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Abstract

The game of cops and robbers on a graph is a vertex pursuit game
played by two players with perfect information. Per the rules of the
game, a given graph is either inherently cop-win or robber-win. It is
possible that adding any edge changes the inherent nature of a par-
ticular graph. Such a graph is mazimal in the sense that no edge can
be added without changing its “win-state”. Furthermore, if deleting
any edge changes the “win-state”, then this graph is minimal. Join
us as we walk this thin blue line between cop-win and robber-win
and explore the good, the bad and the ugly.
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1 The Good: Definition and Preliminary Theo-
rems

Cops and robbers is a vertex-pursuit game played on a simple graph by
two players. Given a graph G the set-up and rules for the game are as
follows. The players are assigned a role, one is the cop and the other is
the robber. Each player has a single piece to play. The game begins with
the cop player placing her/his piece on one vertex in the graph G. After
the cop has placed her/his piece, the robber will place his/her piece on one
vertex in the graph G. After each player has chosen the placement of their
piece, the game starts with the cop taking the first turn. On a turn the
cop or robber may move his/her piece to any adjacent vertex connected by
a single edge to the player’s currently occupied vertex, or they may leave
their piece on the current vertex. Play alternates between the cop player
and the robber player until either the cop occupies the same vertex as the
robber, in which case the cop wins, or the robber can prolong the play
indefinitely guaranteeing that the cop will never occupy the same vertex as
the robber, in which case the robber wins.

A graph on which there is a strategy that the cop player can employ
to win this game is called cop-win. A graph on which there is a strategy
that the robber player can employ to win this game is called robber-win.
Given a simple graph G it is inherently either cop-win or robber-win and
never both, as was shown in [2]. How robust is the inherent state given
the addition or deletion of edges in the graph? It is natural to investigate
whether the deletion or addition of any edge switches this state. In order
to proceed we will need the following definitions and preliminary theorems.

The game of cops and robbers is played on a simple graph and we
will only consider simple graphs in this paper. Some knowledge of the
terminology of simple graphs is assumed and may be found in any book
on graph theory, for example [4] or [7]. We will provide some nonstandard
definitions for clarity.

We define the path P, to be the path with n edges and we say that this
path has length n. A path with end vertices u and v is a non-branching
path if every vertex on this path, with the possible exception of the end
vertices, has degree 2. A unicyclic graph is a connected graph containing
exactly one cycle. The join of two graphs G and H is the graph formed by
adding an edge from each vertex in G to all vertices in H.

A graph G is called self-centered if the center consists of all of the
vertices of the graph and it is called k-self-centered if G is self-centered
and the radius and the diameter are both k.
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The following technical definitions are relevant to the study of cops and
robbers and can be found in [2]. Vertex u dominates vertex v if the closed
neighborhood of v is a subset of the closed neighborhood of . In this case,
v is called a corner and v is dominated by u. When vertex u dominates
vertex v, we perform a retraction on the graph G by deleting v and the
edges connected to v in G to for a graph H. We say v retracts onto u,
and H is aretract of G. A graph G is dismantlable if there is a sequence
of retractions on G that results in a single vertex.

Example 1.1. The following graphs have the property that vertex v re-
tracts onto vertex u and H is a retract of G.

Graph G

Example 1.2. The following graphs demonstrate a sequence of retractions

for a dismantlable graph.
O © O
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The preliminary theorems below will give us some tools that will help
us investigate the robustness of cop-win and robber-win graphs.

Lemma 1.3. /2, Corollary 1.10]
If G is cop-win, then so is each retract of G.

Lemma 1.4. [2, Lemma 2.1]
If G is a cop-win graph with at least two vertices, then G contains at least
one corner.

Lemma 1.5. [1] If G contains a universal vertez, then G is cop-win.

There has been some work published on questions of critical values in
graphs [3]. Specific to the interests of this paper, we focus on critical values
on edges investigated in [8], [5], and [6]. These graphs change state from
cop-win to robber-win or vice-versa with the addition (or deletion) of any
edge. A graph that changes state with the addition (or deletion) of an
edge will be called an edge turncoat graph. An edge turncoat graph
that changes with the addition of an edge will be called maximal and one
that changes with the deletion of an edge will be called minimal. Specifi-
cally there are four types of edge turncoat graphs, namely edge minimally
cop-win, edge maximally cop-win, edge maximally robber-win, and
edge minimally robber-win graphs. In Sections 2 and 3 we will de-
scribe edge maximally robber-win graphs and characteristics and produce
an algorithm for determining edge maximally robber-win, but we stop short
of a characterization. In Section 4 we work on edge minimally robber-win
graphs and again stop short of a characterization.

The authors in [8] and [5] have characterized edge minimally cop-win
graphs and edge maximally cop-win graphs. We include their characteriza-
tions with our terminology below.

The definition of such a graph is minimal in the sense that deletion of
any edge will result in a robber-win graph. In other words, every edge is
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necessary in an edge minimally cop-win graph for maintaining a cop-win
outcome. It turns out that the property defining edge minimally cop-win
graphs is very restrictive. As shown in [5] the only edge minimally cop-win
graphs are trees.

