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Abstract

Let H be a hypergraph of order n, = |V(H)| and size m,, =
|E(H)|. The transversal number 7(H) of a hypergraph H is the
minimum number of vertices that intersect every edge of H. A linear
hypergraph is one in which every two distinct edges intersect in at
most one vertex. A k-uniform hypergraph has all edges of size k. For
k > 2, let Ly denote the class of k-uniform linear hypergraphs. We
consider the problem of determining the best possible constants gx
(which depends only on k) such that 7(H) < gqir(n, + m,) for all
H € L. It is known that g2 = 1 and g3 = . In this paper we show
that ¢4 = é, which is better than for non-linear hypergraphs. Using
the affine plane AG(2,4) of order 4, we show there are a large number
of densities of hypergraphs H € L4 such that 7(H) = £ (n, +m,,).
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1 Introduction

In this paper we continue the study of transversals in hypergraphs. Hy-
pergraphs are systems of sets which are conceived as natural extensions of
graphs. A hypergraph H = (V,FE) is a finite set V = V(H) of elements,
called vertices, together with a finite multiset E' = E(H) of subsets of V,
called hyperedges or simply edges. The order of H is n(H) = |V| and the
size of H is m(H) = |E|. For simplicity, we sometimes we denote n(H)
and m(H) by n,, and m,,, respectively. A k-edge in H is an edge of size k.
The hypergraph H is said to be k-uniform if every edge of H is a k-edge.
Every (simple) graph is a 2-uniform hypergraph. Thus graphs are a special
instance of hypergraphs. For ¢ > 2, we denote the number of edges in H
of size 7 by e;(H). The degree of a vertex v in H, denoted by dy(v), is
the number of edges of H which contain v. The minimum and maximum
degrees among the vertices of H is denoted by 6 (H) and A(H), respectively.

Two vertices z and y of H are adjacent if there is an edge e of H such
that {z,y} C e. The neighborhood of a vertex v in H, denoted Ny (v) or
simply N (v) if H is clear from the context, is the set of all vertices different
from v that are adjacent to v. A vertex in N(v) is a neighbor of v. The
neighborhood of a set S of vertices of H is the set Ny (S) = U,esNy(v),
and the boundary of S is the set 9y (S) = Ny (S)\S. Thus, 85(S9) consists
of all vertices of H not in S that have a neighbor in S. If H is clear
from context, we simply write N(S) and 8(S) rather than Ng(S) and
Om(S). Two vertices  and y of H are connected if there is a sequence
T = vg,v1,V2...,V = y of vertices of H in which v;_; is adjacent to v;
fori=1,2,...,k. A connected hypergraph is a hypergraph in which every
pair of vertices are connected. A maximal connected subhypergraph of H
is a component of H. Thus, no edge in H contains vertices from different
components. A component of H isomorphic to a hypergraph F' we call an
F-component of H.

A subset T of vertices in a hypergraph H is a transversal (also called
vertex cover or hitting set in many papers) if T has a nonempty intersection
with every edge of H. The transversal number 7(H) of H is the minimum
size of a transversal in H. A transversal of size 7(H) is called a 7(H)-
transversal. Transversals in hypergraphs are well studied in the literature
(see, for example, [1, 6, 9, 10, 11, 18, 19, 20, 21, 22, 23, 32, 33, 37, 39)).

A hypergraph H is called an intersecting hypergraph if every two dis-
tinct edges of H have a non-empty intersection, while H is called a linear
hypergraph if every two distinct edges of H intersect in at most one ver-
tex. We say that two edges in H overlap if they intersect in at least two
vertices. A linear hypergraph therefore has no overlapping edges. Linear
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hypergraphs are well studied in the literature (see, for example, (2, 5, 8,
13, 14, 29, 31, 35, 36, 38]), as are uniform hypergraphs (see, for exam-
ple, [6, 7, 8, 14, 15, 23, 25, 33, 34, 35, 36, 38]). A set S of vertices in a
hypergraph H is independent (also called strongly independent in the lit-
erature) if no two vertices in S belong to a common edge. Independence in
hypergraphs is well studied in the literature (see, for example, [3, 26, 32],
for recent papers on this topic).

