Extremal Problems in Royal Colorings of Graphs

¹ Akbar Ali, ²Gary Chartrand, ² James Hallas and ²Ping Zhang

 University of Management and Technology Sialkot 51310, Pakistan
 College of Sciences, University of Hail Hail, Saudi Arabia

> ² Western Michigan University Kalamazoo, Michigan 49008, USA Email: ping.zhang@wmich.edu

Dedicated to Gary MacGillivray on the Occasion of his 60th Birthday

Abstract

An edge coloring c of a graph G is a royal k-edge coloring of G if the edges of G are assigned nonempty subsets of the set $\{1,2,\ldots,k\}$ in such a way that the vertex coloring obtained by assigning the union of the colors of the incident edges of each vertex is a proper vertex coloring. If the vertex coloring is vertex-distinguishing, then c is a strong royal k-edge coloring. The minimum positive integer k for which G has a strong royal k-edge coloring is the strong royal index of G. It has been conjectured that if G is a connected graph of order $n \geq 4$ where $2^{k-1} \leq n \leq 2^k - 1$ for a positive integer k, then the strong royal index of G is either k or k+1. We discuss this conjecture along with other information concerning strong royal colorings of graphs. A sufficient condition for such a graph to have strong royal index k+1 is presented.

1 Introduction

During the past several years, a number of edge colorings (or edge labelings) have been introduced that give rise to vertex colorings that are either proper or vertex-distinguishing (see [1, 2, 3, 7], for example). Many of these are discussed in the books [6, 9]. We discuss two of these colorings here. For a connected graph G of order 3 or more and a positive integer k, let c: $E(G) \to [k] = \{1, 2, \dots, k\}$ be an unrestricted edge coloring of G, that is, adjacent edges of G may be assigned the same color. We write $\mathcal{P}^*([k])$ for the set consisting of the 2^k-1 nonempty subsets of [k]. The edge coloring c gives rise to the vertex coloring $c':V(G)\to \mathcal{P}^*([k])$ where c'(v) is the set of colors of the edges incident with v. If c' is a proper vertex coloring of G, then c is a majestic k-edge coloring and the minimum positive integer kfor which G has a majestic k-edge coloring is the majestic index maj(G)of G. If c' is vertex-distinguishing (that is, $c'(u) \neq c'(v)$ for every two distinct vertices u and v of G), then c is a strong majestic k-edge coloring and the minimum positive integer k for which G has a strong majestic k-edge coloring is the strong majestic index smaj(G) of G. Majestic edge colorings were introduced by Györi, Horňák, Palmer, and Woźnick [10] under different terminology and studied further in [12, 13]. Strong majestic edge colorings were introduced by Harary and Plantholt [11] in 1985, also using different terminology, and studied further by others (see [9, 14, 15]).

While an edge coloring c of a graph G typically uses colors from the set [k] for some positive integer k resulting in c(e) = i for some $i \in [k]$, we might equivalently define $c(e) = \{i\}$ as well. Expressing the edge coloring c in this way results in both c and the induced vertex coloring c' assigning subsets of [k] to the edges as well as the vertices of G. Furthermore, expressing c in this manner suggests the idea of studying edge colorings c where both c and its derived vertex coloring c' assign nonempty subsets of [k] to the elements (edges and vertices) of a graph G such that the color assigned to an edge of G by c is not necessarily a singleton subset of [k]. This observation gives rise to the primary concepts of this paper, namely royal and strong royal colorings, which were introduced in [8].

For a positive integer k, let $\mathcal{P}^*([k])$ denote the collection of the 2^k-1 nonempty subsets of the set [k]. For a connected graph G of order 3 or more, an edge coloring $c: E(G) \to \mathcal{P}^*([k])$ of G is a royal k-edge coloring if the vertex coloring $c': V(G) \to \mathcal{P}^*([k])$ defined by $c'(v) = \bigcup_{e \in E_v} c(e)$, where E_v is the set of edges of G incident with v, is proper, that is, adjacent vertices are assigned distinct colors. The minimum positive integer k for which G has a royal k-edge coloring is the royal index of G, denoted by $\operatorname{roy}(G)$. If c' is vertex-distinguishing, then c is a strong royal k-edge coloring of G.

The minimum positive integer k for which G has a strong royal k-edge coloring is the strong royal index of G, denoted by $\operatorname{sroy}(G)$. Therefore, royal colorings are generalizations of majestic edge colorings and strong royal colorings are generalizations of strong majestic colorings. This concept was independently introduced and studied in [4, 8]. While there are many connected graphs G for which $\operatorname{sroy}(G) \neq \operatorname{smaj}(G)$, we know of no graph G for which $\operatorname{roy}(G) \neq \operatorname{maj}(G)$. Consequently, our emphasis here is on the strong royal indexes of graphs. If G is a connected graph of order $n \geq 4$, there is a unique integer $k \geq 3$ such that $2^{k-1} \leq n \leq 2^k - 1$. We now present several useful observations made in [4, 8].

Observation 1.1 If G is a connected graph of order $n \ge 4$ where $2^{k-1} \le n \le 2^k - 1$, then $\operatorname{sroy}(G) \ge k$.

Observation 1.2 If G is a connected graph of order 4 or more, then $sroy(G) \le 1 + min\{sroy(H) : H \text{ is a connected spanning subgraph of } G\}.$ In particular, $sroy(G) \le 1 + min\{sroy(T) : T \text{ is a spanning tree of } G\}.$

It was shown in [4] that if G is a connected graph of order $n \geq 4$ where $2^{k-1} \leq n \leq 2^k - 1$, then $\operatorname{sroy}(G) \leq k + 2$. Furthermore, it was conjectured in [8] that the strong royal index of every connected graph of order $n \geq 4$ where $2^{k-1} \leq n \leq 2^k - 1$ is either k or k+1. This gives rise to the following concepts. A connected graph G of order $n \geq 3$ where $2^{k-1} \leq n \leq 2^k - 1$ is a royal-zero graph if $\operatorname{sroy}(G) = k$ and is a royal-one graph if $\operatorname{sroy}(G) = k + 1$. Therefore, the conjecture on the strong royal index can be rephrased as follows.