Theorem 1.6. [5] A graph G is edge minimally cop-win if and only if G
has at least 2 vertices and is a tree.

In [5] they also describe the type of graph that becomes robber-win with
the addition of any edge.

This leads to the following Theorem.

Theorem 1.7. [5] There are no graphs that are edge maximally cop-win.

The types of cop-win graphs that change in outcome due to adding
and deleting edges is quite limited compared to the types of graphs in the
following sections.

2 THE BAD: Edge Maximally Robber-win

We now turn our attention to robber-win graphs. The graphs that are la-
beled as cop-win edge-critical graphs are characterized for planar graphs in
[6]. These particular robber-win graphs become cop-win with the addition
of any non-edge, which we rename in our definition below.

Definition 2.1. An edge maximally robber-win graph G is a graph
that is robber-win and the addition of any edge results in a cop-win graph.
Fitzpatrick refers to such graphs as cop-win edge-critical with respect to
addition (CECA) in [6].

These types of graphs are maximal in the sense that adding any edge
to the graph will change the graph from robber-win to cop-win.

Example 2.2. The graph of a 4-cycle, Cy, is an example of an edge max-
imally robber-win graph. Observe that Cj4 is robber-win and that the ad-
dition of either of the two diagonal edges results in a universal vertex and
therefore a cop-win graph.
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Example 2.2 can be generalized to any n — 2 regular graph such that n
is an even positive integer, as shown in [8]. The addition of an edge to such
a graph will result in two universal vertices.

Theorem 2.3. [8, Theorem 4.37] Take n to be an even positive integer,
all n — 2 regular graphs on n vertices are edge maximally robber-win.

We diverge from [5] and [8] by including edge maximally robber-win
graphs that contain corners. The next example describes the construction
process for creating a non-regular edge maximally robber-win graph.

Example 2.4. Consider the following construction: starting with a vertex
v, add a new vertex v; and an edge from v; to vy and an edge from v, to
all neighbors of vg.

The resulting graph G, is robber-win because the only retractions possible
result in C4 which is robber-win. Therefore, by the contrapositive of Lemma
1.3, it follows that G, must also be robber-win. The addition of any edge
to G2 will result in at least one universal vertex, therefore the addition of
any edge will result in a cop-win graph. Combining these facts we conclude
that G, is edge maximally robber-win.

This construction can be done on any n — 2 regular graph described in
Theorem 2.3.

Example 2.5. Begin with a 6 regular graph on 8 vertices, labeled G; in
the figure below. Consider the following construction: starting with vertex
3, add a new vertex 9, and an edge between vertex 9 and vertex 3 and edges
between vertex 9 and all the neighbors of vertex 3. Similarly, add vertex
10 and edges between vertex 10 and vertex 3, all the neighbors of vertex 3,
and including vertex 9. The result of this construction is G in the figure
below.
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There are two retractions possible: vertex 9 retracts to vertex 3 and vertex
10 also retracts to vertex 3. The resulting graph is G; and so it is robber-
win. The addition of any edge missing from G, results in at least one
universal vertex, thus G2 is edge maximally robber-win.

This construction can be better clarified by the following definition from
[9]-

Definition 2.6. Given a graph G and a vertex v of the graph, substi-
tuting the vertex v with a graph H means delete vertex v and connect all

neighbors of v to all vertices in H.

Note that in Example 2.5 that vertex 3 is being substituted with the
complete graph K3. In fact, larger edge maximally robber-win graphs can
be constructed by further substitution for any vertex in a smaller edge
maximally robber-win graph by a complete graph.

Theorem 2.7. Let G be an edge maximally robber-win graph. Then by
substituting any number of vertices of G with complete graphs of any size
we obtain a graph that is edge maximally robber-win.

Proof. Let G be an edge maximally robber-win graph on n vertices and
substitute a vertex v with the complete graph K, and call the resulting
graph G’. Notice that in G’ all vertices in K, can retract to a single vertex
and the result is G where the retraction of K, is v, hence G’ is robber-win.
When we add an edge to G’ we must show that the result is cop-win. Note
that no edges may be added to K, and so there are two cases.

Case 1:

The two vertices on the new edge are disjoint from K,. In this case the
vertices of K, retract to a single vertex and the result is the graph G with
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one additional edge. Now since G is edge maximally robber-win it follows
that G with the additional edge is cop-win, therefore G’ with the additional
edge is also cop-win.

Case 2:

Suppose the edge uv is added to G, where u is a vertex in K, and v is not.
Notice that the neighborhood of u contains all neighborhoods of the other
vertices in K,, therefore these vertices retract onto u. Now this is again
G with one additional edge, incident with ». Since G is edge maximally
robber-win it follows that G with the additional edge is cop-win, therefore
G’ with the additional edge is also cop-win.

Therefore substituting one vertex with a complete graph results in a new
edge maximally robber-win graph. Continuing this process we can replace
any number of vertices in an edge maximally robber-win graph with com-
plete graphs of any size. O

Corollary 2.8. A sequence of K, substitutions in a graph is the same as
substitution by complete graphs on one or more vertices.

