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Abstract

Let G be a graph with vertex set V' and no isolated vertices. A
subset S C V is a semipaired dominating set of G if every vertex
in V'\ S is adjacent to a vertex in S and S can be partitioned into
two element subsets such that the vertices in each subset are at most
distance two apart. We present a method of building trees having a
unique minimum semipaired dominating set.
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1 Introduction

Paired domination was introduced in [8, 9] as a model for security applica-
tions involving backups for police officers. To model a backup, each vertex
in the paired dominating set must be partnered with an adjacent vertex in
the set. A relaxed version of paired domination, called semipaired domina-
tion, was introduced in [4] and studied, for example, in [5, 6, 10, 11, 12].
Semipaired domination in trees is the subject of this paper. We first give
some definitions.

A set S of vertices in a graph G is a dominating set of G if every vertex
in V(G) \ S is adjacent to a vertex in S. Further, a dominating set S
is a paired dominating set of G if the subgraph induced by S, denoted
G|[S], contains a perfect matching. The domination number v(G) is the
minimum cardinality of a dominating set of G and the paired domination
number ~y,,;(G) is the minimum cardinality of a paired dominating set of
G. For a survey of paired domination, see [2].

The distance between two vertices u and v in a connected graph G,
denoted by dg(u,v), is the length of a shortest (u,v)-path in G. A semi-
matching M in a graph G is a set of pairs of vertices such that every vertex
of G belongs to at most one pair in M and for every pair {u,v} € M, either
u and v are adjacent in G or v and v are at distance 2 apart in G. Further,
if {u,v} € M and dg(u,v) = 1, then we call {u,v} a 1-pair in M, while if
{u,v} € M and dg(u,v) =2, then we call {u,v} a 2-pair in M.

A set S of vertices in a graph G with no isolated vertices is a semipaired
dominating set, abbreviated semi-PD-set, of G if S is a dominating set of
G and every vertex in S is paired with exactly one other vertex in S that
is within distance 2 from it. In other words, the vertices in the dominating
set S can be partitioned into 2-sets such that if {u,v} is a 2-set, then
uv € E(G) or the distance between v and v is 2. We say that u and v
are paired, and that u and v are partners with respect to the resulting
semi-matching consisting of the pairings of vertices of S. The semipaired
domination number, denoted by 7ypr2(G), is the minimum cardinality of a
semi-PD-set of G. A semi-PD-set of G of cardinality v,,2(G) is called a
Ypr2-set of G. The semipaired domination number is squeezed between the
domination number and the paired domination number.

Observation 1 If G is a graph with no isolated vertices, then v(G) <
"Ypr2(G) < '7pr(G)'

Gunther, Hartnell, Markus and Rall [3] characterized the trees having
unique minimum dominating sets, and trees having unique paired dominat-



ing sets are characterized in [1]. Graphs having unique ~,,2-sets are called
USPD-graphs, and USPD-trees are characterized in [7]. For an example
of a USPD-tree, consider the path Ps given by ujusususus, where the set
{ug,us} is the unique ~y,r2-set of Ps. In this paper, we give a method of
building USPD-trees from two smaller USPD-trees.

In Section 3, we give our construction and state our main result, but
first in Section 1.1 we discuss the graph theory notation and terminology
we use, and thereafter in Section 2, we present some useful known results
and more terminology. In Section 4, we prove our main result.

1.1 Notation and Terminology

For notation and graph theory terminology, we in general follow [13]. Specif-
ically, the order of a graph G with vertex set V(G) and edge set E(G) is
denoted by n(G) = |V(G)| and its size by m(G) = |E(G)|. If the graph G
is clear from the context, we simply write V = V(G) and E = E(G). The
open netghborhood of a vertex v in G is the set Ng(v) = {u € V | wv € E},
and its closed neighborhood is the set Ng[v] = Ng(v) U {v}. For a set
S C V, its open neighborhood is the set Ng(S) = UyesNg(v) and its closed
netghborhood is the set Ng[S] = Ng(S)U S. The degree of a vertex v in G
is dg(v) = |[N(v)|. If the graph G is clear from context, we simply write
n, m, N(v), N[v], and d(v) rather than n(G), m(G), Ng(v), Ng[v], and
dc(v), respectively.