Conjecture 1.3 Every connected graph of order at least 4 is either royal-zero or royal-one.

By Observation 1.2, the strong royal indexes of trees play an important role in the study of strong royal indexes of connected graphs. It was conjectured in [8] that every tree of order $n \geq 4$ where $2^{k-1} \leq n \leq 2^k - 1$ has strong royal index k and consequently is royal-zero. This conjecture can therefore be rephrased in terms of royal-zero graphs.

Conjecture 1.4 Every tree of order at least 4 is royal-zero.

Conjecture 1.4 has been verified for trees of small order (order 10 or less), all paths, all complete binary trees, all caterpillars of diameter 4 or

less as well as some specialized trees (see [4, 8]). By Observation 1.2, it follows that if Conjecture 1.4 is true, then Conjecture 1.3 is true as well. While the strong royal index of each cycle was stated in [4], we illustrate the concepts described above by providing a proof that describes in each case an appropriate edge coloring.

Theorem 1.5 For every integer $n \geq 3$

$$\operatorname{sroy}(C_n) = \left\{ \begin{array}{ll} 1 + \lceil \log_2(n+1) \rceil & \text{ if } n = 3,7 \\ & \lceil \log_2(n+1) \rceil & \text{ if } n \neq 3,7. \end{array} \right.$$

That is, if C_n is a cycle of length $n \geq 3$ where $2^{k-1} \leq n \leq 2^k - 1$ for some integer k, then $sroy(C_n) = k$ unless n = 3 or n = 7, in which case, $\operatorname{sroy}(C_3) = 3$ and $\operatorname{sroy}(C_7) = 4$.

Proof. Let $k = \lceil \log_2(n+1) \rceil \ge 2$. Then $2^{k-1} \le n \le 2^k - 1$. We show that $\operatorname{sroy}(C_3) = 3$, $\operatorname{sroy}(C_7) = 4$, and $\operatorname{sroy}(C_n) = k$ if $n \neq 3, 7$. Figure 1 shows a strong royal 3-edge coloring of C_3 and a strong royal 4-edge coloring of C_7 , which shows that $\operatorname{sroy}(C_3) \leq 3$ and $\operatorname{sroy}(C_7) \leq 4$. (For simplicity, we write the set $\{a\}$ as a, $\{a,b\}$ as ab, and $\{a,b,c\}$ as abc.) If $sroy(C_3)=2$, then because $|\mathcal{P}^*([2])| = 3$, there are vertices of C_3 colored 1 and 2, implying that two edges of C_3 are colored with each of these two colors, which is impossible. If $\text{sroy}(C_7) = 3$, then because $|\mathcal{P}^*([3])| = 7$, there are vertices of C_7 colored 1, 2, and 3, implying that two edges of C_7 are colored with each of these three colors. Regardless of how the seventh edge of C_7 is colored, the resulting set of vertex colors is not $\mathcal{P}^*([3])$. Consequently, $\operatorname{sroy}(C_3) = 3$ and $\operatorname{sroy}(C_7) = 4$. By Observation 1.1, it suffices to show that C_n has a strong royal k-edge coloring if $n \neq 3, 7$. Figure 1 also shows a strong royal 3-edge coloring for each of C_4, C_5 , and C_6 and so $\text{sroy}(C_n) = 3$ for n = 4, 5, 6.

Next, suppose that $n \geq 8$, where $2^{k-1} \leq n \leq 2^k - 1$ for a unique integer $k \geq 4$. We show that C_n has a strong royal k-edge coloring by considering two cases, depending on whether n is even or n is odd. Let $P_n = (v_1, v_2, \dots, v_n)$ where $e_i = v_i v_{i+1}$ for $1 \le i \le n-1$.

Case 1. $n \geq 8$ is even. Figure 2 shows a strong royal 4-edge coloring for each of C_8 , C_{10} , and C_{12} and so $\text{sroy}(C_n) = 4$ for n = 8, 10, 12.

Thus, we assume that $n=2r\geq 14$ where $r\geq 7$ is an integer such that $2^{k-2} \le r \le 2^{k-1} - 1$. If r = 7, then k - 1 = 3; while if $8 \le r \le 15$, then k-1=4. A strong royal (k-1)-edge coloring c for each path P_r $(7 \le r \le 15)$ is shown in Figure 3.

For $7 \le r \le 15$, let $P_r = (v_1, v_2, \dots, v_r)$ and let $P_r^* = (u_1, u_1, \dots, u_r)$. The path P_{2r} is constructed from P_r and P_r^* by adding the edge $v_r u_r$

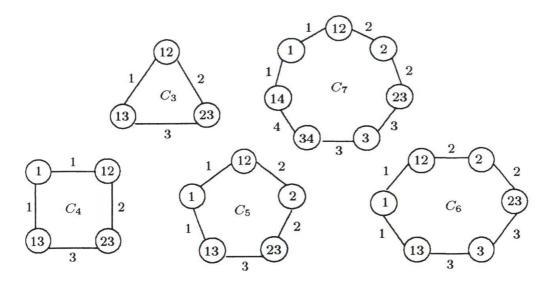


Figure 1: Strong royal colorings of C_n where $3 \le n \le 7$

and the cycle C_{2r} is constructed from P_{2r} by adding the edge v_1u_1 . The edge coloring c is extended (1) to an edge coloring c of P_{2r} by defining $c(u_iu_{i+1}) = c(v_iv_{i+1}) \cup \{k\}$ (where k=4 if r=7 and k=5 if $8 \le r \le 15$) for $1 \le i \le r-1$ and $c(v_ru_r) = c(v_{r-1}v_r)$ and (2) to an edge coloring c of C_{2r} by defining $c(v_1u_1) = c(v_1v_2)$ in addition. In this manner, no vertex of P_{2r} is colored $\{k\}$. Since this edge coloring is a strong royal k-edge coloring of C_{2r} , it follows that $\text{sroy}(P_{2r}) = \text{sroy}(C_{2r}) = k$ for $7 \le r \le 15$, where k=4 if r=7 and k=5 if $8 \le r \le 15$. Figure 4 shows the construction of a strong royal 4-edge coloring of C_{14} from the paths P_7 and P_7^* .