Proof. Any given sequence of K substitutions on r vertices with the same
neighborhood will be equivalent to substituting by K, on one of the vertices.
Thus any sequence of K, substitutions will lead to substitution by complete
graphs on one or more vertices. |

Notice that Corollary 2.8 suggests that we only need to consider se-
quences of K substitutions on an edge maximally robber-win graph rather
than substitutions by larger complete graphs. We will see more of the
relevance of this corollary in Section 3.

The downside to using substitution to create larger edge maximally
robber-win graphs is the abundance of edges. In order to deal with the
increased number of edges it will be beneficial to consider the complement
of the graph. Consider the complement of G, from Example 2.5 shown in
Figure 2.9 In the complement this is substituting vertex 3 with the empty
graph on three vertices, K3. In general, substituting H for vertex u in G
corresponds to substituting H for vertex u in G.

Figure 2.9. Consider the complement of the graph G5 from Example 2.5.
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Note that when an edge is added to G, we obtain a universal vertex.
This is convenient but not necessary as more substitutions are performed.

Figure 2.10. Continuing from Example 2.5, see Figure 2.9, substitute
vertex 7 with the complete graph Kjy.
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Since the graph G3 in Figure 2.9 is edge maximally robber-win we can
conclude that G35 is also edge maximally robber-win by Theorem 2.7. Notice
that the addition of the edge between 7 and 3 in G3 does not result in a
universal vertex.

The graphs G2 and G3 demonstrate the motivation for working in the
complement.

The neighborhood of edge maximally robber-win graphs was studied by
Hill [8]. He showed that corners share the same closed neighborhood as the
their dominating vertex.
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Theorem 2.11. [8, Lemma 4.28] If G is edge mazximally robber-win and
vertex u retracts to vertex v in G, then N|u] = N[v]. Furthermore N[u] =
N[v] in G. Note that N[u] is the complement in the vertex set of N[u] and

does not include vertexr u.

We use this theorem and the below Theorem 2.12 to obtain further
results about edge maximally robber-win graphs.

Theorem 2.12. If G is edge maximally robber-win and G’ is a retract of
G, then G’ is also edge maximally robber-win.

Proof. If G is edge maximally robber-win and G’ is a retract of G then G’ is
robber-win by Theorem 2.3 in [2]. Without loss of generality G’ is obtained
from G by retracting vertex u to vertex v. We want to show that adding an
edge to G’ will result in a cop-win graph. Notice that adding an edge to G’
is the same as adding an edge to G that does not contain vertex u and then
retracting u onto v. Note that this retraction is still possible regardless
of the choice of edge, since the closed neighborhood of u is still contained
in the closed neighborhood of v. Since G is edge maximally robber-win it
follows that G with this additional edge is cop-win and by Corollary 1.10
in [2] it follows that G’ with this additional edge is also cop-win. Therefore
G’ is edge maximally robber-win. O

Corollary 2.13. Let G be an edge mazimally robber-win graph. Every
retraction in G is the result of a Ko substitution.

Proof. By Theorem 2.11 if vertex u retracts onto vertex v in G they share
all of the same neighbors, which implies that u could be created by a K>
substitution on v in the retract of G. By Theorem 2.12 each retract will
still be edge maximally robber-win and so Theorem 2.11 will still hold.
Therefore subsequent retractions will also be the result of a K5 substitution.

O

Theorem 2.14. If G is edge mazimally robber-win, then every retraction
in a sequence of retractions is already possible in the original graph G.

Proof. By Corollary 2.13 every retraction in a sequence of retractions is
the result of a K, substitution. By Corollary 2.8 every retraction possible
in an edge maximally robber-win graph will be the result of substitution
by complete graphs on one or more vertices. Therefore every possible re-
traction in a sequence of retractions will already be possible in the original
graph. W
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Theorem 2.15. If G is an edge mazimally robber-win graph and G contains
a leaf, then the connected component of G containing the leaf is a nontrivial
star.

Proof. Call the leaf in G vertex v and its unique neighbor in G vertex w.
For each u € N N[w] with u # v it follows that N[v] C N[u]. Therefore every
vertex in N [w], other than v, will retract into v. By Theorem 2.11 it follows
that all neighbors of vertex w in G are also leaves. Therefore the connected

component in G containing vertex v is a nontrivial star. O

Not only are all edge maximally robber-win components that contain a
degree 1 vertex in the complement nontrivial stars, but all edge maximally
robber-win that contain trees in the complement can be characterized as
such. The next theorem shows all trees and forests in the complement of
an edge maximally robber-win graphs are nontrivial stars and vice versa.

Theorem 2.16. Let G be a graph such that G is a _tree or a forest. The
graph G is edge maximally robber-win if and only if G is a nontrivial star
or a disjoint union of nontrivial stars.

Proof. In the forward direction, G is an edge maximally robber-win graph
such that complement G is a tree or a forest. Since each connected com-
ponent in G is a tree, each consequently contains a vertex of degree 1. By
Theorem 2.15 each of the components of G will be a nontrivial star. Thus
the complement is either a nontrivial star or a disjoint union of nontrivial
stars.

