > 20(f) and at least one of the inequalities is
strict. Moreover, since f overlaps only in boundaries and g(z) < f(z) for
eachz € V't (if V} # @) or for each but one z € V[ (if V;F = V'), the
g-neighbourhoods are pairwise disjoint. Since g(z) < e(z) for each z € V1,
there is at least one vertex at distance g(z) from z. Hence B,(z) # @,
and since the g-neighbourhoods are pairwise disjoint, PB, # @ for each
x € V;t. Therefore g is bnr-independent and apn(G) > o(g) > %abn(G).

To see that the bound is asymptotically best possible, consider the spi-
ders S = Sp(2*), k > 3. Since apn(S) = 2k and apnr(S) = k + 1 (Proposi-
tion 2.8), the result follows. B

We now bound ey, /ap, and oy, /apyr. Since the proofs overlap, we state
the results as parts of the same theorem.

Theorem 3.3 For any graph G,
(1) an(G)/apn(G) < 2, and

(i1) an(G)/abn(G) < 3.
Both bounds are asymptotically best possible.

Proof. (i) Let f be an aj-broadcast on G. If f is bn-independent, then
op(G) = opn(G) and we are done, hence assume v, w € Vf+ cover the same
edge, say e. Since f is h-independent, no broadcasting vertex hears any
other broadcasting vertex. In particular, neither v nor w is incident with
e. Hence v,w € Vf++. Define the broadcast f' on G by f/(z) = [-f—g'—cl] if
x € Vf*+ and f'(z) = f(z) otherwise.

We claim that for v,w € V]IF+, if at least one of f(v) and f(w) is even,
then no vertex of G hears f’ from both v and w, while if f(v) and f(w) are
both odd, then Ny (v) N Ny/(w) C By/(v) N By (w). This will show that f’
is bn-independent.

Suppose there exists a vertex u € Ny (v) NNy (w) for some v, w € V.
Then f'(v) > d(v,u), f'(w) > d(w,u) and d(v,w) < f'(v) + f/(w).
f(v) # f(w), say without loss of generality f(w) < f(v), then

) < 10 +5'w) = | L2] + [ 2] < .

But then w € V! hears v € Vf+ — {w}, contradicting the h-independence
of f. If f(v) = f(w) =0 (mod 2), then

d(v,w) < [%’)] 3 V(M = f(v),



again contradicting the h-independence of f. Finally, if f(v) = f(w) =
1 (mod 2), then

d(v, w) < F(;)] 4 [f(zwq = o) + 1.

Since f is h-independent, d(v,w) = f(v) + 1 = 2f'(v) = 2f'(w) and u €
Byg:(v) N By (w). It follows that f’ is bn-independent.

If f(v) is odd for at least one v € V;rJr, then apn(G) > o(f’) > z0(f). If
f(v) is even for each v € Vf+Jr # &, then f’ is not maximal bn-independent,
for at least one f’(v) can be increased without any edge being covered by
more than one vertex, and apn(G) > o(f') > o(f). If V;} = V}, then
opn (G) = an(G). Hence ap(G) /apn (G) < 2.

(i7) If every vertex of G hears f’ (as defined above) from exactly one
vertex in fo, then f’ is a bnr-independent broadcast and we are done,
hence assume that a vertex u hears f’ from two vertices v and w. Since
f’ is bn-independent, u € By/(v) N By/(w). From the analysis above, this
happens if and only if v, w € Vf++ and f(v) = f(w) =1 (mod 2). Therefore
f(v), f(w) > 3. Choose any vertex z € Vf++ such that f(z) is odd. Define
the broadcast f’ by

(1] ree-
@)= |42 ifzevi—{z)
| f(z) otherwise.

Then Ngv(v) N Npn(w) = @ for all v € V+Jr and w € ’V+ hence f”

is bnr-independent. Moreover, o(f") > a(f) — —a(f) = —cr(f) Hence
apnr(G) > o (f") > 30'(f) 3ah(G’) i.e., ap(G) < 3opnr(G).