For each such path P_{2r} ($7 \le r \le 15$), we construct the path P_{2r+1} by adding a new vertex u_0 and the edge u_0u_1 and coloring the edge u_0u_1 by $\{k\}$, where k=4 if r=7 and k=5 if $8 \le r \le 15$. Then u_0 is colored $\{k\}$, resulting in a strong royal k-edge coloring of P_{2r+1} for $7 \le r \le 15$. Next, we repeat this procedure by beginning with the paths P_{14} , P_{15} , ..., P_{31} ; that is, we use P_{14} to create a strong royal 5-edge coloring of C_{28} (where r=14) and use P_{15} , P_{16} , ..., P_{31} to create a strong royal 6-edge coloring of C_{2r} for $15 \le r \le 31$. Continued repetition of this procedure gives the desired result for all even cycles. Therefore, $\operatorname{sroy}(C_n) = k$ for all even integers $n \ge 4$ with $2^{k-1} \le n \le 2^k - 1$.

Case 2. $n \ge 9$ is odd. Figure 5 shows a strong royal 4-edge coloring for each of C_9 , C_{11} , and C_{13} and so $\text{sroy}(C_n) = 4$ for n = 9, 11, 13. Thus, we assume that $n = 2r + 1 \ge 15$, where $r \ge 7$.

For each path P_r , there is a subpath $Q = (v_i, v_{i+1}, v_{i+2}, v_{i+3})$, where $3 \le i < i+4 \le r$ such that $c'(v_{i+1}) = \{1, 2\}$, $c(v_{i+1}v_{i+2}) = \{2\}$, and $c'(v_{i+2}) = \{2\}$

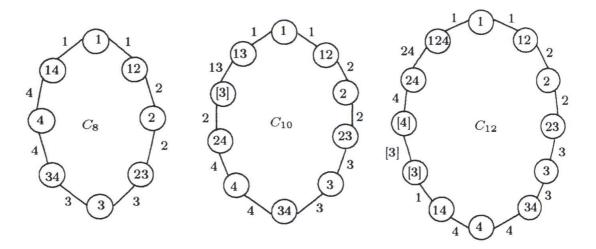


Figure 2: Strong royal 4-edge colorings of C_n for n = 8, 10, 12

 $\{2\}$. From the manner in which each even cycle C_{2r} was constructed and a strong royal k-edge coloring c of C_{2r} was defined in Case 1, the path $Q^* = (u_i, u_{i+1}, u_{i+2}, u_{i+3})$ is a subapth in C_{2r} such that $c'(u_{i+1}) = \{1, 2, k\}$, $c(u_{i+1}u_{i+2}) = \{2, k\}, \text{ and } c'(u_{i+2}) = \{2, k\}.$ Furthermore, $c'(x) \neq \{k\}$ for each vertex x of C_{2r} . We now construct the cycle C_{2r+1} from C_{2r} by deleting the edge $u_{i+1}u_{i+2}$ from C_{2r} and adding a new vertex u along with the two new edges $u_{i+1}u$ and uu_{i+2} . We define an edge coloring c of C_{2r+1} from the strong royal k-edge coloring c of C_{2r} (as described in Case 1) by assigning the color $\{k\}$ to the edges $u_{i+1}u$ and uu_{i+2} where the colors of remaining edges of C_{2r+1} are the same as in C_{2r} . Thus, $c'(u) = \{k\}$ and c'(x) is the same as in C_{2r} for all other vertices x of C_{2r+1} . Figure 6 shows the construction of such a strong royal 4-edge coloring of C_{15} from the strong royal 4-edge coloring of C_{14} of Figure 4. Since this edge coloring is a strong royal k-edge coloring of C_{2r+1} , it follows that $\operatorname{sroy}(C_n) = k$ for all odd integers $n \geq 3$ with $2^{k-1} \leq n \leq 2^k - 1$ with the exception of n = 3and n=7.

It is therefore a consequence of Theorem 1.5 that C_3 and C_7 are royalone but all other cycles are royal-zero.

Classes of Royal-Zero & Royal-One Graphs

In this section we determine some classes of graphs that are royal-zero or royal-one. For complete graphs, the following result was obtained in [8].

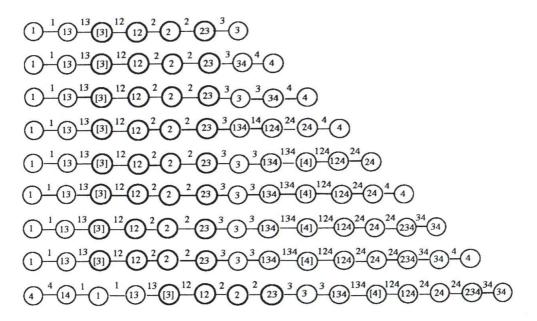


Figure 3: Strong royal (k-1)-edge colorings of P_r for $7 \le r \le 15$

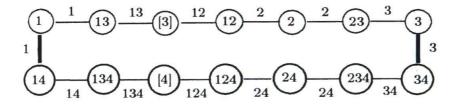


Figure 4: Constructing a strong royal 4-edge coloring of C_{14}

Proposition 2.1 For an integer $n \geq 4$, the complete graph K_n is a royal-zero graph if n is a power of 2 and royal-one otherwise.

We now consider the effect that certain operations can have on graphs that are royal-zero or royal-one. The corona cor(G) of a graph G is that graph obtained from G by adding a pendant edge at each vertex of G. Thus, if the order of G is n, then the order of cor(G) is 2n. The strong royal index of cor(G) never exceeds cor(G) by more than 1.

Proposition 2.2 If G is a connected graph of order $n \geq 4$, then

$$\operatorname{sroy}(\operatorname{cor}(G)) \le \operatorname{sroy}(G) + 1.$$

Consequently, if G is a royal-zero graph, then so is cor(G).