In the reverse direction, the complement is the disjoint union of non-
trivial stars and so the original graph is robber-win. Now the addition
of any edge in G results in the deletion of an edge in the complement G.
Notice that the deletion of an edge in G results in a leaf becoming an
isolated vertex, which is a universal vertex in G with the addition of the
edge. Therefore the addition of any edge results in a cop-win graph and so
the original graph is edge maximally robber-win by Lemma 1.5. O

Beyond the fact that nontrivial stars are edge maximally robber-win in
the complement, so are complete bipartite graphs in the complement.

Theorem 2.17. [8, Lemma 4.27] Let G be a disconnected graph. The graph
G is edge mazimally robber-win if and only if G is a complete bipartite
graph.

Theorem 2.18. [8, Lemma 4.36] The join of any two edge mazimally
robber-win graphs is edge maximally robber-win.
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Using these two theorems we can get the following result.

Theorem 2.19. If G is the disjoint union any number of complete bipartite
graphs, then G is edge mazimally robber-win.

Proof. By Theorem 2.17 we know that the complement of a complete bi-
partite graph is edge maximally robber-win. The complement of the join
of two graphs F' and H is the disjoint union of F and H. Therefore by
Theorem 2.18 it follows that the disjoint union of any number of complete
bipartite graphs in the complement is edge maximally robber-win. O

The results of Theorem 2.19 were demonstrated in Example 2.10. The
following is another example of Theorem 2.19.

Figure 2.20. Consider the graph G and its complement G below.
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The graph G is edge maximally robber-win by Theorem 2.19 since its com-
plement is a disjoint union of complete bipartite graphs.

The above theorems and examples give several families of edge maxi-
mally robber-win graphs. The next section describes some results that hold
for all edge maximally robber-win graphs.

3 The Ugly: Edge Maximally Robber-Win Graphs,
The Great Escape

In the previous section we captured many edge maximally robber-win graphs.
In fact, the conditions found in Theorems 2.11, 2.15, 2.19, and 2.18 seem
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broad enough to suspect that all of the edge maximally robber-win graphs
have been found. It turns out that there are many more edge maximally
robber-win graphs, as shown by Hill [8] and Fitzpatrick [6, Theorem 7]. In
this section, we use a characterization of retractions viewed in the comple-
ment of a graph to find more information about edge maximally robber-win

graphs.

Theorem 3.1. If G is a graph and u is a leaf in G, then any vertex that
is distance 2 from u in G will retract to wu.

Proof. Let G be a graph such that G contains a leaf, call it . u. Suppose
u is distance 2 away from vertex v in G. Both N[u] and NJv] share a
vertex, call it w. Since u is a leaf in G, w is the only vertex in N[u]. Thus,
N(u) C N(v) and so v retracts onto u. O

If u is a leaf in G, then the retraction of vertex v onto u is called a
pruning.

Notice that the retractions in the complement of the graphs in Examples
2.10 and 2.20 were only on vertices of distance 2 or oo away from each other.
In Corollary 2.8, the complement of substituting K, graphs also resulted
in dominating and corner vertices distance 2 away from each other. As the
next theorem shows, there are no other lengths possible.

Lemma 3.2. If vertez u retracts onto vertex v in G, then the distance from
u to v in G must be either 2 or co. Furthermore if the distance is oo then
v 18 a unwersal vertex in G.

Proof. If vertex u retracts onto vertex v, then the neighborhood of one
vertex must be contained in the neighborhood of the other in G. If the
two vertices are in the same connected component in G, then since one
neighborhood is contained in the other in G, they must share at least one
vertex in both neighborhoods or else the retraction would not be possible.
If the two vertices are adjacent in G then retraction is not possible, since
they are not adjacent in the original graph . This means that the distance
between two retracting vertices in the same connected component in G must

be 2.

If u and v are not in the same connected component in G, then they do
not share any neighbors in G. Now since u and v share no neighbors in G,
the only way that vertex u could retract onto vertex v is if N[v] C N[u],
meaning vertex v has no neighbors in G, i.e. v is a universal vertex in G.
Therefore the distance between u and v in G is co and v is a universal
vertex in G. L
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Theorem 3.1 and Lemma 3.2 give a better picture of what kind of re-
tractions are possible in the complement of a graph. In fact, all retractions
can be narrowed down to three types.

Theorem 3.3. The only three types of retractions possible in G are prun-
ing retractions, retractions involving 4-cycles, and retractions involving an
isolated vertex.

Proof. From Lemma 3.2, we know the distance between two vertices that
retract in G must be either 2 or co. Furthermore, if the distance is oo then
by Lemma 3.2 one of the vertices must be a universal vertex in G, which is
an isolated vertex in G.