Given a hypergraph H and subsets X,Y C V(H) of vertices, we let
H(X,Y) denote the hypergraph obtained by deleting all vertices in X UY
from H and removing all (hyper)edges containing vertices from X and re-
moving the vertices in Y from any remaining edges. If Y = @, we simply
denote H(X,Y) by H — X; that is, H — X denotes that hypergraph ob-
tained from H by removing the vertices X from H, removing all edges that
intersect X and removing all resulting isolated vertices, if any. Further, if
X = {z}, we simply write H — z rather than H — X. When we use the
definition H(X,Y) we furthermore assume that no edges of size zero are
created. That is, there is no edge e € E(H) such that V(e) C Y \ X. In
this case we note that if we add X to any 7(H(X,Y))-set, then we get a
transversal of H, implying that 7(H) < | X |+ 7(H(X,Y)). We will often
use this fact throughout the paper.

In geometry, a finite affine plane is a system of points and lines that
satisfy the following rules: (R1) Any two distinct points lie on a unique
line. (R2) Each line has at least two points. (R3) Given a point and a line,
there is a unique line which contains the point and is parallel to the line,
where two lines are called parallel if they are equal or disjoint. (R4) There
exist three non-collinear points (points not on a single line). A finite affine
plane AG(2,q) of order ¢ > 2 is a collection of ¢? points and ¢? + q lines,
such that each line contains ¢ points and each point is contained in ¢ + 1
lines. We use the standard notation [k] = {1,2,..., k}.

2 Motivation and Known Results

Let H be a hypergraph of order n,, = n(H) and size m,, = m(H). For k >
2, let Hy denote the class of all k-uniform hypergraphs. Tuza [39] proposed
the problem of determining or estimating the best possible constants c
(which depends only on k) such that 7(H) < cx(n, +m,,) for all H € Hy.
These constants are given by

T(H)
ck = sup ————.
HEH, My +Mmy
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It is a simple exercise to show ([12, p. 1180], or see [37]) that c; =

3. Chvétal and McDiarmid [9] and Tuza [39] independently established

that c3 = i, while Lai and Chang [33] showed that ¢, = 2. Applying
probabilistic arguments, Alon [1] determined the asymptotic behaviour of

¢k as k grows.

In(k)

Theorem 1 (Alon [1]) ¢ = (1 +0(1)) ( ) as k — oc.

As remarked by Alon [1], “it would be extremely interesting to determine
precisely the value of ¢, for every k. The considerable effort made in [33] to
show that ¢4 = % suggests that this may be difficult.” Indeed, the precise
value of ¢, has yet to be determined for any values of k with £ > 5.

Very few papers give bounds on the transversal number for linear hy-
pergraphs, even though these appear in many applications, as it seems
difficult to utilise the linearity in the known techniques. In this paper, we
nevertheless consider the class of k-uniform lnear hypergraphs, which we
denote by L;. Motivated by Tuza [39], we propose an analogous problem
of determining or estimating the best possible constants g, (which depends
only on k) such that 7(H) < gx(n,, +m,,) for all H € L. These constants
are given by

7(H)
gk = SUup —/—.
HeLx My + My

For k > 2, the family £y is a (proper) subfamily of Hy, implying that
gk < ck. For k > 2, let E} denote the k-uniform hypergraph on k vertices
with exactly one edge. If H = Ei, then H € Ly and 7(H)/(n, +m,) =
1/(k + 1), implying that g, > 1/(k+ 1). This yields the following observa-
tion.

Observation 1 Fork > 2, cx > qx > _k_-}-—l

If gy, = ‘ial'LT and the affine plane AG(2,k) of order k exists for some
k > 2, then the authors [27] show that the bound 7(H) < (n,,+m,,)/(k+1)
where H € L. is tight for average degree 1 and average degree k and for a
number of average degrees in the interval from 1 to k.

We note that the family £, is precisely the family 2, and so ¢ = ¢; =
%. For k > 3, the family £ is a proper subfamily of Hj, implying that ¢, <
ckx and that strict inequality may be possible. As a consequence of results
due to Tuza [39], Chvatal and McDiarmid [9], Henning and Yeo [20, 22],

and Dorfling and Henning [11], ¢3 = ¢3 = %. Further, for k € {2,3}, if
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H € L, then 7(H) = qx(n,, +m, ) if and only if H consists of a single
edge or H is obtained from the affine plane AG(2, k) of order k by deleting
one or two vertices. We state these known results formally as follows.

Theorem 2 ([27]) ¢2 = 1 and g3 = ;.

Applying probabilistic arguments, the authors [27] showed that the
asymptotic behaviour of gr as k grows is the same as that of ¢;, namely of
the order In(k)/k.

3 Main Result

and

(oLl [

As observed earlier, qx < ci for all £k > 2. Further, g0 = ¢ =
ia =5ty = i. In this paper, we determine the precise value of ¢4.

