The complexity of monitoring a network
with both watchers and listeners

Arthur S. Finbow, Bert L. Hartnell
and Jenna R. Young
Saint Mary’s University, Halifax, Canada

art.finbow@smu.ca bert.hartnell@smu.ca jenna-young@hotmail.com

Abstract

We consider the problem of detecting an intruder in a network
where there are two types of detecting devices available. One device
can determine the distance from itself to the intruder and the other
can see the vertex it occupies as well as all adjacent vertices. The
problem is to determine how many devices are required and where
they should be placed in order to determine a single intruder’s loca-
tion. We show that on the one hand, finding the minimum number of
devices required to do this is easy when the network is a tree with at
most one leaf adjacent to any vertex, while on the other hand finding
this number is an NP-complete problem even for trees with at most
two leaves adjacent to any vertex.
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This article s dedicated to Gary MacGillivray in honour and
recognition of his extremely active and prolific career in the de-
Lightful art of problem solving.

1 Introduction

Our objective is to be able to locate a single intruder (a fault) if one appears
(occurs) at any vertex of a given network. We introduce the problem of
using two different detection devices: watchers and listeners. A watcher
can determine the location of the vertex that the intruder occupies provided
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that the watcher is located at a vertex in the closed neighborhood of the
vertex that the intruder occupies. A listener can determine the distance
from the vertex it occupies to the vertex that the intruder occupies. The
goal is to place the minimum number of devices so that the intruder can
be found regardless of its location in the network.

Consider a finite simple loopless graph G = (V, E). For a vertex z in G,
the open neighborhood of z is the set Ng(z) = {v € V(G) |vz € E(G)}. The
closed neighborhood of z is the set Ng[z] = Ng(z)U {z}, and if § C V(G)
then N¢g[S] = |U{N¢|z]|z € S}. If z and y are in V(G), then the distance
d(z,y) between z and y is the number of edges in a shortest path from z
to y.

Definition 1.1 Letv be a vertex in the graph G, and let S = {s1,s2,..., Sk}
be an ordered subset of V(G). The S-location vector for v is the vector
[d(v, s1),d(v, s2),...,d(v,sk)]. If two distinct vertices u and v of G have
the same S-location vector, we say that u and v are confused by S.

Definition 1.2 A detection pair P for the graph G is a pair of subsets
P = (W, L) of V(G) such that if V(G) \ N[W] # @& then L # @ and with
the property that no two vertices in V(G) \ N[W] are confused by L. We
say that the size of P is |W| + |L| and denote it by || P||.

Thus a detection pair represents a pair of subsets (W, L) of V(G) where
watchers are stationed at each vertex in W and listeners are stationed at
each vertex in L. Note that W and L need not be disjoint and that either
W or L could be empty. Then we say a minimum detection pair D is a
detection pair of smallest size and define the detection number Lv(G) of G
to be the size of a minimum detection pair in G.

Suppose that (W, L) is a detection pair (minimum detection pair) for
G. If on the one hand, L = &, then V(G) C N[W] and thus W is a
dominating set (minimum dominating set) for G. The cardinality of a
minimum dominating set is called the dominating number v(G) of G. A

comprehensive introduction to the work done in the area of domination can
be found in [6].

If on the other hand W = o, then no pair of vertices in G can be
confused by L, and thus L is a metric basis (minimum metric basis) for G.
The cardinality of a minimum metric basis is called the metric dimension
L(G) of G. There is a considerable body of literature on metric bases (also
known as reference sets and locating sets) see for example [1, 5, 6, 7, 11|
and more recently (3].
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Note that these notions are distinct from locating-dominating sets, (9,
10], where the sets need to be simultaneously locating and dominating.
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Figure 1 The Graphs G; and G»
Example 1.1 In Figure 1, v(G1) = 5 with a sample minimum domi-

nating set {v,w,z,y, 2}, L(G1) = 4 with a sample minimum metric ba-
sis {a,b,c,z}, and Ly(G1) = 3 with a sample minimum protection pair
({z,v},{z}). On the other hand, v(G2) = L(G2) = Ly(Gz) = 2, but
there is no minimum protection pair (W, L) such that both W and L are
nonempty.