Now we must consider what kinds of retractions happen if two vertices
are a distance of two from each other in G. Suppose one of the two vertices
involved in the retraction is a leaf in G. Then by Theorem 3.1 we know
that pruning is possible. So now consider if neither vertex involved in the
retraction is a leaf (meaning that each vertex has at least two neighbors
in G). This means that each vertex must have at least two neighbors
and because they retract, at least one vertex’s entire neighborhood in G is
contained in the other vertex’s neighborhood. This means they must share
at least two neighbors in G and they are not connected in G, which implies
that they form a 4-cycle in G. O

Example 3.4. Not every two vertices in the complement of an edge maxi-
mally robber-win graph that are at distance two and are in a 4-cycle in the
complement will retract. This is possible if each of these two vertices have
a neighbor in the complement that is not in the neighborhood of the other
vertex. One such example of this is the complement of a cube graph.

Each vertex in G is in a 4-cycle and none of the 4-cycles retract.

Lemma 3.5. If the complement of the graph G is a path P,, then G is
cop-win if and only if r is congruent to 0 modulo 3.
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Proof. Let G be a cop-win graph such that G is a path P,. Note that
either 7 = 0, i.e the complement is a single vertex which is cop-win, or
r>3. Whenr =1 or r =2, G is a nontrivial star which is robber-win by
Corollary 2.19. If r > 3, a leaf will prune a vertex two away as in Theorem
3.1, and the pruned vertex’s connected edges are deleted. This results in
a K, star and a path of length r — 3. We can continue pruning the path
until we are left with a path of length O, 1, or 2 and a disjoint union of
K, stars. If r is congruent to 0 modulo 3, then pruning the complement
will leave a path of length 0 and a disjoint union of K ; stars, which has a
universal vertex in G after the sequence of retractions which is cop-win by
Lemma 1.5. If r is congruent to either 1 or 2 modulo 3, then pruning leaves
a disjoint union of nontrivial stars, which is robber-win by Corollary 2.19.
Therefore G is cop-win and G is a path P,, if and only if r is congruent to
0 modulo 3.

O

Theorem 3.6. [8, Lemma 4.41] If G is connected and unicyclic, then G
is edge maximally robber-win if and only if G is a cycle of length congruent
to 1l mod 3.

Theorem 3.7. Let G be an edge maximally robber-unin graph. The comple-
ment of the graph cannot contain a non-branching path of length congruent
to 1 modulo 3 between two vertices of degree greater than 2, where all four
cycles in the complement are vertex disjoint from this path.

Proof. Suppose G is an edge maximally robber-win graph. Without loss of
generality we need only consider the subgraph H of G where all retractions
have been made. Suppose there exists a non-branching path in H of length
1 mod 3 between two vertices u, v of degree 3 or more.

Let z be the vertex adjacent to u on the path between u and v. Delete
the edge uz in H and note this is equivalent to adding an edge in H.
This will either result in = being a leaf in H — {uz} or there will be no
retractions possible, since the edge is not part of a 4-cycle in H. If it
gives us a leaf, z, then the length of the path from z to » is 0 mod 3.
We can now prune what remains of this path to a union of disjoint edges
and a separate connected component containing v that does not allow any
more retractions. Since u and v both have degree at least 3, after these
prunings each will be contained in a component that contains at least three
vertices and no retractions, contradicting the fact that H is edge maximally
robber-win and consequently G is edge maximally robber-win. Therefore
an edge maximally robber-win graph cannot contain a non-branching path
of length congruent to 1 modulo 3 between two vertices of degree greater
than 2 vertex disjoint from all four cycles in G. O

157



Corollary 3.8. Let G be an edge mazimally robber-win graph. If G con-
tains a non-branching path between two vertices u and v of degree greater
than 2 which is not vertex disjoint from a 4-cycle that allows a retraction,
then the complement cannot contain a non-branching path of length con-
gruent to 1 modulo 8 between u and v.

Proof. Notice that once we perform all of the retractions to obtain H these
two vertices will still have degree at least 3 and so we apply Theorem 3.7
to H. O

If the edge maximally robber-win graph contains a non-retracting 4-
cycle that contains either vertex, then after the deletion of the edge in
the proof of Theorem 3.7 it is possible that we introduce a new 4-cycle
retraction that may still result in a cop-win graph.

Example 3.9. The graphs below—labeled G, H, and J—are complements
of edge maximally robber-win graphs which can be verified by utilizing
SageMath version 8.9 [11], with code provided in Appendix A.
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The sage code works as follows:

The code requires the user to input the list of edges in the complement
of the graph in question into the function Is_mrw(). Then using this list,
we create an adjacency matrix of the complement graph to verify whether
or not the neighborhoods of two vertices match as well as to determine if
two vertices are on opposite sides of a 4 — cycle. We also count the number
of edges in the complement to help verify that every edge has been deleted
to verify whether the graph is edge maximally robber-win. We then define
a couple of functions that will be called several times in the code. The
retract() function simply deletes the row and column entries of that vertex
in the adjacency matrix which is exactly what happens when a vertex is
retracted. The rwCheck() function determines whether or not the graph
entered into it is cop-win or robber-win by looking for the following in the
complement of the graph: isolated vertices, leaves, and retractable 4-cycles.

