Extremal Problems in Royal Colorings of
Graphs

I Akbar Ali, ?Gary Chartrand,
2 James Hallas and ?Ping Zhang

I University of Management and Technology
Sialkot 51310, Pakistan
I College of Sciences, University of Hail
Hail, Saudi Arabia

2 Western Michigan University
Kalamazoo, Michigan 49008, USA
Email: ping.zhang@wmich.edu

Dedicated to Gary MacGillivray
on the Occasion of his 60th Birthday

Abstract

An edge coloring ¢ of a graph G is a royal k-edge coloring
of G if the edges of G are assigned nonempty subsets of the
set {1,2,...,k} in such a way that the vertex coloring obtained
by assigning the union of the colors of the incident edges of
each vertex is a proper vertex coloring. If the vertex coloring is
vertex-distinguishing, then c is a strong royal k-edge coloring.
The minimum positive integer £ for which G has a strong royal
k-edge coloring is the strong royal index of G. It has been con-
jectured that if G is a connected graph of order n > 4 where
2k—1 < n < 2k — 1 for a positive integer k, then the strong
royal index of GG is either k£ or £+ 1. We discuss this conjecture
along with other information concerning strong royal colorings
of graphs. A sufficient condition for such a graph to have strong
royal index k + 1 is presented.
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1 Introduction

During the past several years, a number of edge colorings (or edge labelings)
have been introduced that give rise to vertex colorings that are either proper
or vertex-distinguishing (see [1, 2, 3, 7], for example). Many of these are
discussed in the books [6, 9]. We discuss two of these colorings here. For
a connected graph G of order 3 or more and a positive integer k, let ¢ :
E(G) — [k] = {1,2,...,k} be an unrestricted edge coloring of G, that is,
adjacent edges of G may be assigned the same color. We write P*([k]) for
the set consisting of the 2 — 1 nonempty subsets of [k]. The edge coloring
¢ gives rise to the vertex coloring ¢’ : V(G) — P*([k]) where ¢/(v) is the set
of colors of the edges incident with v. If ¢/ is a proper vertex coloring of G,
then c is a majestic k-edge coloring and the minimum positive integer k
for which G has a majestic k-edge coloring is the majestic index maj(G)
of G. If ¢ is wertex-distinguishing (that is, ¢/(u) # ¢'(v) for every two
distinct vertices u and v of G), then c is a strong majestic k-edge coloring
and the minimum positive integer k for which G has a strong majestic
k-edge coloring is the strong majestic index smaj(G) of G. Majestic edge
colorings were introduced by Gyori, Horndk, Palmer, and Woznick [10]
under different terminology and studied further in [12, 13]. Strong majestic
edge colorings were introduced by Harary and Plantholt [11] in 1985, also
using different terminology, and studied further by others (see [9, 14, 15]).

While an edge coloring ¢ of a graph G typically uses colors from the set
[k] for some positive integer k resulting in c(e) = i for some i € [k], we might
equivalently define c(e) = {i} as well. Expressing the edge coloring c in this
way results in both ¢ and the induced vertex coloring ¢’ assigning subsets
of [k] to the edges as well as the vertices of G. Furthermore, expressing c in
this manner suggests the idea of studying edge colorings ¢ where both ¢ and
its derived vertex coloring ¢’ assign nonempty subsets of [k] to the elements
(edges and vertices) of a graph G such that the color assigned to an edge
of G by c is not necessarily a singleton subset of [k]. This observation gives
rise to the primary concepts of this paper, namely royal and strong royal
colorings, which were introduced in [8].