Proof. Let $V(G) = \{v_1, v_2, \dots, v_n\}$ and let $H = \operatorname{cor}(G)$ be obtained from G by adding the pendant edge $u_i v_i$ at v_i for $1 \leq i \leq n$. Suppose that

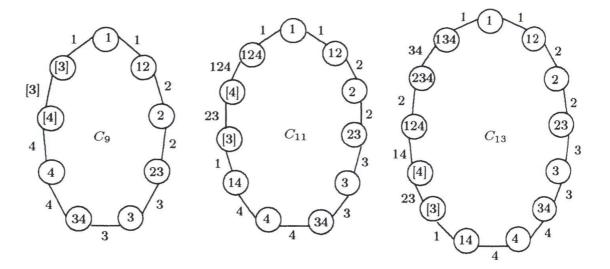


Figure 5: Strong royal 4-edge colorings of C_n for n = 9, 11, 13

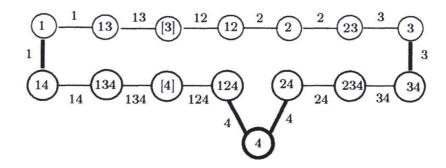


Figure 6: Constructing a strong royal 4-edge coloring of C_{15}

 $\operatorname{sroy}(G) = k$. Then there is a strong royal k-edge coloring $c_G : E(G) \to \mathbb{R}$ $\mathcal{P}^*([k])$ of G. Define an edge coloring $c_H: E(H) \to \mathcal{P}^*([k+1])$ by

$$c_H(e) = \left\{ egin{array}{ll} c_G(e) \cup \{k+1\} & ext{ if } e \in E(G) \ c_G'(v_i) & ext{ if } e = u_i v_i ext{ for } 1 \leq i \leq n. \end{array}
ight.$$

Then the induced vertex coloring c'_H is given by

$$c'_H(u_i) = c'_G(v_i)$$
 and $c'_H(v_i) = c'_G(v_i) \cup \{k+1\}$ for $1 \le i \le n$.

Since c'_H is vertex-distinguishing, it follows that c_H is a strong royal (k+1)edge coloring of cor(G) and so $sroy(H) \le k + 1 = sroy(G) + 1$.

If G is a connected royal-zero graph of order $n \geq 4$ where sroy(G) = k, say, then $2^{k-1} \le n \le 2^k - 1$. Since cor(G) is a connected graph of order $2n \ge 8$ where $2^k \le 2n \le 2^{k+1} - 2$, it follows that $cor(C) \ge k + 1$. On the other hand, there is a strong royal (k+1)-edge coloring of cor(G) and so cor(G) = k+1, which implies that cor(G) is royal-zero as well.

A tree T is called *cubic* if every vertex of T that is not an end-vertex has degree 3. The following result makes use of the proof of Proposition 2.2.

Corollary 2.3 If T is a cubic caterpillar of order at least 4, then T is royal-zero.

Proof. Let T be a cubic caterpillar. Since the statement is true if T has four vertices, we may assume that T has six or more vertices. For an integer $n \geq 4$ where $2^{k-1} \leq n \leq 2^k - 1$, let $H = P_n = (v_1, v_2, \ldots, v_n)$ be a longest path in T, where then $\dim(T) = n - 1 \geq 3$ and the order of T is 2n-2. As noted earlier, it was shown in [8] that all paths of order 4 or more are royal-zero and so $\operatorname{sroy}(H) = k$. Let $u_i v_i$ be the pendant edges at v_i for $2 \leq i \leq n-1$. We consider two cases, according to whether $2^{k-1} < n \leq 2^k - 1$ or $n = 2^{k-1}$. In the first case, we apply the same procedure used in the proof of Proposition 2.2.

Case 1. $2^{k-1} < n \le 2^k - 1$. Then $2^k \le 2n - 2 \le 2^{k+1} - 4$. Thus, it suffices to show that $\operatorname{sroy}(T) \le k + 1$. Since $\operatorname{sroy}(H) = k$, there is a strong royal k-edge coloring $c_H : E(H) \to \mathcal{P}^*([k])$. Define an edge coloring $c_T : E(T) \to \mathcal{P}^*([k+1])$ by

$$c_T(e) = \left\{ egin{array}{ll} c_H(e) \cup \{k+1\} & ext{if } e \in E(H) \ c_H'(v_i) & ext{if } e = u_i v_i ext{ for } 2 \leq i \leq n-1. \end{array}
ight.$$

Then the induced vertex coloring c_T' is given by $c_T'(u_i) = c_H'(v_i)$ for $2 \le i \le n-1$ and $c_T'(v_i) = c_H'(v_i) \cup \{k+1\}$ for $1 \le i \le n$. Since c_T' is vertex-distinguishing, it follows that c_T is a strong royal (k+1)-edge coloring of T and $\text{sroy}(T) \le k+1$. Thus, T is royal-zero.

Case 2. $n=2^{k-1}$. Then $2n-2=2^k-2$. Here, we show that $\operatorname{sroy}(T)=\operatorname{sroy}(H)=k$. First, we consider the case where n=4 and k=3. A strong royal 3-edge coloring c of $H=P_4=(v_1,v_2,v_3,v_4)$ is shown in Figure 7, namely $c(v_1v_2)=1$, $c(v_2v_3)=\{1,2\}$, and $c(v_3v_4)=\{1,3\}$. Observe that the induced vertex colors of the vertices of H are all subsets of [3] containing 1 and $c'(v_1)=\{1\}$. The tree T is constructed from H by attaching the pendant edges u_2v_2 and u_3v_3 to v_2 and v_3 , respectively. The colors of u_iv_i , i=2,3, are defined by $c(u_iv_i)=c'(v_i)-\{1\}$, which results in a strong royal 3-edge coloring of T. In the case where n=8 and k=4, we begin with the path $H=P_8=(v_1,v_2,\ldots,v_8)$, where the edges v_1v_2,v_2v_3,v_3v_4 of P_8 are colored as in the case when n=4, and define

 $c(v_4v_5)=c'(v_4)$ and $c(v_iv_{i+1})=c(v_{8-i}v_{9-i})\cup\{4\}$ for i=5,6,7. Here too, each edge color and induced vertex color contains 1 and $c'(v_1)=\{1\}$. The tree T in this case is constructed from H by attaching the pendant edges u_iv_i for $2 \le i \le 7$. The color of u_iv_i is defined by $c(u_iv_i)=c'(v_i)-\{1\}$ for $2 \le i \le 7$, which results in a strong royal 4-edge coloring of T. This is illustrated in Figure 7. Continuing in this manner gives the desired result.