1. Isolated Vertex: The function first determines whether or not the
complement has an isolated vertex by checking for a row with row
sum O in the adjacency matrix. If it does, then since every vertex can
retract onto it by Lemma 3.2 it must be a cop-win graph.

2. Leaves: If an isolated vertex was not found, the code then looks for
any leaves by checking for a row with row sum 1 in the adjacency
matrix. If it finds a leaf, it will determine whether it is a K7 edge. If
it is a K edge, to help with efficiency, the K, edge is deleted since it
is clear that those vertices will no longer retract onto anything other
than an isolated vertex. However it will not delete the K, edge if they
are the only two vertices left. In this case the graph will be deemed
robber-win. If the leaf is not in a Ky edge, then it will perform a
pruning which will retract a vertex that is distance 2 away from the
leaf.

3. 4-cycles: If neither an isolated vertex nor a leaf was found, then the
code will look for a 4-cycle. The code does this by looking at the
square of the adjacency matrix of a graph. If there are any entries in
the square of the adjacency matrix at least 2 or greater (not including
entries on the diagonal), then the two vertices that make up that entry
are on opposite sides of a 4-cycle. Then to determine whether or not
those vertices retract onto one another, we look back at the adjacency
matrix. We check whether they are neighbors (we cannot retract
them if they are neighbors) and if not then focus on vertices 7 and j
on opposite sides of a 4-cycle. We first subtract the jth row of the
adjacency matrix from the ith row. This will create a row of entries
that are a mix of —1’s, 0’s, or 1’s. An entry is —1 if vertex j has a
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neighbor that is not a neighbor of 7, 1 if vertex ¢ has a neighbor that
is not a neighbor of j, or O if both vertices ¢ and j either are neighbors
or are not neighbors of the vertex. After subtracting the two rows we
use the special case of equality in the triangle inequality on the list of
the subtracted entries to verify whether or not a retraction is possible.
In other words, we are comparing whether or not the absolute value
of the sum of these entries is equal to the sum of the absolute value
of these entries.

‘Z(row i— row J)l = Z |(row i— row j)|

If they are equal then by the triangle inequality the two vectors are
equal. If all of the differences in each column are 0's, then both
vertices have the same neighborhood and can retract onto each other.
Otherwise, one vertex has a larger neighborhood in the complement
than the other. In the case where all of the differences are non-
negative or all 0’s, the code retracts vertex i onto vertex j. If the
differences are —1’s and 0’s, it will retract vertex j onto i.

The rwCheck() will go through the above steps one at a time in the order
listed. If any retraction or K, deletion was made, then it restarts back to
the first step since a retraction could create other retractions. The function
only terminates if an isolated vertex was found (meaning that it is cop-
win), or the code checked every vertex and could not find any leaves or
retractable 4-cycles (meaning that the graph is robber-win).

The last function the code defines will delete an edge from the graph.
This is used to verify whether or not deleting any edge in the robber-win
graph will create a cop-win graph.

The code runs rwCheck() on the original graph. If it finds that the graph
is cop-win it returns “Not Maximally Robber-Win”. Otherwise it runs
rwCheck() on each possible subgraph of the form G with edge e removed
for each edge e in G. If rwCheck() gives cop-win for every edge deleted it
will output “Maximally Robber-Win!!!” if it ever gives robber-win, then
the code will output “Not Maximally Robber-Win.”

This concludes our results on edge maximally robber-win graphs as we
now bring our attention to the last type of edge turncoat graph.
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4 Wanted: Rounding up Edge Minimally Robber-
Win Graphs

We now turn to the question of deleting edges in a robber-win graph.

It is clear that no edge minimally robber-win graph can have a cut edge
(i.e. if the deletion of an edge disconnects the graph, then the resulting
disconnected graph is also robber-win). This was shown by Alan Hill in
(8] where he does a considerable amount work investigating edge minimally
robber-win graphs. Examples of edge minimally robber-win are given be-
low.

Example 4.1. [8, Lemma 4.16] The cycle Ci is edge minimally robber-
win if & > 4. The graph Cy is robber-win if & > 4 since the robber can
maintain a distance of 1 or more edges away from the cop. Now note that
the deletion of any edge in a cycle results in a path, P._; and a path is
cop-win. Therefore the cycle Cy is edge minimally robber-win for k& > 4.

Example 4.2. Any n — 2 regular graph on n vertices is edge minimally
robber-win for any even positive integer n. By Theorem 2.3 we see that the
graph is robber-win. The complement of the graph contains n/2 disjoint
edges. Now the deletion of an edge in the original graph corresponds to the
addition of an edge in the complement. The addition of any edge that is
missing from this graph will result in a path of length 3 with n/2—2 disjoint
edges. We can perform a pruning retraction on the resulting complement
and this will give an isolated vertex in the complement. This corresponds to
a universal vertex in the retraction of the original graph and so the deletion
of any edge in the original graph results in a cop-win graph. Therefore any
n — 2 regular graph is edge minimally robber-win.

It is interesting to note that Example 4.2 and Theorem 2.3 show that
n—2 (n is an even, positive integer) regular graphs are both edge minimally
robber-win and edge maximally robber-win. With these theorems in mind
one might say n—2 regular graphs barely escape being robber-win. However
[8] shows us that not all edge minimally robber-win graphs are regular.