Theorem 3 g4 = -é—

Recall that ¢4 = %, and so, by Theorem 3, g4 < c¢4. Therefore, the
best possible upper bound on the transversal number for 4-uniform linear
hypergraphs is better than that for 4-uniform non-linear hypergraphs. We

remark that the result of Theorem 3 was conjectured by the authors in [25].

As shown by the authors [27] if the affine plane AG(2, k) of order k exists
for some k > 2, then there are a large number of densities of hypergraphs
H € Ly such that 7(H) = ﬁi(n,, + m, ). In particular, when £ = 4
we know that AG(2,4) exists. Let Fijg be the linear, 4-uniform, 5-regular
hypergraph of order 16 which is equivalent to the affine plane AG(2,4)
of order 4. Let e be an arbitrary edge in Fjs and let X be an arbitrary
non-empty subset of vertices belonging to the edge e. As shown in [27), if
H = Fig — X, then H € £4 and 7(H) = %(nﬂ + m,; ). Hence, the bound
T(H) < %(nh. +m,, ) is tight for average degree 1 and average degree 4 and
for a number of average degrees in the interval from 1 to 4. We summarize
this result in Table 1.

| H = Fg(X) |
7(H) | n,, | m, | (n, + m,,) | Average degree
X[=1] 6 |15] 15 6 60/15 = 4
X|=2 5 14 il 5 44/14 =~ 3.14.. ..
X | = 4 13 T 4 28/13 =~ 2.15...
XI=4| 3 |12 3 3 12/12 = 1

115



Table 1. Hypergraphs H € £, achieving equality in the bound
i H) & %(nH +m,,).

By Theorem 3, 7(H) < #(n, +m,,) for every hypergraph H € L. We
remark that this bound is not necessary true for the non-linear hypergraph
case as may be seen, for example, by taking k = 4 and letting H = F
be the complement of the Fano plane F', where the Fano plane is shown
in Figure 1 and where its complement F is the hypergraph on the same
vertex set V(F') and where e is a hyperedge in the complement if and only
if V(F) \ e is a hyperedge in F. In this case, H = F € H4 \ £4 and
T(H) =3 = &(n, +m,) > in, +m,).

Figure 1: The Fano plane F

We proceed as follows. In Section 4, we present a proof of Theorem 3.
We begin by defining fifteen special hypergraphs in Section 4.1 and in-
troducing the concept of the deficiency of a hypergraph in Section 4.2.
Thereafter in Section 4.4 we prove a key result, namely Theorem 6, about
the deficiency of a hypergraph that will enable us to prove Theorem 3. Fi-
nally in Section 4.5, we present a proof of Theorem 3 and in Section 5 we
present several applications of Theorem 3. In Section 6 we present some
open problems, questions and conjectures that we have yet to settle.

4 Proof of Theorem 3

Throughout this section, we let L4 3 be the class of all 4-uniform, linear
hypergraphs with maximum degree at most 3. We first define fifteen special
hypergraphs, which are shown in Figure 2.
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4.1 Special Hypergraphs
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Observation 2 If H is a special hypergraph of order n,, and size my, then
the following holds.

(a) If H=Hy, thenn, =4, m, =1 and T(H) = 1.

(b) If H = Hyo, thenn, =10, m,; =5 and 7(H) = 3.

(c) If H = Hy,, thenn, =11, m, =5 and #{H Y} = 3.

(d) If H = Hy4; wherei € [6], then n,, = 14, m,, =7 and 7(H) = 4.
(e) If H = Hyy ; where i € (6], then n,, =21, m,, = 11 and 7(H) = 6.
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Figure 2: Fifteen special hypergraphs.
(f) Any given vertex in H belongs to some 7(H)-transversal.

4.2 The Deficiency of a Set

Let H be a 4-uniform hypergraph. A set X is a special H-set if it consists
of subhypergraphs of H with the property that every subhypergraph in X
is a special hypergraph and further these special hypergraphs are pairwise
vertex disjoint. For notational simplicity, we write V(X) and E(X) to
denote the set of all vertices and edges, respectively, in H that belong to
a subhypergraph H’ € X in the special H-set X. Let X be an arbitrary
special H-set.