For a positive integer k, let P*([k]) denote the collection of the 2¢ — 1
nonempty subsets of the set [k]. For a connected graph G of order 3 or more,
an edge coloring ¢ : E(G) — P*([k]) of G is a royal k-edge coloring if the
vertex coloring ¢’ : V(G) — P*([k]) defined by ¢/(v) = U, ¢, c(e), where E,
is the set of edges of G incident with v, is proper, that is, adjacent vertices
are assigned distinct colors. The minimum positive integer k for which G
has a royal k-edge coloring is the royal index of G, denoted by roy(G). If
¢’ is vertex-distinguishing, then c is a strong royal k-edge coloring of G.
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The minimum positive integer k for which G has a strong royal k-edge
coloring is the strong royal index of G, denoted by sroy(G). Therefore, royal
colorings are generalizations of majestic edge colorings and strong royal
colorings are generalizations of strong majestic colorings. This concept
was independently introduced and studied in [4, 8]. While there are many
connected graphs G for which sroy(G) # smaj(G), we know of no graph G
for which roy(G) # maj(G). Consequently, our emphasis here is on the
strong royal indexes of graphs. If G is a connected graph of order n > 4,
there is a unique integer £ > 3 such that 2k—=1 < n < 28 _ 1. We now
present several useful observations made in [4, 8].

Observation 1.1 If G is a connected graph of order n > 4 where 2871 <
n < 2k — 1, then sroy(G) > k.

Observation 1.2 If G is a connected graph of order 4 or more, then
sroy(G) < 1+ min{sroy(H) : H is a connected spanning subgraph of G}.

In particular, sroy(G) < 1+ min{sroy(T) : T is a spanning tree of G}.

It was shown in [4] that if G is a connected graph of order n > 4 where
2k—1 < n < 2k — 1, then sroy(G) < k + 2. Furthermore, it was conjectured
in [8] that the strong royal index of every connected graph of order n > 4
where 25—1 < n < 2k _1 is either k or k4 1. This gives rise to the following
concepts. A connected graph G of order n > 3 where 25" <n < 2f—-1lisa
royal-zero graph if sroy(G) = k and is a royal-one graph if sroy(G) = k + 1.
Therefore, the conjecture on the strong royal index can be rephrased as
follows.

Conjecture 1.3 FEvery connected graph of order at least 4 is either royal-
zero or royal-one.

By Observation 1.2, the strong royal indexes of trees play an important
role in the study of strong royal indexes of connected graphs. It was con-
jectured in [8] that every tree of order n > 4 where 25~! <n < 2% —1 has
strong royal index k£ and consequently is royal-zero. This conjecture can
therefore be rephrased in terms of royal-zero graphs.

Conjecture 1.4 FEwvery tree of order at least 4 is royal-zero.

Conjecture 1.4 has been verified for trees of small order (order 10 or
less), all paths, all complete binary trees, all caterpillars of diameter 4 or
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less as well as some specialized trees (see [4, 8]). By Observation 1.2, it
follows that if Conjecture 1.4 is true, then Conjecture 1.3 is true as well.
While the strong royal index of each cycle was stated in [4], we illustrate
the concepts described above by providing a proof that describes in each
case an appropriate edge coloring.

Theorem 1.5 For every integer n > 3,
1+ [loge(n+1)] ifn=3,7
Nog(n+1)]  ifn#3,7.

That is, if C, is a cycle of length n > 3 where 251 < n < 2F — 1 for
some integer k, then sroy(C,) = k unless n = 3 or n = 7, in which case,
sroy(C3) = 3 and sroy(C7) = 4.

sroy(Cp) = {

Proof. Letk = [logy(n+1)] > 2. Then 25~! < n < 2¥—1. We show that
sroy(C3) = 3, sroy(C7) = 4, and sroy(C,,) = k if n # 3,7. Figure 1 shows a
strong royal 3-edge coloring of C3 and a strong royal 4-edge coloring of C7,
which shows that sroy(C3) < 3 and sroy(C7) < 4. (For simplicity, we write
the set {a} as a, {a,b} as ab, and {a,b,c} as abc.) If sroy(Cs3) = 2, then
because |P*([2])] = 3, there are vertices of C3 colored 1 and 2, implying
that two edges of C3 are colored with each of these two colors, which is
impossible. If sroy(C7) = 3, then because |P*([3])| = 7, there are vertices
of C7 colored 1, 2, and 3, implying that two edges of C7 are colored with
each of these three colors. Regardless of how the seventh edge of C7 is
colored, the resulting set of vertex colors is not P*([3]). Consequently,
sroy(Cs) = 3 and sroy(C7) = 4. By Observation 1.1, it suffices to show
that C,, has a strong royal k-edge coloring if n # 3, 7. Figure 1 also shows a
strong royal 3-edge coloring for each of Cy4, Cs, and Cg and so sroy(C,) = 3
for n=4,5.6.