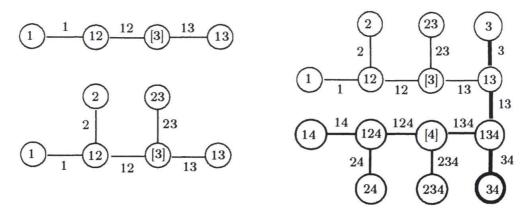


Figure 7: Constructing strong royal colorings of the cubic caterpillars

As stated in Proposition 2.2, if G is a connected graph of order 4 or more, then $\operatorname{sroy}(\operatorname{cor}(G)) \leq \operatorname{sroy}(G) + 1$, which implies that if G is a royal-zero graph, then $\operatorname{cor}(G)$ is a royal-zero graph. On the other hand, it is possible that G is a royal-one graph and $\operatorname{cor}(G)$ is a royal-zero graph. By Proposition 2.1, every complete graph K_n where n is not a power of 2 is a royal-one graph. Thus, if $2^{k-1} + 1 \leq n \leq 2^k - 1$ for some integer $k \geq 3$, then $\operatorname{sroy}(K_n) = k + 1$. If one were to assign distinct nonempty subsets of [k] to the n pendant edges of $\operatorname{cor}(K_n)$ and the color $\{k+1\}$ to the remaining $\binom{n}{2}$ edges of $\operatorname{cor}(K_n)$, then we have a strong royal (k+1)-edge coloring of $\operatorname{cor}(K_n)$ and so $\operatorname{sroy}(\operatorname{cor}(K_n)) = k + 1$. Therefore, $\operatorname{cor}(K_n)$ is a royal-zero graph for each integer $n \geq 5$ where n is not a power of 2. For a more interesting example, Figure 8 shows a strong royal 4-edge coloring of $\operatorname{cor}(C_7)$ and so $\operatorname{sroy}(\operatorname{cor}(C_7)) = \operatorname{sroy}(C_7) = 4$ (by Theorem 1.5). Thus, C_7 is royal-one, while $\operatorname{cor}(C_7)$ is royal-zero.

A graph operation somewhat related to the corona of a graph G is the Cartesian product of G with K_2 . In fact, we have the following result that corresponds to Proposition 2.2.

Proposition 2.4 If G is a connected graph of order $n \geq 4$, then

$$\operatorname{sroy}(G \square K_2) \leq \operatorname{sroy}(G) + 1.$$

Consequently, if G is a royal-zero graph, then $G \square K_2$ is a royal-zero graph.

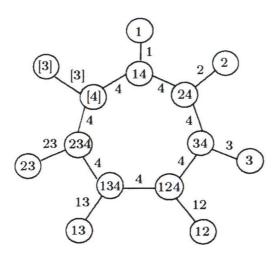


Figure 8: A strong royal 4-edge coloring of $cor(C_7)$

Proof. Let G be a connected graph of order $n \geq 4$ where $\operatorname{sroy}(G) = k$ for some positive integer k. Let $H = G \square K_2$ where G_1 and G_2 are the two copies of G. Suppose that $V(G_1) = \{u_1, u_2, \dots u_n\}$ where u_i is labeled v_i in G_2 . Thus, $V(G_2) = \{v_1, v_2, \dots, v_n\}$ and $E(H) = E(G_1) \cup E(G_2) \cup \{u_i v_i : 1 \leq i \leq n\}$. Since $\operatorname{sroy}(G) = k$, there is a strong royal k-edge coloring $c_{G_1} : E(G_1) \to \mathcal{P}^*([k])$ of G_1 . Define an edge coloring $c_H : E(H) \to \mathcal{P}^*([k+1])$ by

$$c_H(e) = \left\{ \begin{array}{ll} c_{G_1}(e) & \text{if } e \in E(G_1) \\ c_{G_1}(u_iu_j) \cup \{k+1\} & \text{if } e = v_iv_j \in E(G_2) \text{ for } 1 \leq i \neq j \leq n \\ c'_{G_1}(u_i) & \text{if } e = u_iv_i \text{ for } 1 \leq i \leq n. \end{array} \right.$$

The induced coloring $c'_H: V(H) \to \mathcal{P}^*([k+1])$ is then given by $c'_H(u_i) = c'_{G_1}(u_i)$ and $c'_H(v_i) = c'_{G_1}(u_i) \cup \{k+1\}$. Since c'_H is vertex-distinguishing, it follows that c'_H is a strong royal (k+1)-edge coloring of H. Thus, $\operatorname{sroy}(H) \leq k+1 = \operatorname{sroy}(G)+1$. Therefore, if G is a royal-zero graph, then $G \square K_2$ is a royal-zero graph.

The hypercube Q_k is K_2 if k=1, while for $k \geq 2$, Q_k is defined recursively as the Cartesian product $Q_{k-1} \square K_2$ of Q_{k-1} and K_2 . Since $Q_2 = C_4$ is royal-zero by Theorem 1.5, the following is a consequence of Proposition 2.4.

Corollary 2.5 For each integer $k \geq 2$, the hypercube Q_k is a royal-zero graph.

As stated in Proposition 2.4, if G is a royal-zero graph, then $G \square K_2$ is a royal-zero graph. On the other hand, it is possible that G is a royal-one