For a set S of vertices in a graph &, the subgraph obtained from G by
deleting all vertices in .S and all edges incident with vertices in .S is denoted
by G - 5. If S = {v}, we simply denote G — {v} by G —v. A leaf of a
tree T is a vertex of degree 1 in G, while a support vertex of T is a vertex
adjacent to a leaf. A star is the graph K, i, where k£ > 1; that is, a star
is a tree with at most one vertex that is not a leaf. A double star S(r,s)
for 1 < r < s is the tree having exactly two non-leaf vertices, one of which
is adjacent to r leaves and the other to s leaves. We denote the path and
cycle on n vertices by P,, and C,,, respectively.

For a subset S of vertices of GG, the S-private neighborhood of the vertex
v in S is the set pn(v,S) = {w € V(G) | Nglw]nN S = {v}}, while the
external S-private neighborhood of v is epn(v,S) = pn(v,S)\ S. An S-
external private neighbor of v is a vertex in epn(v, S).



2 Known Results and Terminology

The following observations from [7] determine the USPD-trees with diam-
eter at most 3.

Observation 2 ([7]) The path P, for n > 2 is a USPD-tree if and only if
n =2 orn =0(modb).

We note that the double star S(1,1), that is, the path P;: ujugusuy, is
not a USPD-tree since each of {uo,us}, {us,us}, and {u;,us} is a ypro-set
of Py. However, if 2 < r < s, then the set containing the two non-leaf
vertices of the double star S(r,s) is its unique ypr2-set. Note also, that a
star is a USPD-tree if and only if it has order 2. This is stated formally as
follows.

Observation 3 ([7]) A nontrivial tree T of diameter at most 3 is a USPD-
tree if and only if T = P, or T is a double star S(r,s) where r,s > 2.

To state the characterization of USPD-trees given in [7], we need some
additional notation. For a given 7pr2-set S and semi-matching M of a graph
G, we say that the set S has properties P; and Ps if the following hold.

(a) Property P, if for every 1-pair {u,v} in M, we have |epn(u,S)| > 2
and |epn(v, S)| > 2.

(b) Property P; if for every 2-pair {u,v} in M, we have |epn(u,S)| > 1
and |epn(v, S)| > 1.

Further, a ypro-set S in the graph G has property P if every possible
semi-matching in G[S] has both Property P; and Property P,. We are now
in a position to present the characterization of USPD-trees given in [7].

Theorem 1 ([7]) If T is a tree of order at least 3, then T is a USPD-tree
if and only if T has a ~ypro-set with Property P.

3 Constructing USPD-Trees

Our main goal is to present a method of constructing a USPD-tree by
combining two USPD-trees. Let T' be a USPD-tree of order n > 3 with the
unique ypro-set S and an associated semi-matching M. By Theorem 1, the
tree T has Property P, and so every vertex in a l-pair of M has at least



two S-external private neighbors and every vertex in a 2-pair of M has at
least one S-external private neighbor.

To aid in the construction, let the label or status of a vertex v, denoted
sta(v) be a letter {A4;, A2, A, B,C} and let X (T') be the set of all vertices
of T labeled X for X € {A;, A2, A,B,C}. A labeled graph is simply one
where each vertex is labeled with either A;, Ay, B, or C. Let A;(T) be
the set of vertices of S that are in an ¢-pair of M for i € [2]. We form the
set B;(T') by selecting two private neighbors from V \ S for each vertex
in A1(T), and we form the set By(7T’) by selecting one private neighbor
from V' \ S for each vertex in As(T). Let A(T) = A;(T) U A2(T) and let
B(T) = B1(T) U Bo(T).

We assign labels to the vertices of T" as follows.
A ifve A(T)

sta(v) =¢ B ifve B(T)
C ifveV\(A(T)UB(T))

We also say that

sta(v) = A; if v € A;(T) for i € [2].

For example, consider the following two special labeled trees. The first
tree H, is the double star S(2,2) shown in Figure 1(a), where each center
is in A;(H;) and has status A, and each leaf has status B. The second
tree Hy is the path P;5, where the center is assigned status C, each support
vertex is in A2(H>) and has status A, and each leaf has status B, as shown
in Figure 1(b). We note that the tree H; is the smallest USPD-tree of order
n > 3 with an i-pair in M and A(T;) is the unique ~prp-set of H; for i € [2].

A A

( ; ; \ B Az C Az B
o —o——o—9

B B B B

(a) Labeled H; (b) Labeled H:
Figure 1: The labeled trees H; and H

We make the following observation concerning labeled trees.

Observation 4 If T is a labeled USPD-tree of order n > 3 with unique
Ypr2-set S and an associated matching M, then the following holds.



(a) § = A(T).

(b) V\S=B(T)uC(T).