Next, suppose that n > 8, where 21 < n < 2k — 1 for a unique
integer £k > 4. We show that C,, has a strong royal k-edge coloring by
considering two cases, depending on whether n is even or n is odd. Let
P, = (v1,vs,...,v,) where e; = v;u;41 for 1 <i<n-—1.

Case 1. n > 8 is even. Figure 2 shows a strong royal 4-edge coloring
for each of Cg, Cjg, and Cj2 and so sroy(C,,) = 4 for n = 8,10, 12.

Thus, we assume that n = 2r > 14 where » > 7 is an integer such that
2k-2 < 7 < 2k-1 1. Ifr = 7, then k — 1 = 3; while if 8 < r < 15,
then £k — 1 = 4. A strong royal (k — 1)-edge coloring ¢ for each path P,
(7 £ r < 15) is shown in Figure 3.

For 7 < r <15, let B = (viyvs,...,9,.) and let PF = (ui, i, 00, 8p)-
The path P,,. is constructed from P, and P} by adding the edge v, u,
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Figure 1: Strong royal colorings of C,, where 3 <n <7

and the cycle Cs, is constructed from P, by adding the edge viu;. The
edge coloring c is extended (1) to an edge coloring c of P, by defining
c(usuip1) = c(vivi1) U {k} (where k =4 if r =7 and k=5 if 8 <r < 15)
for1 <1 < r—1and ¢(v,u,) = ¢(v,—1v,) and (2) to an edge coloring c of Cs,.
by defining c¢(vju,) = ¢(v1v2) in addition. In this manner, no vertex of P,
is colored {k}. Since this edge coloring is a strong royal k-edge coloring
of Cy,, it follows that sroy(Ps,) = sroy(Cs,) = k for 7 < r < 15, where
k=4ifr=7and k=5 if 8 < r < 15. Figure 4 shows the construction of
a strong royal 4-edge coloring of Cy4 from the paths P; and P;.

For each such path P, (7 < r < 15), we construct the path P, 4,
by adding a new vertex up and the edge uou; and coloring the edge uou,
by {k}, where k = 4ifr = 7and k = 5if 8 < r < 15. Then ug is colored {k},
resulting in a strong royal k-edge coloring of P;,.; for 7 < r < 15. Next, we
repeat this procedure by beginning with the paths P4, P;s5, ..., Pa;; that
is, we use Py4 to create a strong royal 5-edge coloring of Cag (where r = 14)
and use Pjs5, Pis, - . ., P31 to create a strong royal 6-edge coloring of Csy, for
15 < r < 31. Continued repetition of this procedure gives the desired result
for all even cycles. Therefore, sroy(C,,) = k for all even integers n > 4 with
2k-l<pn<g2k—1,

Case 2. n > 9 is odd. Figure 5 shows a strong royal 4-edge coloring for
each of Cy, Cy1, and Cj3 and so sroy(C,,) = 4 for n = 9,11,13. Thus, we
assume that n = 2r + 1 > 15, where r > 7.

For each path P,, thereis a subpath Q = (v;, v;41, Vi42,¥;43), Where 3 <
i <i+4 < rsuch that ¢/(v;y1) = {1, 2}, c(vip1vit2) = {2}, and ¢/ (viy2) =
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Figure 2: Strong royal 4-edge colorings of C,, for n = 8, 10,12

{2}. From the manner in which each even cycle C,, was constructed and
a strong royal k-edge coloring ¢ of Cs, was defined in Case 1, the path
Q* = (u,—, Ui41, Ui42, u,-+3) isa subapth in C2,. such that c’(u¢+1) = {1, 2, k},
c(uip1uire) = {2, k}, and ¢'(uiy2) = {2, k}. Furthermore, ¢’(z) # {k} for
each vertex z of Cz,. We now construct the cycle Cy,41 from C,,. by
deleting the edge u;y1u;42 from Cs, and adding a new vertex u along with
the two new edges u;;1u and uu;y2. We define an edge coloring c of Cy,. 1
from the strong royal k-edge coloring ¢ of Cj, (as described in Case 1)
by assigning the color {k} to the edges u;;1u and uu; 2 where the colors
of remaining edges of Cy,; are the same as in Ca,. Thus, ¢/(u) = {k}
and ¢/(z) is the same as in Cj, for all other vertices = of Cy,.,;. Figure 6
shows the construction of such a strong royal 4-edge coloring of C;5 from
the strong royal 4-edge coloring of C14 of Figure 4. Since this edge coloring
is a strong royal k-edge coloring of Cs,.4, it follows that sroy(C,,) = k for
all odd integers n > 3 with 2¥~1 < n < 2* — 1 with the exception of n = 3
and n = 7. ]