graph and $G \square K_2$ is a royal-zero graph. To see an example of this, we return to the 7-cycle C_7 , which we saw (in Theorem 1.5) is a royal-one graph. Figure 9 shows a strong royal 4-edge coloring of $C_7 \square K_2$ and so $\operatorname{sroy}(C_7) = \operatorname{sroy}(C_7 \square K_2) = 4$. Thus, C_7 is royal-one, while $C_7 \square K_2$ is royal-zero. As mentioned in Proposition 2.1, the complete graphs K_5 and K_6 are royal-one graphs. For these two graphs G, the graphs $G \square K_2$ are royal-zero; that is, $\operatorname{sroy}(K_5 \square K_2) = \operatorname{sroy}(K_6 \square K_2) = 4$. A strong royal 4-edge coloring c of $C_7 \square K_2 = 4$ and $C_7 \square K_2 = 4$ are $C_7 \square K_2 = 4$ and $C_7 \square K_2 = 4$ and $C_7 \square K_2 = 4$ are royal-zero; that is, $\operatorname{sroy}(K_5 \square K_2) = \operatorname{sroy}(K_6 \square K_2) = 4$. A strong royal 4-edge coloring $C_7 \square K_2 = 4$ and $C_7 \square K_2 = 4$ and $C_7 \square K_2 = 4$ and $C_7 \square K_2 = 4$ are royal-zero; that is, $\operatorname{sroy}(K_5 \square K_2) = \operatorname{sroy}(K_6 \square K_2) = 4$. A strong royal 4-edge coloring $C_7 \square K_2 = 4$ and $C_7 \square K_2 = 4$ and $C_7 \square K_2 = 4$ are royal-zero; that is, $\operatorname{sroy}(K_5 \square K_2) = \operatorname{sroy}(K_6 \square K_2) = 4$. A strong royal 4-edge coloring $C_7 \square K_2 = 4$ are royal-zero; that is, $\operatorname{sroy}(K_5 \square K_2) = \operatorname{sroy}(K_6 \square K_2) = 4$. A strong royal 4-edge coloring $C_7 \square K_2 = 4$ are royal-zero; that is, $\operatorname{sroy}(K_5 \square K_2) = \operatorname{sroy}(K_6 \square K_2) = 4$. A strong royal 4-edge coloring $C_7 \square K_2 = 4$ are royal-zero; that is, $C_7 \square K_2 = 4$ are royal-zero; that is, $C_7 \square K_2 = 4$ are royal-zero.

$$\begin{split} c'(u_1) &= \{1,4\}, \ c'(u_2) = \{1\}, \ c'(u_3) = \{1,2,4\}, \\ c'(u_4) &= \{1,2,3\}, \ c'(u_5) = \{1,3\}, \ c'(u_6) = \{1,2\}, \\ c'(v_1) &= \{4\}, \ c'(v_2) = \{1,3,4\}, \ c'(v_3) = [4], \\ c'(v_4) &= \{2,4\}, \ c'(v_5) = \{3,4\}, \ c'(v_6) = \{2,3,4\}. \end{split}$$

The edge coloring $c: V(H) \to \mathcal{P}^*([4])$ is then defined by $c(xy) = c'(x) \cap c'(y)$ for each edge $xy \in E(H)$. Since c' is the induced vertex coloring of c, it follows that c is a strong royal 4-edge coloring of H. Thus, H is royal-zero.

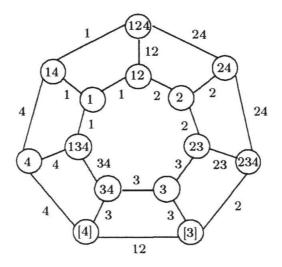


Figure 9: A strong royal 4-edge coloring of $C_7 \square K_2$

As noted in Proposition 2.1, the complete graph K_7 is also a royal-one graph. However, $H = K_7 \square K_2$ is royal-one as well. That there is a strong royal 5-edge coloring of H is straightforward. To show that $\operatorname{sroy}(K_7 \square K_2) = 5$, however, it is necessary to show that there is no strong royal 4-edge coloring of H, for assume that such an edge coloring c of H

exists. Since the order of H is 14, the induced vertex colors of H must consist of 14 elements of $\mathcal{P}^*([4])$. In particular, at least three of the four singleton subsets of [4] must be vertex colors of H. Suppose that H_1 and H_2 are the two copies of K_7 in the construction of H. Therefore, at least one of H_1 and H_2 has at least two singleton subsets as its vertex colors, say $c'(u_1) = \{1\}$ and $c'(u_2) = \{2\}$ where $u_1, u_2 \in V(H_1)$, which is impossible since u_1 and u_2 are adjacent. Hence, $\operatorname{sroy}(K_7 \square K_2) = 5$.

3 Conditions for Royal-One Graphs

We have seen that many graphs are royal-zero graphs. We now present a sufficient condition for a connected graph G of order $n \geq 4$ to be a royal-one graph. Let k be the unique integer such that $2^{k-1} \leq n \leq 2^k-1$. A graph G_k of order 2^k-1 is now constructed as follows. The vertices of G_k are labeled with the 2^k-1 distinct elements of $\mathcal{P}^*([k])$. For each vertex v of G_k , let $\ell(v)$ denote its label. Thus, $\{\ell(v): v \in V(G_k)\} = \mathcal{P}^*([k])$. Two vertices u and v of G_k are adjacent in G_k if and only if $\ell(u) \cap \ell(v) \neq \emptyset$. The vertex set $V(G_k)$ is partitioned into k subsets V_1, V_2, \ldots, V_k where $V_i = \{v \in V(G_k) : |\ell(v)| = i\}$ for $1 \leq i \leq k$. Therefore, $G_k[V_k] = K_1$ and $G_k[V_1] = \overline{K}_k$ is empty. If k = 2p + 1 is odd, then $G_k[V_{p+1} \cup V_{p+2} \cup \cdots \cup V_k] = K_{2^{k-1}}$. If k = 2p is even, then let V_p' be the subset consisting of those elements S in V_p for which $1 \in S$. Then $|V_p'| = \frac{1}{2} {k \choose p}$ and $G_k[V_p' \cup V_{p+1} \cup V_{p+2} \cup \cdots \cup V_k] = K_{2^{k-1}}$. Let m_k be the size of G_k . The graph G_3 of order $7 = 2^3 - 1$ has size $m_3 = 15$ and is shown in Figure 10.

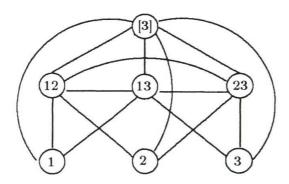


Figure 10: The graph G_3 of order $7 = 2^3 - 1$ and size $m_3 = 15$

There is an immediate condition under which a connected graph cannot be a royal-zero graph. As we mentioned earlier, it was shown in [4] that G is a connected graph of order $n \geq 4$ where $2^{k-1} \leq n \leq 2^k - 1$, then $sroy(G) \leq k + 2$.