Theorem 4.3 ([8]). The join of any n — 2 regular graph and any cycle
C is edge minimally robber-win for even, positive integer n and an integer
k> 4.

We show that for any edge minimally robber-win graph G the diameter

of G is either 2 or 3. In fact we show that if the diameter of G is 2, then G
is 2-self-centered.
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Theorem 4.4. Let G be edge minimally robber-win and assume G has no
isolated edges. Then G must be connected.

Proof. Let G be edge minimally robber-win and assume G has no isolated
edges. This means that G does not have any K, components. Also, since G
has no corners by [8, Lemma 4.11] each connected component in G cannot
have any vertices of degree 1 (i.e. it cannot have any leaves), otherwise
pruning would be possible. Furthermore G does not have an isolated vertex.

Suppose we delete an edge in G, this introduces at least one retraction
since G is edge minimally robber-win. In the complement, this means that
the addition of any edge to G results in at least one retraction involving a
4-cycle. Note that it is impossible to create an isolated vertex or a leaf in
G by adding an edge.

Suppose G has at least two connected components. If we add an edge
uv between the two separate components in G, then the resulting graph
will not have an additional 4-cycle. This implies that u (and likewise v)
cannot retract onto a vertex from another component. Therefore either u
or v must retract onto another vertex in their respective component in G.
Without loss of generality, suppose u retracts onto another vertex z in its
component after the addition of the edge uv. Since G is edge minimally
robber-win, u could not have retracted onto z without the addition of uwv.
This is only possible if z was already a neighbor of v in the complement
since we must have N[z] C N|[u] in order for vertex u to retract onto z. This
contradicts the fact that 4 and v are in separate components. Therefore G
must be connected. O

Lemma 4.5. Let G be a graph with G = Cy. The graph G is edge minimally
robber-win if and only if k = 5.

Proof. Let G be edge minimally robber-win, assume that G is a cycle. If
G was either C3 or Cy4, then G would be disconnected which implies that
G would not be edge minimally robber-win.

If G is Cs then G is also Cs. By Example 4.1 C5 is edge minimally
robber-win.

If G is C) for some k > 6, suppose we add an edge in G that creates a
3-cycle and a (k — 1)-cycle but since k > 6, this is not a 4-cycle. Since a
new 4-cycle is not created this prevents the addition of any new retractions.

Therefore if G = Cy, then G is edge minimally robber-win if and only
ifk=5. O
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Lemma 4.6. Let G be edge minimally robber-win and assume that G has
no isolated edges. Then the degree of each vertex in G with n vertices is at
least 2. Equwalently, the maximum degree of a verter in G is n — 3.

Proof. Let G be edge minimally robber-win and assume that G has no
isolated edges. We know G must be connected from Lemma 4.4. By [8,
Lemma 4.11] G does not have any corners (which implies no dominating
vertex) and so G does not have any leaves or isolated vertices. Therefore,
each vertex in G must have degree at least 2. Equivalently the maximum
degree of a vertex in G is n — 3. i

Theorem 4.7. Let G be edge minimally robber-win where G contains no
isolated edges. Then the diameter of G is at most 8.

Proof. Let G be edge minimally robber-win where G contains no isolated
edges and assume that the diameter of G is k > 4. Suppose u and v are
vertices in G such that the shortest distance between u and v in G is k.
Since G is edge minimally robber-win, adding any edge in G will make a
retraction possible. However, if an edge was added to connect vertex u and
v we have a new cycle of length k+1 > 5. This means a new 4-cycle was not
introduced. Therefore the addition of the edge in G must make it possible
for either u or v to retract onto another vertex. Without loss of generality,
suppose vertex u retracts onto another vertex z in G. By Lemma 3.2 it
follows that the distance from u to z is 2. However, since u does not retract
onto vertex z without the addition of the edge wuv it follows that v must be
a neighbor of z in G. Now since the distance from « to z is 2 in G, and v
is adjacent to = in G, there is a path from u to v in G which has length 3.
This contradicts the fact that the length of the shortest path from u to v
in G is at least 4. Therefore, the diameter of G is at most 3. (]

Theorem 4.8. Let G be edge minimally robber-win where G contains no
isolated edges. If the diameter of G is 2, then the radius of G must also be
2. In other words, G is 2-self-centered.

Proof. Let G be edge minimally robber-win where G contains no isolated
edge and assume that G has diameter 2. By Theorem 4.4 it follows that G
is connected and so if G has radius 1, then there exists a vertex u such that
u is adjacent to all of the other vertices in G. This means that u is isolated
in G, contradicting the fact G is edge minimally robber-win. Therefore, the
radius of G must be 2. Furthermore, it also follows that the eccentricity
of each vertex is 2, since the diameter of G is 2, and so G is self-centered.
Therefore G is 2-self-centered. i3
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There is a characterization of 2-self-centered graphs in [10] which has
not yet yielded any counter-examples to Conjecture 4.14 in [8].