A set T of vertices in V(X)) is an X-transversal if T is a minimum
set of vertices that intersects every edge from every subhypergraph in X.
We define E};(X) to be the set of all edges in H that do not belong to a
subhypergraph in X but which intersect at least one subhypergraph in X.
Hence if e € E*(X), then e ¢ E(H'’) for every subhypergraph H’ € X but
V(e)NV(H'’) # 0 for at least one subhypergraph H’ € X. If the hypergraph
H is clear from context, we simply write £*(X) rather than E} (X) . We
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associate with the set X a bipartite graph, which we denote by G x, with
partite sets X and E*(X), where an edge joins e € E*(X) and H' € X in
G x if and only if the edge e intersects the subhypergraph H’ of X in H.

We define a weak partition of X = (X4, X10,X11,X14,X21) (Where a
weak partition is a partition in which some of the sets may be empty) where
X; C X consists of all subhypergraphs in X of order 7, 7 € {4, 10,11, 14, 21}.
Thus, X = X3 U X730 U X711 U X174 U X251 and le = fX4| + |X10| + |X11| +
| X14] + | X21]. As an immediate consequence of Observation 2(a)—(e), we
have the following result.

Observation 3 If X is a special H-set and T is an X -transversal, then
IT| = |Xa| + 3| X10| + 3| X11| + 4| X14| + 6] X1 |-
We define the deficiency of X in H as
defp (X) = 10| X 10| + 8| X4| + 5| X14| + 4| X 11| + | X21]| — 13| E*(X)].
We define the deficiency of H by
def(H) = maxdef 5 (X)

where the maximum is taken over all special H-sets X. We note that taking
X = 0, we have def(H) > 0.

4.3 Known Results and Observations

We shall need the following theorem of Berge [4] about the matching number
of a graph, which is sometimes referred to as the Tutte-Berge formulation
for the matching number.

Theorem 4 (Tutte-Berge Formula) For every graph G,

(€)= min 3 (V(G)|+1X| - oc(G ~ X)),

where oc(G — X)) denotes the number of odd components of G — X.

We shall also rely heavily on the following well-known theorem due to
Konig [30] and Hall [16] in 1935.

Theorem 5 (Hall’s Theorem) Let G be a bipartite graph with partite sets
X and Y. Then X can be matched to a subset of Y if and only if |IN(S)| >
|S| for every nonempty subset S of X.
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4.4 Key Theorem

Recall that L4 3 is the class of all 4-uniform linear hypergraphs with maxi-
mum degree at most 3. We shall need the following key result in order to
prove Theorem 3. We remark that some of the more technical details of
our proof of Theorem 6 are straightforward but tedious to check and are
therefore omitted. However our proof presents all the important and major
ideas, taking special care to provide sufficient detail and rigor for the reader
to check its correctness without getting side tracked with some of the more
technical parts of the proof.!

Theorem 6 If H € L43, then 457(H) < 6n(H) + 13m(H) + def(H).

Proof. For a 4-uniform hypergraph H, let §(H) = 457(H) — 6n(H) —
13m(H) — def(H). We wish to show that if H € L43, then £(H) < O.
Suppose, to the contrary, that the theorem is false and that H € L43 is
a counterexample with minimum value of n(H) + m(H). Thus, §&(H) > 0
but every hypergraph H' € L43 with n(H’) + m(H') < n(H) + m(H)
satisfies §(H’) < 0. We show first that the hypergraph H is connected and
6(H) > 1. We then prove that given a special H-set, X, there is no X-
transversal, T, such that |T'| = | X4| + 3| X10| + 3| X 11| + 4|X14| + | X21] and
T intersects every edge in E*(X). From these properties of H, we deduce
that H is not a special hypergraph. Among all special non-empty H-sets,
let X be chosen so that

(1) |E*(X)| — | X| is minimum.
(2) Subject to (1), | X| is maximum.

With this choice of the H-set X, we prove next that |E*(X)| > |X|+1
and that if X’ 3 ( is a special H-set, then |[E*(X’)| > |X’|+ 1. Thereafter,
we show that def(H) = 0. For a hypergraph H' € L43, let &(H') = £(H')—
£(H). We show that if H' € L4 3 satisfies n(H') + m(H') < n(H) + m(H),
then ®(H’) < 0. We then show that our earlier property |E*(X)| > | X|+1
can be improved to |E*(X)| > | X|+2. From this property, we deduce that if
Y is an arbitrary special H-set, then |E*(Y)| > |Y|+2. Further if |Yio| > 2,
then |E*(Y)| > |Y| + 3. In particular, this implies that if |Xi9| > 2, then
|E*(X)| > |X|+ 3. We prove next that there is no Hjg-subhypergraph in
H.