It is therefore a consequence of Theorem 1.5 that C3 and C7 are royal-
one but all other cycles are royal-zero.

2 Classes of Royal-Zero & Royal-One Graphs

In this section we determine some classes of graphs that are royal-zero or
royal-one. For complete graphs, the following result was obtained in (8].
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Figure 3: Strong royal (k — 1)-edge colorings of P, for 7<r <15
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Figure 4: Constructing a strong royal 4-edge coloring of Ci4

Proposition 2.1 For an integer n > 4, the complete graph K,, is a royal-
zero graph if n is a power of 2 and royal-one otherwise.

We now consider the effect that certain operations can have on graphs
that are royal-zero or royal-one. The corona cor(G) of a graph G is that

graph obtained from G by adding a pendant edge at each vertex of G.
Thus, if the order of G is n, then the order of cor(G) is 2n. The strong

royal index of cor(G) never exceeds sroy(G) by more than 1.
Proposition 2.2 If G is a connected graph of order n > 4, then
sroy(cor(G)) < sroy(G) + 1.

Consequently, if G is a royal-zero graph, then so is cor(G).

Proof. Let V(G) = {v,vs,...,v,} and let H = cor(G) be obtained from
G by adding the pendant edge u;v; at v; for 1 < ¢ < n. Suppose that
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Figure 5: Strong royal 4-edge colorings of C,, for n = 9, 11,13
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Figure 6: Constructing a strong royal 4-edge coloring of Cy5

sroy(G) = k. Then there is a strong royal k-edge coloring c¢ : E(G) —
P*([k]) of G. Define an edge coloring cy : E(H) — P*([k +1]) by

en(e) = { cc(e)U{k+1} ifee E(G)

ce (v;) ife=wuv; for1 <i<n.
Then the induced vertex coloring ¢/, is given by
¢y (us) = cg(vi) and iy (v;) = cp(v;) U{k+1} for 1 < i < n.

Since ¢}, is vertex-distinguishing, it follows that cy is a strong royal (k+1)-
edge coloring of cor(G) and so sroy(H) < k+ 1 = sroy(G) + 1.

If G is a connected royal-zero graph of order n > 4 where sroy(G) = k,
say, then 25~1 < n < 2¥_1. Since cor(Q) is a connected graph of order 2n >
8 where 2% < 2n < 2k+1 — 2, it follows that sroy(cor(G)) > k + 1. On the
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other hand, there is a strong royal (k£ + 1)-edge coloring of cor(G) and so
sroy(cor(G)) = k + 1, which implies that cor(G) is royal-zero as well. =

A tree T is called cubic if every vertex of 1" that is not an end-vertex has
degree 3. The following result makes use of the proof of Proposition 2.2.

Corollary 2.3 If T is a cubic caterpillar of order at least 4, then T 1s
royal-zero.

Proof. Let T be a cubic caterpillar. Since the statement is true if T
has four vertices, we may assume that 7" has six or more vertices. For an
integer n > 4 where 251 <n <2 -1, let H = P, = (v1,v2,...,V,) be
a longest path in T, where then diam(7) = n — 1 > 3 and the order of T
is 2n — 2. As noted earlier, it was shown in [8] that all paths of order 4
or more are royal-zero and so sroy(H) = k. Let u;v; be the pendant edges
at v; for 2 < 7 < n— 1. We consider two cases, according to whether
2k=1 « n < 25 — 1 orn = 2571, In the first case, we apply the same
procedure used in the proof of Proposition 2.2.