5 CONCLUSION: Wanted Dead or Alive

The research of this paper offers a few avenues of further investigation into
cops and robbers. It appears that edge maximally robber-win graphs and
edge minimally robber-win graphs are difficult to characterize and both
merit more research. In particular the following questions should lead to
further research.

e What is the characterization of edge maximally robber-win graphs?
What is the characterization of edge minimally robber-win graphs?

e In [8] the author investigates several other operations on graphs. Can
our method of looking at the complement help characterize different
kinds of turncoat graphs?

e We show that the diameter of an edge minimally robber-win graph is
at most three in Theorem 4.7. Is it possible to show that the diameter
is 27

e Can we use the diameter to prove or find a counterexample to Con-
jecture 4.14 from [8]?

e Does the characterization of 2-self-centered graphs in [10] lead to
counterexamples of any conjectures in [8]?
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Appendix A

The following code can be implemented in Sage version 8.9 [11] in order
to check whether the complement of a graph is the complement of an edge
maximally robber-win graph.

1 import numpy as np

2 #The function Is.mrw(L) takes a list of edges of the complement of a
graph as input

3 def Ismrw(L):

4 G = Graph(L)

5 H = G.adjacency_matrix ()

6 G.show()

7 M = H.numpy()

8 #define Matrix

9 adjMatrixMC =M

10 edgecount = int(np.amm(adjMatrixMC)/2)

11 resultsl =0

12

13 def retract(vertex,adjmat):

14 #delete row

15 adjmat = np.delete(adjmat, vertex, axis = 0)
16 #delete colummn

17 adjmat = np.delete (adjmat, vertex , axis = 1)
18 return adjmat

19

20 def rwCheck(adjMatrix):

21 #define List of Retractions

22 retractList = []

23 vertexNames = []

24 adj2Matrix = []

25 copwin = 0

26 robberwin = 0

27 for i in range(0,len(adjMatrix)):

28 vertexNames . append (i)

29 while (copwin = = 0 and robberwin = = 0):
30 rows = len(adjMatrix)

31 leaf = 0

32 #check for isolated vertex

33 for i in range(0, rows):

34 if adjMatrix[i].eam() == 0:

35 copwin = 1

36 break
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37
38
39
40
41
42
43
44
45

46
47
48

49
50

51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69

70

71

#check for leaves (pruning)
if (copwin = = 0 and robberwin = = 0):
adj2Matrix = adjMatrix.dot(adjMatrix)
for i in range(0, rows):
find = False
if adjMatrix[i].emm() == 1:
for j in range(0, rows):
#The following removes K2 edges
if (adjMatrix[i,j] = =1 and adjMatrix[]
]Jam() == 1 and
len(adjMatrix)>2):
#deletes vertex i
adjMatrix = retract(mex([i,j]),

adjMatrix)

#deletes vertex j

adjMatrix = retract(mim([i,j]),
adjMatrix)

leaf =2

find = True

break

elif adj2Matrix[i,j] ==1and i! =j:
adjMatrix = retract(j,adjMatrix)

leaf = 1
find = True
break
if find:
break

#check for 4—cycles
if (leaf == 0 and (copwin = = 0 and robberwin = = 0)):
for i in range(0, rows):
find = False
for j in range(0, rows):
if (i ==rows-1and j = = rows—1):
robberwin = 1
#If it finds a 4 cycle then it looks at the
neighborhoods
elif (adj2Matrix[i][j] >= 2 and adjMatrix[i
Ili]==0and i> j):
if np.absolute (np.am(adjMatrix[i}-
adjMatrix[j])) = = np.emm(np.absolute (adjMatrix[ i}-adjMatrix[j
D):
if np.samm(adjMatrix[i]—adjMatrix[j])
>= 0:
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72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

91
92
93
94
95
96
97
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112

adjMatrix = retract(i,adjMatrix)

else:
adjMatrix = retract(j,adjMatrix)
find = True
break
if find:
break
return copwin

#checks for original copwin/robber win

results1 = rwCheck(adjMatrixMC)

def deleteEdge(matrx,c,d):
deletedEdgeMatrix = matrx
deletedEdgeMatrix[c][d] = 0
deletedEdgeMatrix[d][c] = 0
return deletedEdgeMatrix

#this will count how many times an edge was deleted below
countMe = 0
delAdjMatrix = [0,0]
if resultsl == 0:
for a in range(0, len(adiMatrixMC)):
findbreak = False
for b in range(0, len(adjMatrixMC)):
if (a> b and adjMatrixMC[a][b] == 1):
countMe = countMe + 1
#only need to check half of adjacency matrix by
deleting an edge
delAdjMatrix = deleteEdge (adjMatrixMC, a,b)
resultsl = rwCheck(delAdjMatrix )
#reset delAdjMatrix to = adjMatrix
delAdjMatrix[a][b] =1
delAdjMatrix[b][a] = 1

if resultsl == 0:
findbreak = True
break

if findbreak:
break

if (countMe = = edgecount and resultsl == 1):
print(“Maximally Robber Win!!!!")

else:
print ("Not Maximally Robber-Win”)
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