The spiders Sp(r*), which satisfy
o (Sp(r*)) = k(2r — 1) and apn (Sp(r*)) = kr,

show that the ratio o, /opn < 2 is asymptotically best possible. The spiders
Sp(2*), which satisfy ay,(Sp(2*)) = 3k and apn:(Sp(2%)) = k + 1, illustrate
the corresponding result for the ratio oy /apn < 3. B

3.3 Bounds

Theorem 3.3 and any upper bounds for ay,,, or ay, can be used to obtain
upper bounds for «,. Conversely, lower bounds for o, provide lower bounds

95



for apn and apyr. Bessy and Rautenbach [3] obtained a general upper bound
for aj. For a broadcast f on G, define frax = max{f(v) : v € V(G)}.

Theorem 3.4 [3] If G is a connected graph such that
max{diam(G), a(G)} > 3,

and f 1s a maximal h-independent broadcast on G, then

o(f) < 4a(G) — 4min{1, %}

Therefore o), (G) < 4a(G), giving the ratio an(G)/a(G) < 4 when-
ever G satisfies the conditions of Theorem 3.4. The bound on the ratio is
asymptotically best possible, since ap(FP,) = 2(n — 2) when n > 4, whereas
a(P,) = [n/2].

We present a sharp upper bound for a,(G) in terms of the order of G
as a corollary to our previous results.

Corollary 3.5 If G is a connected graph of order n that is not a path, then
ah(G’) S 2n — 5.

Proof. When G is not a spider, the result follows immediately from Corol-
laries 2.6 and 2.7 and Theorem 3.3(¢). By Proposition 2.9, o, (Sp(ny, ..., nk))
<2n—2—-—k<2n—5whenk >3 1

Since Sp(r®) has order 3r+1 and oy, (Sp(r®)) = 3(2r—1) = 2(3r+1) -5,
the bound in Corollary 3.5 is sharp. For graphs with large independence
numbers, this bound is better than the bound in Theorem 3.4. If G # P,
is a connected graph of order n such that a(G) = (1 — £)n, where ¢ <
(which is the case when G is bipartite, for example), then Corollary 3.
gives

1
2
5

ap(G)<2n—-5= 2104((;) -5 < 40(G) — 4min{1, ;:c(—i)z}

Erwin [9] noted that if a connected graph G has order n > 4, then any
ap-broadcast on G has |Vf+| > 2. Broadcasting from two antipodal vertices
v, w such that f(v) = f(w) = diam(G) — 1, Erwin therefore obtained that
ap(G) = 2(diam(G) — 1). Dunbar et al. [8] improved Erwin’s bound as
follows; note that the bound is sharp for (e.g.) Sp(r*). Let u(G) denote
the cardinality of a largest set of mutually antipodal vertices in G.



Proposition 3.6 [8] If G is a connected graph G order at least 3, then
ap(G) > u(G)(diam(G) — 1), and this bound is sharp.

Theorem 3.3 and Proposition 3.6 immediately give the following lower
bounds for ap, and apnr.

Corollary 3.7 For any connected graph G of order at least 3,
il
apn(G) = §,u(G)(diam(G) =1)==1

and 1
abnr(G) 2 SA(G)(diam(G) — 1) + 1.

Both bounds are sharp.

For the path P,, where n > 3, the bound for ay, is
opn(P,) > diam(P,) =n —1,

which gives the exact value for apn(P,), and for the spider S = Sp(2*), the
bound for apnr is apnr(S) > k& + 1, which also gives apn(S) exactly.

4 Bipartite graphs

It is well known that for the m x n grid graph G,,,,, = P,,,0P,, a(Gp.n) =
[%1 Determining the domination number of grid graphs was a ma-
jor problem in domination theory until Chang’s conjecture, (G ) =

[gm+252gn+2lj — 4 for m,n such that 16 < m < n [6], was proved by

Gongalves, Pinlou, Rac and Thomassé [11]. Therefore grid graphs form
an important class of graphs to consider for other domination parameters.
Also, Bouchemakh and Zemir [5] considered h-independence for grids, mak-
ing it one of the few classes of graphs for which any work on independent
broadcasts had been done prior to the dissertation [13].