Case 1. 25! £ n < 2 _ 1. Then 2* € 2n—2 < 281 _ 1. Thus,
it suffices to show that sroy(7T") < k + 1. Since sroy(H) = k, there is a
strong royal k-edge coloring cg : E(H) — P*([k]). Define an edge coloring
er: E(T) - P*([k +1]) by

o cu(e)U{k+1} ifee€ E(H)
c =
ol cy (v3) ife=wuv;for2<i<n-1.

Then the induced vertex coloring ¢ is given by ¢(u;) = ¢y (v;) for 2 <
i <n—1and cp(v;) = cy(v;) U{k+ 1} for 1 <i < n. Since ¢/ is vertex-
distinguishing, it follows that cr is a strong royal (k+ 1)-edge coloring of T°
and sroy(T') < k+ 1. Thus, T is royal-zero.

Case 2. n = 28~1. Then 2n —2 = 2% —2. Here, we show that sroy(T) =
sroy(H) = k. First, we consider the case where n = 4 and £ = 3. A
strong royal 3-edge coloring ¢ of H = Py = (vq,v,v3,v4) is shown in
Figure 7, namely c(vive) = 1, c(vevs) = {1,2}, and c(vavy) = {1,3}.
Observe that the induced vertex colors of the vertices of H are all subsets
of [3] containing 1 and ¢'(v1) = {1}. The tree T is constructed from H
by attaching the pendant edges usve and ugvs to ve and vs, respectively.
The colors of u;v;, i = 2,3, are defined by c(u,;v;) = ¢/(v;) — {1}, which
results in a strong royal 3-edge coloring of 7". In the case where n = 8 and
k = 4, we begin with the path H = Py = (vy,v2,...,vs), where the edges
V1V, Vo¥3, v3v4 of Py are colored as in the case when n = 4, and define
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c(vgvs) = ¢/(v4) and c(v;vi41) = c(vg—ivo—;) U {4} for i = 5,6,7. Here
too, each edge color and induced vertex color contains 1 and ¢'(v;) = {1}.
The tree T in this case is constructed from H by attaching the pendant
edges u;v; for 2 < i < 7. The color of u;v; is defined by c(u;v;) = ¢/ (v;)—{1}
for 2 < 7 < 7, which results in a strong royal 4-edge coloring of T". This is
illustrated in Figure 7. Continuing in this manner gives the desired result. m

Figure 7: Constructing strong royal colorings of the cubic caterpillars

As stated in Proposition 2.2, if G is a connected graph of order 4 or
more, then sroy(cor(G)) < sroy(G) + 1, which implies that if G is a royal-
zero graph, then cor(G) is a royal-zero graph. On the other hand, it is
possible that G is a royal-one graph and cor(G) is a royal-zero graph. By
Proposition 2.1, every complete graph K,, where n is not a power of 2 is a
royal-one graph. Thus, if 2~1 + 1 < n < 2F — 1 for some integer k > 3,
then sroy(K,) = k + 1. If one were to assign distinct nonempty subsets
of [k] to the n pendant edges of cor(K,) and the color {k + 1} to the
remaining (;) edges of cor(K,), then we have a strong royal (k 4+ 1)-edge
coloring of cor(K,) and so sroy(cor(K,)) = k + 1. Therefore, cor(K,,) is a
royal-zero graph for each integer n > 5 where n is not a power of 2. For
a more interesting example, Figure 8 shows a strong royal 4-edge coloring
of cor(C7) and so sroy(cor(C7)) = sroy(C7) = 4 (by Theorem 1.5). Thus, C;
is royal-one, while cor(C7) is royal-zero.

A graph operation somewhat related to the corona of a graph G is the
Cartesian product of G with K,. In fact, we have the following result that
corresponds to Proposition 2.2.

Proposition 2.4 If G is a connected graph of order n > 4, then
sroy(G OO0 K3) < sroy(G) + 1.