We define a leaf to be a vertex of degree 1 and a stem to be a vertex
which is adjacent to at least one leaf. For a stem s, we will let £(s) be the
set of leaves that are adjacent to s and let £[s] = {s} U £(s).

Remark 1.3 Let G be a graph with cut vertex v € V(G) and suppose that
GV (G) \ {v}] consists of components C1,Cs,...,Cy where k > 2. Let n
be an integer with 1 < n < k, let {a,b} C J;_, V(C;) and let z and y be
distinct vertices in U?:n—}-l V(C;). Then {a} confuses x and y if and only
if {b} confuses x and y since either condition follows precisely when = and
y are the same distance from v.

In the mid 1970’s, algorithms to compute the metric dimension of a tree
were independently found by Slater in [11] and Harary and Melter [5]. In
a tree T, any vertex of degree at least 3 is called a branch point. Each
leaf z is assigned to the branch point B(z) that is closest to it. We call
vertices in {B(z)|z is a leaf of T} special branch points. For each special
branch point y, we set B~1(y) = {z|z is a leaf of T and B(z) = y}. Note
that the special branch points were denoted stems by Slater in [11] where
he proved the following result and produced a linear time algorithm for
finding a minimum metric basis of a tree.
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Proposition 1.4 Let T be a tree with k > 3 leaves and let B be the set of
special branch points in T. Then the metric dimension of T is k — |B|.

The key observation in proving 1.4 is that all but one of the paths from
a special branch point to one of its assigned leaves must contain an element
of the metric basis (else as noted in 1.3, confusion would result).

2 Leaves and minimum detection pairs

We begin this section by observing that if one uses only listening devices
and if 7+ 1 leaves are adjacent to some stem v, then it may not be possible
to determine the location of an intruder in N (v) unless devices are located
on at least r of the leaves. Then we have the following:

Lemma 2.1 If a graph G has a vertex x, with four or more leaves attached
to it, and if P = (W, L) is a minimum detection pair, then z € W. If z
has exactly three leaves attached to it, then there is a minimum detection
pair D = (U,S) withz € U.

Proof. Suppose that vertex z is adjacent to a set K of » > 3 leaves and
let P = (W, L) be a minimum detection pair for G. Suppose that z ¢ W.

Then since P is a detection pair, a minimum of r — 1 devices must
be located in K. Choose any leaf kg € K and define the new pair D =
(W\K)U{z},(L\ K)U{ko}) = (U,S). We claim that D is a detection
pair with z € U.

Indeed suppose that u and v are distinct vertices in V(G)\ N[U]. Then
since N[W] C N[U], u and v are both in V(G) \ N[W] and are hence
distinguished by L. Now, if on the one hand they are distinguished by
L\ K, then they are distinguished by S. If on the other hand they are not
distinguished by L \ K, then there is a vertex k € K such that d(k,u) #
d(k,v). But d(k,u) = d(ko,u) and d(k,v) = d(ko,v) and thus u and v are
distinguished by S. Hence D is a detection pair.

Now ||D|| = ||P|| — (r — 1) + 2 and hence on the one hand, if r = 3,
we have ||D|| = ||P|| and thus D is a minimum detection pair; but on the
other hand, if 7 > 4 then ||D|| = ||P|| - (r— 1)+ 2 < ||P|| -3+ 2 < || P|],
contradicting the hypothesis that P is a minimum detection set. This
contradiction shows that z € W whenr > 4. B
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Figure 2 The Graphs G3, G4 and G5

Example 2.1 In Figure 2, Ly(G3) = 3 and the stem v is adjacent to 3
leaves, but ({z}, {a,b}) is a minimum protection pair with no watcher on
v. On the other hand, ({v,z}, {a}) is also a minimum protection pair with
a watcher on v as promised in Lemma 2.1.