(c) For every l-pair {u,v} € M, each of u and v has exactly two S-
external private neighbors in B1(T).

(d) For every 2-pair {u,v} € M, each of u and v has ezactly one S-
external private neighbor in Bo(T).

We now define a construction to build a family 7 of trees T' from two
labeled USPD-trees T} and T3, each of order at least 3. We define T' € T
if T is a tree obtained from T; U 1% by adding an edge ujyus, where u; is
a vertex of T} and wus is a vertex of T3. Let S; along with the associated
semi-matching M; be the unique ~ypro-set of T; for ¢ € [2]. Further, let
A(TZ) = Al(Tz) U AQ(T,) and B(TZ) = BI(T,,) U Bz(T.L) Now for every
l-pair {u,v} € M;, each of u and v has exactly two S;-external private
neighbors in B;(T;), and for every 2-pair {u,v} € M;, each of u and v
has exactly one S;-external private neighbor in Bs(T;). We note that the
vertices from these pairs may have additional S;-external private neighbors
in C(T;) for i € [2]. If a vertex in S; has S;-private neighbors in both B(T;)
and C(T;), it is possible to relabel these S;-private neighbors. That is, for
a vertex v with S;-external private neighbors z and y, where z € B(T;) and
y € C(T;), we define a (B, C)-swap to be a relabeling that assigns status
C toz and B to y.

If one of u; and wus, say u;, has status A and us has status B, then
if possible we do a (B, C)-swap in T3 to change the label of u; to C. Let
A(T) = A(Th)VA(T2), B(T) = B(T1)UB(T2), and C(T) = C(T1) UC(T3).
Any tree built in this manner belongs to the family 7. Further, we say
that 7" € 7 was obtained using the following operations depending on the
status of u; and wus.

e Operation £,. T € T and u; € B(T;) UC(T;) for i € [2].

e Operation L. T € T and u; € A(T;) U C(T;) for i € [2]. Note that
in this case, there might have been a (B, C)-swap.

For example, two illustrations of Operation £; applied to the labeled
trees Hy and H, are given in Figure 2, while two illustrations of Opera-
tion Lo applied to the labeled trees H; and H; are given in Figure 3. Also,
an example of either Operation £, or Operation £, applied to two labeled
Hj, trees is given in Figure 4.

We are now ready to state our main result, which characterizes the
USPD-trees in 7. We shall prove the following theorem in Section 4.
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Figure 2: Two illustrations of Operation £,

A, A A A

B A, C A; B B A, C A, B
B B B B 8 B B B

(a) (b)

Figure 3: Two illustrations of Operation £,

Theorem 2 LetT € T. ThenT is a USPD-tree if and only if T is obtained
using Operation L1 or L.

4 Proof of Theorem 2

We prove Theorem 2 by proving three lemmas using the construction and
notation defined in Section 3.

Lemma 1 IfT € T, then A(T) is a ypr2-set of T.

Proof. Let T € T be obtained from the labeled USPD-trees T and 7%
by adding the edge ujus, where u; € V(T;). Then T is a labeled tree with
A(T) = A(T1)UA(Tz), B(T) = B(T1) UB(T}), and C(T) = C(T,) UC(T}).

Let S; be the unique 7pr2-set of 7; and let M; be an associated semi-
matching for ¢ € [2]. By Observation 4, S; = A(T;) and V(T}) \ S; =
B(T;) U C(T;) for ¢ € [2]. Moreover, for every l-pair {u,v} € M;, each
of u and v has exactly two S-external private neighbors in B, (7}), and for

*——e *——
B A, C A, B B A, C A, B

Figure 4: An illustration of Operation £; or Operation £,



every 2-pair {u,v} € M;, each of u and v has exactly one S-external private
neighbor in Bs(T;). We note that the vertices from these pairs may have
additional S-external private neighbors in C(T;) for i € [2].

Clearly, A(T) = S; U Sy with semi-matching M = M; U M, is a semi-
PD-set of T, and so ypr2(T) < |S1]+1S2] = Yor2(T1) +vpr2(T2). Let D be a
Ypr2-set of T', and let D; be the restriction of D to T}, and so D; = DNV(T})
for i € [2]. Thus, vpr2(T) = |D| = |D1| + |D2| £ |S| = |51 + [S2|- To show
that A(T) is a ypro-set of T, it suffices to show that |S1|+|Se| < |D1|+|D2|.