Consequently, if G is a royal-zero graph, then G 1 K> is a royal-zero graph.
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Figure 8: A strong royal 4-edge coloring of cor(C7)

Proof. Let G be a connected graph of order n > 4 where sroy(G) = k for
some positive integer k. Let H = G O K> where G; and G2 are the two
copies of G. Suppose that V(G;) = {u1,ug,...u,} where u; is labeled v;
in G2. Thus, V(GQ) = {vl,vg, s % ,vn} and E(H) = E(Gl)UE(GQ)U{uiU,' :
1 < i < n}. Since sroy(G) = k, there is a strong royal k-edge coloring cg, :
E(G1) — P*([k]) of G;. Define an edge coloring cyy : E(H) — P*([k+ 1])
by

ca, (e) if e € E(G1)
cuy(e) =< co,(uu;)U{k+1} ife=vv; € E(Gy)forl<i#j<n
ce, (u:) if e = for 1 <2 < n.

The induced coloring ¢} : V(H) — P*([k + 1]) is then given by ¢}y (u;) =
¢, (us) and ¢y (vi) = ¢, (u:) U {k + 1}. Since ¢, is vertex-distinguishing,
it follows that ¢, is a strong royal (k + 1)-edge coloring of H. Thus,
sroy(H) < k+ 1 = sroy(G) + 1. Therefore, if G is a royal-zero graph, then
G [0 K, is a royal-zero graph. =

The hypercube Q. is Ko if kK = 1, while for k > 2, Q is defined re-
cursively as the Cartesian product Qr_; [0 Ko of Qx_; and K. Since
Q2 = C4 is royal-zero by Theorem 1.5, the following is a consequence of
Proposition 2.4.

Corollary 2.5 For each integer k > 2, the hypercube Qr is a Toyal-zero
graph.

As stated in Proposition 2.4, if G is a royal-zero graph, then G [0 K is
a royal-zero graph. On the other hand, it is possible that G is a royal-one
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graph and G [0 K, is a royal-zero graph. To see an example of this, we
return to the 7-cycle C7, which we saw (in Theorem 1.5) is a royal-one
graph. Figure 9 shows a strong royal 4-edge coloring of C7 [0 K> and so
sroy(C7) = sroy(C7 O K3) = 4 . Thus, C7 is royal-one, while C7 0 K
is royal-zero. As mentioned in Proposition 2.1, the complete graphs K
and Kg are royal-one graphs. For these two graphs G, the graphs G O K>
are royal-zero; that is, sroy(Ks O K2) = sroy(Ks 0 K2) = 4. A strong
royal 4-edge coloring ¢ of H = Kg [0 K> can be defined as follows. Let
H, and H; be two copies of K¢ in H, where V(H;) = {u;,us,...us} and
V(H2) = {v1,v2,...v6} such that w,v; € E(H). First, we define the vertex-
distinguishing coloring ¢’ : V(H) — P*([4]) by

¢(u1) = {1,4}, ¢(ug) = {1}, /(us) = {1,2,4},
d(uq) = {1,2,3}, /(us) = {1,3}, ¢/(us) = {1,2},
¢ (v1) = {4}, ¢'(v2) = {1,3,4}, c'(vs) = [4],
¢ (va) = {2,4}, ¢(vs) = {3,4}, ¢'(ve) = {2,3,4}.
The edge coloring ¢ : V(H) — P*([4]) is then defined by c¢(zy) = ¢/'(z)Nc'(y)

for each edge zy € E(H). Since ¢’ is the induced vertex coloring of ¢, it
follows that c is a strong royal 4-edge coloring of H. Thus, H is royal-zero.

Figure 9: A strong royal 4-edge coloring of C; [0 K,

As noted in Proposition 2.1, the complete graph K7 is also a royal-
one graph. However, H = K7 [0 K is royal-one as well. That there
is a strong royal 5-edge coloring of H is straightforward. To show that
sroy (K7 O K2) = 5, however, it is necessary to show that there is no strong
royal 4-edge coloring of H, for assume that such an edge coloring ¢ of H
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exists. Since the order of H is 14, the induced vertex colors of H must
consist of 14 elements of P*([4]). In particular, at least three of the four
singleton subsets of [4] must be vertex colors of H. Suppose that H; and Hs
are the two copies of K7 in the construction of H. Therefore, at least one
of H; and H, has at least two singleton subsets as its vertex colors, say
¢’(u1) = {1} and ¢'(u2) = {2} where u;,us € V(H;), which is impossible
since u; and us are adjacent. Hence, sroy(K7 [0 K2) = 5.