Turning our attention to stems with 2 leaves attached, we note the
following:

Remark 2.2 Let G be a graph with a detection pair P = (W, L) and sup-
pose that G contains a stem s, with at least 2 adjacent leaves. Then there
must be at least one detection device in L£[s], for otherwise L(s)NN[W] = &
and L will confuse each pair of vertices in £(s).

Example 2.2 In Figure 2, Lv(G4) = 2 with a sample minimum protec-
tion pair (D, {a,c}) while any protection pair (W, L) such that W # @& is
not minimum and hence neither stem can be occupied by a watcher in a
minimum protection pair. On the other hand, Ly(Gs) = 2, and c is a stem

adjacent to 2 leaves in G, but there is no minimum protection pair (W, L)
such that c ¢ W.

Lemma 2.3 Suppose that a graph G has a minimum detection pair P =
(W, L) and that z € V(G) is adjacent to exactly two leaves. If either W N
Llz] # @ or [L N £[z]| > 2 then there is a minimum detection pair D =
(U, S) with z € U. Moreover P can be converted to D in polynomial time.

Proof.  Suppose first that W N L[z] # @. If z € W, the proof is
complete. Otherwise set U = (W \ £(z)) U {z} and observe both that
|U| < |W| and that N[W] C N[U], and hence D = (U, S) is the required
minimum detection pair.
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Now suppose that |LNEL[z]| > 2. One of the listeners must be positioned
at a vertex y € £(z). Let A= LN L[z]\ {y} and set U = W U {z} and
S = L\ A. Observe both that |U|+|S| < |W|+|L| and that N[W] C N[U].
Hence in view of Remark 1.3, D = (U, S) is the required minimum detection
pair. B

Proposition 2.4 If a tree T has no vertex with more than one leaf as
a neighbor, then a minimum detection pair can be constructed using only
listeners in polynomial time.

Proof. If T consists of one vertex, place a listener on that vertex. If
T is a path, let z be a leaf of T' and place a listener on z. Henceforth we
assume that T has at least 3 leaves.

Let P = (W, L) be a detection pair for 7" and let A be the set of special
branch points of T . For each a € A, let k, = |[B~!(a)| and let B, be the
set of paths from a to the leaves in B~!(a). By the definition of the special
branch points, if m € P, and =z € V() \ {a} then degs(z) < 2.

Claim 2.5 If m and p are distinct paths in P,, each containing at least 3
vertices, then there must be at least one detection device located in (V(m)U

Vip) \ {a}

Proof of Claim.  Suppose that m and p are distinct paths in *3,, each
containing at least 3 vertices and let z € V(7) and y € V(p) be at distance
2 from a. Then z and y will be confused by any listener in {a}U(G\ (7Up)).
Hence there must be at least one detection device located in (V(m)UV(p))\
{a} thus proving the claim.

It follows that if all the paths in P, contain at least 3 vertices then
at least k, — 1 of these paths must have at least one detection device at
a vertex other than a. On the other hand, if a is adjacent to a leaf, then
since, by hypothesis, a has at most one leaf, it follows that k, — 1 of the
paths in 3, must contain at least 3 vertices. If each of them has a detection
device at a vertex other than a, then the total number of detection devices
on the paths in B, must be at least k, — 1. If, on the other hand there
is a path m in PB,, containing at least 3 vertices such that V(mg) \ {a}
contains no detection device, let z € V(my) be adjacent to a and let y be
the leaf adjacent to a. Then z and y will be confused by any listener in
G\ (moU{y}) and hence there must be a detection device located on either
vertex a or y. Also, by Claim 2.5, each path in B, \ {70} which contains
at least 3 vertices must host a detection device, none of which is located
on the vertex a. Hence in this case we also conclude that there are at least
k., — 1 detection devices located on the paths in B,.
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Thus the total number of devices required for the tree is at least the
number of leaves minus the number of special branch points. By Proposi-
tion 1.4, this can be achieved by using only listening devices. In particular,
for each special branch point a, place a listener on all but one of the leaves
in B~!(a). B

3 The complexity of finding a minimum detec-
tion pair

When G is a tree, both finding a minimum dominating set and finding a
smallest metric basis can be done in linear time (see [2] for finding a mini-
mum dominating set and [11] for a metric basis). It would seem reasonable
to expect, especially in view of Proposition 2.4, that it would be equally
easy to find a minimum detection pair in a given tree. Somewhat surpris-
ingly, this is not the case. First we give a formal statement of the problem.