For a semi-matching X associated with D, let X; be the pairs of the
vertices of D; in X for i € [2]. Note that X may contain pairs that are not
in X; U X5, that is, pairs that contain one vertex from D; and one vertex
from Ds. We call such a pair a cross pair. Among all semi-matchings of D,
let X be one with the fewest cross pairs.

Note that if neither u; nor us is in D, then the distance between a vertex
of D; and a vertex of D, is at least 3 in 7. In this case, the set D; with semi-
matching X; is a semi-PD-set of T} for i € [2], and so ypr2(T:) = |S;| < | Ds]
for i € [2], as desired. Henceforth, we may assume that at least one of u;
and ug, say uy, is in D for otherwise the desired result holds. Let z be the
vertex paired with u; in X, and if uy € D, let y be the vertex paired with u
in X. Note that = could be us. Further, we note that the set D; dominates
T;. Recall that the semi-matching X associated with the vy,o-set D of T'
was chosen to contain the fewest cross pairs. We proceed further with the
following series of claims.

Claim 1 The semi-matching X has at most one cross paar.

Proof. Suppose, to the contrary, that X has two or more cross pairs. This
implies that X has exactly two cross pairs, namely {u;,z} and {uz,y},
where  # u; and y # wu;. In this case, we note that z € D and r is a
neighbor of ug in T, while y € D, and y is a neighbor of u; in T). Hence,
the set D with semi-matching (X \ {{u1,z}, {u2,y}}) U {{u1, 9}, {uo, z}}
is a ypre-set of T’ having no cross pairs, contradicting our choice of X. (o)

Claim 2 If the semi-matching X has no cross pairs, then |S;| + [S2| <
|D1] + | Da.

Proof. Suppose that X has no cross pairs. Thus, the vertex z € D, and if
ug € Dy, then the vertex y € Do. That is, every vertex in D is paired with
a vertex of D, and every vertex of D, is paired with a vertex of Dy. Thus,
D, with semi-matching X, is a semi-PD-set of T}, and so |S;| < |Dy|. If
D> dominates T, then D, with semi-matching X5 is a semi-PD-set of T3,



and so |S2| = Ypr2(T2) < |D2| and the result holds. Hence, we may assume
that Ds does not dominate 75.

By assumption, the set Dy dominates V(73%) \ {u2} and no vertex in
Nlug] is in Dj. In this case, the set Dy = Dy U {ug, 2}, where z € N(ug) \
{u1}, with semi-matching X} = X2 U {{u2,2}} is a semi-PD-set of T5.
Thus, |S2| = pr2(T2) < |Dj|. If Dj is a ~ypee-set of Ty, then since S,
is the unique ~yprz-set of T, we have D), = S5. But then z € D) and =z
has no Dj-external private neighbor, implying that D) = S, with semi-
matching X; does not have Property P. However since D) = S, is the
unique Ypr2-set of T3, by Theorem 1, D} has Property P, a contradiction.
Thus, Dj is not a minimum semi-PD-set of T, that is, D} # S, and so
[S2| = Ypre(T2) < |D3|. Furthermore, since both |S2| and |Dj| are even, we
have [S2| = Ypr2(T2) < |Dy|—2 = |D2|. Hence in both cases, we have |Sy| <
|Dz|. As observed earlier, |S1| < |D;|. Thus, |S1]| + |S2| < |D1| + |D2|. )

By Claim 1, the semi-matching X has at most one cross pair. By
Claim 2, we may assume that X has exactly one cross pair, for otherwise
the desired result |S1| + [S2| < |D1| 4 |D;| follows. Thus, either {u;,z} or
{u2,y} is the cross pair of X. Relabeling u; and us, if necessary, we may
assume that the cross pair of X is {uq1,z}. Thus, z € D5, that is, z = u, or
x is a neighbor of ug in T3. It follows that every vertex in D; \ {u; } is paired
in X;. Our next two claims show that |S;| < |D;|— 1 and |Sz| < |Dg| + 1,
giving |Si| + |S2| < |Dy| + |D2|, as desired.

Claim 3 'Ypr?(Tl) = ISII S |D1| — 1.