Observation 3.1 Let G be a connected graph of order $n \geq 4$ and size m where $2^{k-1} \leq n \leq 2^k - 1$ for an integer k. If G is not a subgraph of the graph G_k , then either $\operatorname{sroy}(G) = k+1$ or $\operatorname{sroy}(G) = k+2$, and so G is not a royal-zero graph. Consequently, if $m \geq m_k + 1$, then G is not a royal-zero graph.

Since $\operatorname{sroy}(T)=3$ for each tree T of order n where $4\leq n\leq 7$, it follows by Observation 1.2 that if G is a connected graph of order n where $4\leq n\leq 7$, then $\operatorname{sroy}(G)$ is either 3 or 4. If G is a connected graph of order 7 that is not isomorphic to a subgraph of G_3 of Figure 10, then $\operatorname{sroy}(G)\neq 3$ and so $\operatorname{sroy}(G)=4$. Since the size of G_3 is 15, it follows that if G is a connected graph of order 7 with size at least 16, then $\operatorname{sroy}(G)=4$. Figure 11 shows the graphs H_4, H_5 , and H_6 of order 4, 5, and 6, respectively, of greatest size that are subgraphs of G_3 . For each graph H_i where i=4,5,6, if every edge uv of H_i is assigned the color $c(uv)=\ell(u)\cap\ell(v)$, then $c'(v)=\bigcup_{e\in E_{H_i}(v)}c(e)=\ell(v)$, resulting in a strong royal 3-edge coloring of H_i . Hence, $\operatorname{sroy}(H_i)=3$ for i=4,5,6. The graph $H_4=K_4$, while H_5 has size 9 and H_6 has size 12. So, if G is a connected graph of order 5 whose size is at least 10 (that is, $G=K_5$) or if G is a connected graph of order 6 whose size is at least 13, then $\operatorname{sroy}(G)=4$.

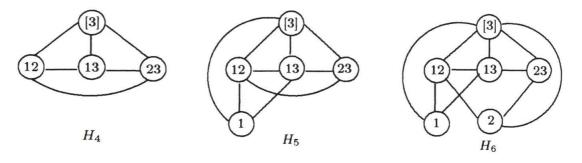


Figure 11: Subgraphs of G_3

By Observation 3.1, if G is a connected graph of order $n \geq 4$ and size m where $2^{k-1} \leq n \leq 2^k - 1$ such that $m > m_k$, which implies that $G \not\subseteq G_k$, then $\operatorname{sroy}(G) \geq k+1$. In fact, if G possesses any property that implies that $G \not\subseteq G_k$, then $\operatorname{sroy}(G) \geq k+1$. For example, if the order of G is $n=2^k-1$ and $\delta(G) \geq \delta(G_k) + 1$ or G has more than one vertex of degree n-1, then $\operatorname{sroy}(G) \geq k+1$. On the other hand, even though $C_7 \subseteq G_3$ (where $n=2^3-1$ and k=3), $|E(C_7)|=7 < m_3$, and $\delta(C_7) < \delta(G_3)$, we saw that $\operatorname{sroy}(C_7)=4=k+1$. Furthermore, for every chord e of C_7 , $\operatorname{sroy}(C_7+e)=3$ (see Figure 12). Consequently, even though one might suspect that $\operatorname{sroy}(G+uv) \geq \operatorname{sroy}(G)$ for every connected graph G and every pair u,v of nonadjacent vertices of G, such is not the case.

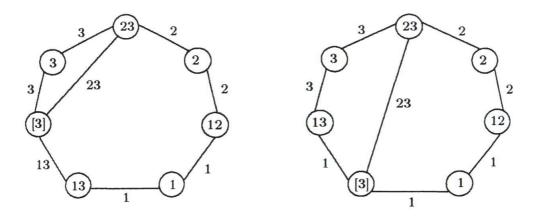


Figure 12: Showing that $\operatorname{sroy}(C_7 + e) = 3$ for each $e \notin E(C_7)$

What we have seen is that if G is a connected graph of order $n \geq 4$ where $2^{k-1} \leq n \leq 2^k - 1$ having a sufficiently large size, then $\operatorname{sroy}(G) \neq k$. However, if G is a connected graph of order $n \geq 4$ where $2^{k-1} \leq n \leq 2^k - 1$ having a small size, then we are not guaranteed that $\operatorname{sroy}(G) = k$. Indeed, even the strong royal index of trees is in doubt.

If Conjecture 1.3 is true, then for every connected graph G of order $n \geq 4$ where $2^{k-1} \leq n \leq 2^k - 1$, either $\operatorname{sroy}(G) = k$ or $\operatorname{sroy}(G) = k + 1$. In order to present a sufficient condition for $\operatorname{sroy}(G) \neq k$ in terms of the size and minimum degree of G, we describe an expression for the size m_k of the graph G_k (as it is easier in general to compare two numbers than to determine whether a graph contains a subgraph isomorphic to a given graph).

Recall that we label the 2^k-1 vertices of G_k with the distinct elements of $\mathcal{P}^*([k])$. The label of each vertex v of G_k is denoted by $\ell(v)$ and so $\{\ell(v): v \in V(G_k)\} = \mathcal{P}^*([k])$. Let $\{V_1, V_2, \ldots, V_k\}$ be the partition of of $V(G_k)$ described earlier, where then $V_i = \{v \in V(G_k): |\ell(v)| = i\}$ for $1 \leq i \leq k$. Let $v \in V_i$ for some integer i with $1 \leq i \leq k$. Then $\ell(v) = S$ is some i-element subset of [k]. There are 2^i-1 nonempty subsets of S and 2^{k-i} subsets of [k]-S. For each nonempty subset S' of S and each S is not adjacent to that vertex S' of S and each subset S' of S and each subset S' of S. For each nonempty subset S' of S and each subset S' of S and each S is not adjacent to itself, however, it follows that S is not S is not adjacent to itself, however, it follows that S is not S is not adjacent to itself, however, it follows that S is not S.