DETECTION PAIR
Input: A finite simple loopless graph G and a positive integer 7.
Question: Is there a detection pair D for G such that ||D|| = 57

Note that given a pair of subsets of V(G) it can be determined in poly-
nomial time both whether it is a detection pair and whether its size is j.

Hence DETECTION PAIR is in NP.

We will show that DETECTION PAIR is in NP-complete even when
the input graph is restricted to trees whose stems are adjacent to two or
fewer leaves.

Consider the NP-complete problem known as the set packing problem,
one of Karp’s 21 problems [8]. It can be stated as follows (see [4], page
221):

SP3
Input: A finite collection S of subsets of {1,2,...,m} and a positive integer
k.
Question: Is there a subcollection R of S of mutually disjoint sets such
that |R| = k7

In order to reduce SP3 to DETECTION PAIR it will be useful to
employ graphs from the following family: we say that a tree is an n-vine with
base co and end ca,,—; provided that it consists of the path cgcy...c3,-1
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together with two leaves adjacent to each vertex c3; where 0 < j <n—1
(see Figure 3). Observe that an n-vine has 5n vertices.

Q

Figure 3 A 3-Vine

Lemma 3.1 Let C be an n-vine consisting of a path coc; . .. ca,,_1 together
with two leaves adjacent to each vertex c3; where 0 < j <n—1. Let H be
the graph generated by the disjoint union of some graph G and C together
with the edge xcq where z € V(G). If P = (W, L) is a minimum detection
pair for H, then there is a minimum detection pair D = (U, S) for H with
{c3j]0 < j <n—1} CU. Moreover P can be converted to D in polynomial
time.

Proof. Suppose that P = (W, L) is a minimum detection pair for H.
By Remark 2.2, there is a detection device in each £[c3;] for 0 < j <n—1.
Furthermore by Lemma 2.3, we may assume for each 7,0 < 7 <n—1, there
is either a watcher located at c3; or the only device located in £[cs;] is a
single listener. If the second option fails to be true for any 0 < 7 <n — 1,
then we are done.

Otherwise, let k be the largest integer such that £[cax] contains exactly
one listener and no watcher. This listener cannot occupy the vertex ca,
or else the vertices in £(cax) would be confused. Set £(csx) = {v,r} and,
without loss of generality, assume that the listener occupies v. Now observe
that the listener confuses r and c3x4; and hence there is either a watcher
in {c3k41,¢c3k42}, or a listener in the set N[{c;|3k+ 2 < 5 <3n —1}].

Thus we observe that in C, the number of devices |V(C)NW|+|V(C)N
Lizn+1.

Hence, in view of Remark 1.3, we conclude that if U’ = (W \ V(C))U
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{cajlk <j<n—1}and 8’ = (L\V(C))U {can_1} then D' = (U’,5’) is a

minimum detection pair. Il
Theorem 3.2 The problem DETECTION PAIR for trees is NP-complete.

Proof. We proceed by polynomially reducing SP3 to DETECTION
PAIR. Let S = {5,5,...,5:} be a finite collection of nonempty subsets
of M = {1,2,...,m} and k > 1 be an integer. For 0 < i < t let P, be the
path v; 0v;1 ... %i,m+1. Now form a tree 7' as follows.

First, set J = {(s,p)|)l < i <tand pe MU{m +1}\ S5;}. Now fix 7,
1 <7 < t and for each (i,p) € J let C;, be a (1 +i[%])-vine with base
labeled u;, and end labeled e;,. Next, join each such C;, to F; via the
new edge v; pu;p to obtain T;. Finally, let T' be the graph induced by a
(1+ [%])-vine with base z, together with both (U{T1,T2,...,T¢}) U {Fo}
and with the edges zv; o for 0 <i <t. (See Example 3.1)

Note that since an n-vine has 5n vertices we have

VDI <51+ [F]) + (¢ +1)(m +2) (1)

+3((m+ 1501 +i[51)

(m+1)t(t+1)
2

m
=5[5 101+ ) + 6mt + Tt +m + 7.