Proof. We note that D \ {u; } dominates the tree T} — Nluq]. If Di\{u}
with semi-matching X is a semi-PD-set of 73, then Yor2(Th) < |Dy| — 1.
Hence, we may assume that D, \ {u;} with semi-matching X, is not a
semi-PD-set of T}, for otherwise the desired result of the claim follows.
This implies that some vertex in the closed neighborhood N [u1] of uy in T}
is not dominated by D; \ {u;}. This in turn implies that there is a vertex
z1 € N(u1) N (V(T1) \ D1). Hence, D} = D; U {27} with semi-matching
X1 = X1 U {{u1,21}} is a semi-PD-set of T}, and so |S;| = vpre(T}) <
|Di| = |D1| + 1. If |S1] = |D}], then Dj is a 7pro-set of Ty. Since S; is the
unique Ypro-set of T, this implies that S; = D7. But then z € S; and =
has no Si-external private neighbor. Hence, D] = S is the unique Ypr2-set
of Ty and D] with matching X| does not have Property P, contradicting
Theorem 1. Thus, |S;| < |Dj|. Since each of |S;| and |D}| is even, we
therefore have that |S,| < |D{| — 2, and so |S;| < |D1| — 1. @)

Claim 4 ~,,5(T3) = |S2| < |Da| + 1.



Proof. If D\ {z} with semi-matching X, is a semi-PD-set of T3, then
|S2| = Ypr2(T2) < |D2| —1. Hence, we may assume that Dy \ {z} with semi-
matching X, is not a semi-PD-set of T3, for otherwise the desired result
of the claim follows. Since {u;,z} is the unique cross pair of X, we note
that every vertex in Dj \ {z} is paired in X with a vertex of D, \ {z}.
Thus since Ds \ {z} is not a semi-PD-set of T, this implies that at least
one neighbor, say z, of z in T does not belong to the set D,. But then
D, U {2} with semi-matching X, U {{z, 2}} is a semi-PD-set of T5. Hence,
Yor2(T2) = |S2| < |[D2 U {2} = |D2| + 1. ®

By Claim 3, we have |S;| < |Dy|—1. By Claim 4, we have |S3| < |Da|+1.
Hence, |S1| + |S2| < |D1| + |D2|, completing the proof of Lemma 1. O

Lemma 2 IfT € T is a tree obtained using Operation Ly or Ly, then T
is a labeled USPD-tree and A(T) is the unique ypro-set of T.

Proof. Let T € T be obtained from labeled USPD-trees 77 and 75 using
Operation £, or £, to add the edge ujup, where u; € V(T;) for ¢ € [2].
Thus, A(T) = A(T1)UA(T,), B(T) = B(T1)UB(T2), and C(T) = C(T1) U
C(T3). Let S; be the unique vpro-set of T; and let M; be an associated
semi-matching for ¢ € [2]. By Observation 4, S; = A(T;) and V(T;) \ S; =
B(T;) U C(T;) for ¢ € [2]. Moreover, for every l-pair {u,v} € M;, each
of v and v has exactly two S-external private neighbors in B;(T}), and for
every 2-pair {u,v} € M;, each of v and v has exactly one S-external private
neighbor in By(T3}).

By Lemma 1, § = A(T) = A(T1) U A(T,) with semi-matching M =
M; U M; is a vpro-set of T. If T is obtained using Operation £;, then
u; € B(T;) UC(T;) for ¢ € [2]. If T is obtained using Operation £;, then
u; € A(T;) UC(T;) for i € [2). In both cases, the S;-external private
neighbors of vertices of S; for ¢ € [2] are S-external private neighbors of the
vertices of S. Thus, since the y,2-set S; of T; has Property P in T}, the
Ypre-set S has Property P in T'. By Theorem 1, S is the unique 7pro-set of
T and T is a USPD-tree. O

Lemma 3 If T € T is a USPD-tree, then T was obtained using Opera-
tion L1 or Lo.

Proof. Let T € T be a USPD-tree obtained from the labeled USPD-trees
T, and T5 by adding the edge uyug, where u; € V(T;) for i € [2]. Then
A(T) = A(Th)VA(Ty), B(T) = B(T1)UB(T2), and C(T') = C(T1) UC(T3).
By Lemma 1, A(T) = A(T1) U A(T3) is a ypro-set of T. Since T is a USPD-
tree, it follows that A(T') is the unique ypr2-set of T'.
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Suppose, to the contrary, that neither Operation £; nor £, was used
to build T. Renaming 77 and 75 if necessary, the only possibility is that
u; € A(Ty) and uy € B(T3). We note that in this case, per our construction,
~ a (B, C)-swap would have relabeled u, as C, if possible. Since the swap
was not possible, it follows that either us is the only Sj-external private
neighbor of a vertex v in a 2-pair of My, or uy is one of two Sj-external
private neighbors of a vertex v in a 1-pair of M. But then v € A(T) and
A(T) does not satisfy Property P in T'. By Theorem 1, A(T) is not the
unique Ypro-set of T, a contradiction. OJ
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