We prove a result for 2-connected bipartite graphs from which we im-
mediately obtain apn(Gm,») and apn(Gm. n)-

Theorem 4.1 If G is a 2-connected bipartite graph, then

apn(G) = abnr(G) = apna(G) = a(G).



Proof. We prove that G has an ap,-broadcast f such that f(v) =1 for
each v € VF . Among all opp-broadcasts of G, let f be one for which |Vf++|

is minimum. When Vf++ = &, we are done, hence assume there exists
v € Vf++. Let f(v) = k > 2. Since f(v) < e(v), there is a vertex u at
distance k from v. Since G is 2-connected, « and v lie on a common cycle

C. Suppose u is the only vertex such that d(u,v) = k. Then C has length
2k. Let C : v = vg, vy, ..., v2x = v. Define the broadcast g by

0 ifz =v; and i = k (mod 2)
g(z) = 1 ifrz=v;,andi=k+1 (mod 2)
f(z) otherwise.

Suppose there is another vertex w # wu at distance k from v. Then the
2-connectivity of G implies that G contains internally disjoint v — u and
v — w paths. Therefore there is a u — w path of length 2k containing v, say
P :u=wvg,v1,...., 09k = 0, ..., 99x = w. Define g by

0 if £ =v; and =0 (mod 2)
glz)y= ¢ 1 ifz=v;, and =1 (mod 2)
f(z) otherwise.

In either case, since G is bipartite, no two vertices v;,v; (on P or C) where
; = 5 (mod 2) are adjacent. Also, Ny(v;) C Nys(v) for each i. Hence g is
bn-independent. Notice that (g) = o(f). Thus either g contradicts the
minimality of |Vf++| among the ap,-broadcasts of G, or g is not maximal
bn-independent and contradicts f being an ap,-broadcast.

Hence G has an ap,-broadcast f such that f(v) = 1 for each v € Vf+.
Then Vf1 is an independent set, from which we deduce that ap,(G) < a(G).
The result follows from the inequalities (2). W

Since apn(Sp(3*)) = 3k, apnr(Sp(3F)) = 2k 4+ 1 and a(Sp(3%)) = 2k,
Theorem 4.1 does not hold for bipartite graphs that are not 2-connected.

Bouchemakh and Zemir [5] determined «, for all grid graphs, showing
that when m and n are large enough, ay (G n) = @(Gpn) = [%]

Theorem 4.2 [5] (i) If m,n € Z such that 2 < m < n and m < 4, then
& (Grmpn) = 2(m + 1 — 3) = 2(diam(Grm,n) — 1).

(1) If m,n € Z such that 5 < m < n and (m,n) ¢ {(5,5),(5,6)}, then
ah(Gm,n) = I_ﬂ,‘,n-] §

(i1i) on(Gss) = 15 and an(Gse) = 16.



It therefore follows from the inequalities (2) that for n > m > 5 and
(m,n) & {(5,5), (5,6)},
mn

Q(Gm,n) == abnd(Gm,n) - abm(Gm,n) = abn(Gm,n) — ah(Gm,n) - ,VT-I .

However, Theorem 4.1 immediately gives

mn

a(Gm,n) = abnd(Gm,n) = @bnr(Gm,n) = 0bn(Gm,n) = [T—]

whenever m and n are integers such that 2 <m < n.

5 Future work

Although ippq and ap,g4 fit nicely into the inequality chain (3), the definition
of bnd-independence forces this to be the case. The concept is difficult to
work with and not very much is known about it. For example, although
the difference apnr — abna can be arbitrary for trees [13], the behaviour
of apnr/@bnd has not been determined. It would also be interesting, for
comparison, to determine apna(G) for classes of graphs for which oy (G),
abn(G) or apnr(G) is known.

For h-independence it would be interesting to find more graphs (if they
exist) for which the bound in Corollary 3.5 is sharp.
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