3 Conditions for Royal-One Graphs

We have seen that many graphs are royal-zero graphs. We now present a
sufficient condition for a connected graph G of order n > 4 to be a royal-one
graph. Let k be the unique integer such that 2~ < n < 2¥—1. A graph G,
of order 2¥ — 1 is now constructed as follows. The vertices of G are labeled
with the 2F —1 distinct elements of P* ([k]). For each vertex v of G, let £(v)
denote its label. Thus, {¢(v) : v € V(Gk)} = P*([k]). Two vertices u and v
of G are adjacent in Gy if and only if £(u)Né(v) # 0. The vertex set V(Gy)
is partitioned into k subsets V}, V,,..., Vi where V; = {v € V(Gy) : [{(v)| =
i} for 1 < ¢ < k. Therefore, Gi[Vi] = K; and Gi[V1] = K is empty. If
k=2p+1isodd, then G [Vpq1UVpy2U---UVi] = Kox—1. If k=2p is
even, then let V] be the subset consisting of those elements S in V,, for which
1€ S. Then [V} = (%) and Gk [V UV, UV U-- U Vi] = Koeos.
Let my be the size of G;.. The graph G5 of order 7 = 22 —1 has size m3 = 15
and is shown in Figure 10.

Figure 10: The graph G5 of order 7 = 22 — 1 and size ms = 15

There is an immediate condition under which a connected graph cannot
be a royal-zero graph. As we mentioned earlier, it was shown in [4] that
G is a connected graph of order n > 4 where 2571 < n < 2% — 1, then
sroy(G) < k + 2.
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Observation 3.1 Let G be a connected graph of order n > 4 and size m
where 25—1 < n < 28 — 1 for an integer k. If G is not a subgraph of the
graph Gy, then either sroy(G) = k+1 or sroy(G) = k+ 2, and so G is not
a royal-zero graph. Consequently, if m > my +1, then G is not a royal-zero
graph.

Since sroy(T) = 3 for each tree T of order n where 4 < n < 7, it
follows by Observation 1.2 that if G is a connected graph of order n where
4 < n < 7, then sroy(G) is either 3 or 4. If G is a connected graph of
order 7 that is not isomorphic to a subgraph of G3 of Figure 10, then
sroy(G) # 3 and so sroy(G) = 4. Since the size of G3 is 15, it follows that
if G is a connected graph of order 7 with size at least 16, then sroy(G) = 4.
Figure 11 shows the graphs Hy, Hs, and Hg of order 4, 5, and 6, respectively,
of greatest size that are subgraphs of G3. For each graph H; where ¢ =
4,5,6, if every edge uv of H; is assigned the color c(uv) = £(u) Né(v), then
c(v) = U.e Biy, (v) c(e) = £(v), resulting in a strong royal 3-edge coloring
of H;. Hence, sroy(H;) = 3 for i = 4,5,6. The graph Hy = K,, while Hy
has size 9 and Hg has size 12. So, if G is a connected graph of order 5
whose size is at least 10 (that is, G = K5) or if G is a connected graph of
order 6 whose size is at least 13, then sroy(G) = 4.

(>

H
4 Hy

Figure 11: Subgraphs of G3

By Observation 3.1, if G is a connected graph of order n > 4 and size m
where 28~ < n < 2% — 1 such that m > my, which implies that G € Gy,
then sroy(G) > k+1. In fact, if G possesses any property that implies that
G € G, then sroy(G) > k+ 1. For example, if the order of Gisn = 2% —1
and §6(G) > 0(Gk) + 1 or G has more than one vertex of degree n — 1,
then sroy(G) > k + 1. On the other hand, even though C; C Ga (where
n =22—1and k = 3), |[E(C7)| = 7 < ma, and §(C7) < §(G3), we
saw that sroy(C7) = 4 = k + 1. Furthermore, for every chord e of C7,
sroy(C7 + e€) = 3 (see Figure 12). Consequently, even though one might
suspect that sroy(G+uwv) > sroy(G) for every connected graph G and every
pair u, v of nonadjacent vertices of G, such is not the case.
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Figure 12: Showing that sroy(C7 + e¢) = 3 for each e ¢ E(C7)

What we have seen is that if G is a connected graph of order n > 4
where 2k—1 < n < 2% — 1 having a sufficiently large size, then sroy(G) # k.
However, if G is a connected graph of order n > 4 where 25~1 < n < 2k —1
having a small size, then we are not guaranteed that sroy(G) = k. Indeed,
even the strong royal index of trees is in doubt.