215

for $1 \le i \le k$. Therefore,

$$m_{k} = \frac{1}{2} \sum_{i=1}^{k} {k \choose i} \left[(2^{i} - 1)2^{k-i} - 1 \right] = \frac{1}{2} \sum_{i=1}^{k} {k \choose i} (2^{k} - 2^{k-i} - 1)$$

$$= \frac{1}{2} \left[\sum_{i=1}^{k} {k \choose i} 2^{k} - \sum_{i=1}^{k} {k \choose i} 2^{k-i} - \sum_{i=1}^{k} {k \choose i} \right]$$

$$= \frac{1}{2} \left[2^{k} \sum_{i=1}^{k} {k \choose i} - 2^{k} \sum_{i=1}^{k} {k \choose i} \left(\frac{1}{2} \right)^{i} - \sum_{i=1}^{k} {k \choose i} \right]$$

$$= \frac{1}{2} \left\{ 2^{k} (2^{k} - 1) - 2^{k} \left[\left(1 + \frac{1}{2} \right)^{k} - 1 \right] - (2^{k} - 1) \right\}$$

$$= \frac{1}{2} (4^{k} - 3^{k} - 2^{k} + 1).$$

In particular, if k=3, then the size of G_3 is $m_3=15$, as we saw in Figure 10.

Proposition 3.2 Let G be a graph of order $n \geq 4$ and size m where $2^{k-1} \le n \le 2^k - 1$ for some integer $k \ge 3$. If $m > \frac{1}{2}(4^k - 3^k - 2^k + 1)$, then either sroy(G) = k + 1 or sroy(G) = k + 2, and so G is not a royal-zero graph.

For each integer $k \geq 3$, the minimum degree $\delta(G_k)$ of the graph G_k is $2^{k-1}-1$. Consequently, if G is a graph of order $n\geq 4$ and size m where $2^{k-1} \leq n \leq 2^{k-1}$ for which $\delta(G) \geq 2^{k-1}$, then it may occur that $m < m_k$ but yet G is not a subgraph of G_k , and so (by Observation 3.1) $\operatorname{sroy}(G) \geq k+1$. However, in this case, more can be said. It is useful to recall that every path P_n for $n \ge 4$ is royal-zero (see [4, 8]).

Proposition 3.3 Let G be a connected graph of order $n \geq 4$ where $2^{k-1} \leq 1$ $n \leq 2^k - 1$ for some integer $k \geq 2$. If $\delta(G) \geq 2^{k-1}$, then $\operatorname{sroy}(G) = k + 1$ and so G is a royal-one graph.

Proof. We have already observed that $sroy(G) \ge k+1$ for such a graph. Since $\delta(G) \geq 2^{k-1}$ and $n \leq 2^k - 1$, it follows that $\delta(G) \geq (n+1)/2$ and therefore G has a Hamiltonian path (in fact, a Hamiltonian cycle). Since $\operatorname{sroy}(P_n) = k$ for every path P_n of order n, it follows by Observation 1.2 that $sroy(G) \le k + 1$ and so sroy(G) = k + 1.

We have seen that both K_7 and C_7 (a spanning subgraph, or factor, of K_7) are royal-one graphs. The complement \overline{C}_7 of C_7 is a 4-regular graph of order 7 and so it is not a subgraph of the graph G_3 shown in Figure 10. Hence, \overline{C}_7 is also a royal-one graph. The size of \overline{C}_7 is 14 which is less than the size 15 of G_3 (the graph of order 7 having the maximum size that is royal-zero). This brings up the problem of determining for each integer $n \geq 3$, the minimum size of a graph of order n that is royal-one. Of course, the minimum size is 7 when n = 7.

The graph \overline{C}_7 can itself be factored into two copies of C_7 . Therefore, the royal-one graph K_7 can be factored into three royal-one graphs. However, K_7 can also be factored into three graphs satisfying any of the following: (1) all three factors are royal-zero, (2) exactly two factors are royal-zero, (3) exactly one factor is royal-zero. Consequently, there is a host of additional problems that arise with strong royal colorings of graphs.

Acknowledgment We thank the anonymous referees whose valuable suggestions resulted in an improved paper.

References

- M. Aigner, E. Triesch and Z. Tuza, Irregular assignments and vertexdistinguishing edge-colorings of graphs. *Combinatorics'* 90 Elsevier Science Pub., New York (1992) 1-9.
- [2] A. C. Burris, The irregular coloring number of a tree. *Discrete Math.* 141 (1995), 279–283.
- [3] A. C. Burris and R. H. Schelp, Vertex-distinguishing proper edge colorings. J. Graph Theory. 26 (1997) 73-82.
- [4] N. Bousquet, A. Dailly, E. Duchêne, H. Kheddouci, and A. Parreau, A Vizing-like theorem for union vertex-distinguishing edge coloring. Discrete Appl. Math. 232 (2017) 88-98.
- [5] G. Chartrand, Highly Irregular in *Graph Theory-Favorite Conjectures* and *Open Problems* (ed. by R. Gera, S. Hedetniemi, and C. Larson). Springer, New York (2016).
- [6] G. Chartrand, C. Egan, and P. Zhang, How to Label a Graph. Springer, New York (2019).
- [7] G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, and F. Saba, Irregular networks. Congr. Numer. 64 (1988), 197–210.
- [8] G. Chartrand, J. Hallas, and P. Zhang, Royal colorings of graphs. Ars Combin. To appear.

- [9] G. Chartrand and P. Zhang, Chromatic Graph Theory. Second Edition. Chapman & Hall/CRC Press, Boca Raton (2020).
- [10] E. Györi, M. Horňák, C. Palmer, and M. Woźniak, General neighbourdistinguishing index of a graph. Discrete Math. 308 (2008) 827-831.
- [11] F. Harary and M. Plantholt, The point-distinguishing chromatic index. Graphs and Applications. Wiley, New York (1985) 147-162.
- [12] I. Hart, Induced Graph Colorings. Doctoral Dissertation. Western Michigan University (2018).
- [13] M. Horňák and R. Sotók, General neighbour-distinguishing index via chromatic number. *Discrete Math.* **310** (2010) 1733-1736.
- [14] P. Zhang, Color-Induced Graph Colorings. Springer, New York (2015).
- [15] P. Zhang, A Kaleidoscopic View of Graph Colorings. Springer, New York (2016).