Set j =1+[F ]+ ;pmes(d +i[5])+ 1+t —k. We complete the proof
by establishing the following Claim. '

Claim 3.3 The tree T has a detection pair D with ||D|| = j if and only if
there is a set K C M, |K| = k such that the sets in {S;|i € K} are pairwise

disjoint.

Suppose that D = (W, L) is a detection pair of T with ||D|| = j. By
Lemma 3.1, without loss of generality, we may assume that the set W’ of
the stems in T' that are adjacent to exactly 2 leaves is a subset of W. Note
that [W/| =14 [2] + Z(i,p)ej(l +i[2]) and thus that at most t +1— k&
devices can occupy vertices in T\ W’. Since k > 1, there is at least one
i09,1 < i < t such that T}, contains no device that is not in W’. We observe
that, since .S;, is nonempty, it must contain an element, say a. But then,
by construction, the vertex v;, , is not adjacent to a vertex in W’ and is
distance a + 1 from z. But the vertex vp , (on the path Fp) is also distance
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a + 1 from z. It follows that there is at least one device on a vertex in P,.
This implies that of the ¢+ 1 — k devices that can occupy vertices in 7'\ W/,
at least one is in Pp, leaving at most ¢t — k devices that can occupy vertices

in U{Tl,Tg, “o ,Tt}.

Hence there is a set K C M, |K| = k such that no device occupies a
vertex in T;\W’ for 7 € K. Observe that by construction {d(z,v; 4)—1|g > 1
and (i,q) ¢ J} = S; for each 1 <17 <t. But since D is a detection pair and
since for each k € K, no vertex in {v;,|(¢,p) € J} can be in N[W], the sets
in {S;|¢ € K} must be pairwise disjoint.

Conversely, if there is a set K’ C M, |K'| = k such that the sets in
{S;|: € K’} are pairwise disjoint, then set D’ = (W', {vo.m+1}tU{€imp1lt €
K’}). Since no two ends e and f of the vines in {C;,|(i,p) € J} are
confused by vg,m+1, and since d(vo,m+1,%,p) < d(Vo,m41,€) for 1 <1<t
and 1 < p < m, no end is confused with a node on some P;.

Now, on one hand, if ¢ ¢ K’, then all the vertices in P; are distinguished
by €;m1. On the other hand, if ¢ € K’, then all the vertices in {v; ,|i € K’
and p € S;} U P, are distinguished by vg ;1. The remaining vertices in T
are in N[W’] and hence D’ is a detection pair for T with ||[D'|| = ;. B

Example 3.1 An ilustration of the tree T generated in Theorem 3.2.

Consider M = {1,2,3,4,5,6,7} with subsets S1 = {1,2,4,6,7}, S; =
{2,3,4,6}, S3={1,2,4,5,6,7} and Sy = {1,5,7}. In this case, the overall
structure of T is pictured in Figure 4, and the structure of T (associated
with the set S;) is pictured in Figure 5.

Figure 4 The Graph T
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Figure 5 The Graph T3

4 Conclusion and future directions

To summarize, suppose we are given a tree 7. Even though it is easy
to determine the minimum number of watchers to guard T and similarly
straight forward to find the smallest number of listeners to guard T’; if one
has both types of devices available it can, in the case of some T', become a
difficult problem to minimize the total number of devices needed to do the
job. Given this somewhat surprising result it would seem to be of interest
to characterize, if possible, a significant collection of non-trivial graphs for
which the optimal number can actually be found in polynomial time.

From a different point of view, if each watcher costs Cy, > 0 and each
listener costs C;, > 0, then we can look for the minimum cost to guard a
graph. We have just seen that if Cw = C|, the problem of minimizing the
cost of guarding a tree is in general hard.
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