If Conjecture 1.3 is true, then for every connected graph G of order
n > 4 where 25—1 < n < 2k — 1, either sroy(G) = k or sroy(G) = k + 1.
In order to present a sufficient condition for sroy(G) # k in terms of the
size and minimum degree of G, we describe an expression for the size my
of the graph G, (as it is easier in general to compare two numbers than
to determine whether a graph contains a subgraph isomorphic to a given
graph).

Recall that we label the 2k — 1 vertices of G with the distinct elements
of P*([k]). The label of each vertex v of Gy is denoted by £(v) and so
{¢(v) : v € V(Gk)} = P*([k]). Let {V1,V%,...,Vi} be the partition of
of V(Gy) described earlier, where then V; = {v € V(Gy) : |{(v)| = ¢} for
1 <i<k Let v eV, for some integer ¢ with 1 <7 < k. Then ¢(v) = S
is some i-element subset of [k]. There are 2° — 1 nonempty subsets of S
and 2%—% subsets of [k] — S. For each nonempty subset S’ of S and each
subset T of [k] — S, the vertex v is adjacent to that vertex w of Gy for
which £(w) = S’ UT. Since v is not adjacent to itself, however, it follows
that degg, v = (2¢ — 1)2k—% — 1. Furthermore, there are (‘:) vertices in V;
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for 1 < ¢ < k. Therefore,

me = %Z: (':) [(28 —1)2x* —1] = %zk: (f) {2 —aF%_1)
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In particular, if & = 3, then the size of G3 is mg = 15, as we saw in
Figure 10.

Proposition 3.2 Let G be a graph of order n > 4 and size m where
2k—1 < < 28 —1 for some integer k > 3. If m > %(4’“—3’c —2k11), then
either sroy(G) = k+ 1 or sroy(G) = k + 2, and so G is not a royal-zero
graph.

For each integer k£ > 3, the minimum degree §(Gi) of the graph Gy
is 281 — 1. Consequently, if G is a graph of order n > 4 and size m
where 25—1 < n < 2% — 1 for which §(G) > 2¥~!, then it may occur that
m < my but yet G is not a subgraph of Gy, and so (by Observation 3.1)
sroy(G) > k + 1. However, in this case, more can be said. It is useful to
recall that every path P, for n > 4 is royal-zero (see [4, 8]).

Proposition 3.3 Let G be a connected graph of ordern > 4 where 25~1 <
n < 2k — 1 for some integer k > 2. If 3(G) > 2k~ then sroy(G) =k + 1
and so G is a royal-one graph.

Proof. We have already observed that sroy(G) > k + 1 for such a graph.
Since §(G) > 25~ 1 and n < 2 — 1, it follows that §(G) > (n + 1)/2 and
therefore G has a Hamiltonian path (in fact, a Hamiltonian cycle). Since
sroy(P,) = k for every path P, of order n, it follows by Observation 1.2
that sroy(G) < k + 1 and so sroy(G) = k + 1. (]

We have seen that both K7 and C7 (a spanning subgraph, or factor,
of K7) are royal-one graphs. The complement C; of C7 is a 4-regular graph
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of order 7 and so it is not a subgraph of the graph G3 shown in Figure 10.
Hence, C7 is also a royal-one graph. The size of C7 is 14 which is less
than the size 15 of G3 (the graph of order 7 having the maximum size
that is royal-zero). This brings up the problem of determining for each
integer » > 3, the minimum size of a graph of order n that is royal-one. Of
course, the minimum size is 7 when n = 7.

The graph C7 can itself be factored into two copies of C7. Therefore, the
royal-one graph K7 can be factored into three royal-one graphs. However,
K can also be factored into three graphs satisfying any of the following:
(1) all three factors are royal-zero, (2) exactly two factors are royal-zero, (3)
exactly one factor is royal-zero. Consequently, there is a host of additional
problems that arise with strong royal colorings of graphs.
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