Recall that the boundary of a set Z of vertices in a hypergraph H is the
set Ny(Z) \ Z, denoted 0y (Z) or simply 9(Z) if H is clear from context.
Let Z C V(H) be an arbitrary nonempty set of vertices and let H' = H—Z.
We prove next that either |E}, (Y)| > |Y| for all special H'-sets Y in H’

LA proof with all the technical details can be found in [28].
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(and therefore def(H’) = 0) or there exists a transversal 7 in H’, such
that 45|7”| < 6n(H’) + 13m(H’) + def(H’) and T N8(Z) # 0. Now let f
be the function defined in Table 1.

i 123425
FG) |39 [33 27 [ 23| 22

Table 1. The function f.

We are now in a position to state the following claim, the proof of which
we omit.

Claim A: Let Z C V(H) be an arbitrary nonempty set of vertices that
intersects at least two edges of H, and let H' = H—Z. If def(H’) < 21 and
|8(Z)| > 1, then there exists a transversal, T’, in H’, such that 7'N8(Z) # 0
and the following holds. :

(a) 45|T| < 6n(H')+ 13m(H') + f(|0(Z)]).
(b) If |8(Z)| > 5 and H' does not contain two intersecting edges e and f,
such that
(i) 3(Z) S (V(e) UV () \ (V(e) nV(f)),
(ii) e contains three vertices of degree 1, and
(iii) |8(Z) NV (e)|,|8(Z2) NV (f)] = 2,
then 45|T"| < 6n(H')+13m(H")+f(|0(Z)|)—1 = 6n(H")+13m(H')+
21

We call a component of a 4-uniform, linear hypergraph that contains
two vertex disjoint copies of H4 that are both intersected by a common
edge and such that each copy of Hy has three vertices of degree 1 and one
vertex of degree 2 a double-H4-component. We call these two copies of Hy
the Hy-pair of the double- Hy-component, and the edge that intersects them
the linking edge. We note that a double- H4-component contains at least ten
vertices, namely eight vertices from the Hy-pair and at least two additional
vertices that belong to the linking edge. We are now in a position to state
the following claim, the proof of which we omit.

Claim B: If z is an arbitrary vertex of H of degree 3, then one of the
following holds.

(a) def(H —z) = 8 and the hypergraph H — z contains an H4-component
that is intersected by all three edges incident with z.

(b) def(H — z) = 3 and the hypergraph H — z contains a double-Hj-
component. Further, the Hy-pair in this component is intersected by
all three edges incident with z.
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Using Claim B, we show that no edge in H contains two vertices of
degree 1 of H. Let H' be a 4-uniform, linear hypergraph with no Hio-
subhypergraph satisfying def(H’) > 0. We show that if ¥ is a special
H’-set satisfying def(H’) = defy/(Y'), then |E},(Y)| = |Y| — ¢ for some
i > 1 and def(H’) < 13i — 5|Y3| — 8|Y14| — 9|Y11| — 12|Y21|. In particular,
def(H') < 13i — 5|Y|. Further, if def(H’) > 8; for some 7 > 0, then
|Ef/(Y)] < |Y] — (5 +1). Using these facts, we are able to establish the
following result, the proof of which we omit.

Claim C: The following properties hold in the hypergraph H.

(a) If z is an arbitrary vertex of H of degree 3, then H — z contains an
H4-component.

(b) No edge in H contains two vertices of degree 3.

(c) Every vertex of degree 3 in H has at most one neighbor of degree 1.

By Claim B and Claim C(a), if z is an arbitrary vertex of H of degree 3,
then the hypergraph H — = contains an H4-component that is intersected
by all three edges incident with z, and def(H — z) = 8. By Claim C(b), no
edge in H contains two vertices of degree 3. By Claim C(c), every vertex
of degree 3 in H has at most one neighbor of degree 1. We now define the
operation of duplicating a vertex of degree 3 z as follows.

Let e;, ez and e3 be the three edges incident with z. By Claim C(b)
and Claim C(c), every neighbor of z has degree 2, except possibly for one
vertex which has degree 1. Renaming edges if necessary, we may assume
that the edge e; contains no vertex of degree 1, and therefore every vertex
in e; different from x has degree 2. We now delete the edge e; from H, and
add a new vertex z’ and a new edge e] = (V(e1) \ {z}) U {z'} to H. We
note that in the resulting hypergraph the vertex z now has degree 2 (and
is incident with the edges e; and e3) and the new vertex z’ has degree 1
with all its three neighbors of degree 2. We call z’ the vertex duplicated

copy of z.

Let H' be obtained from H by duplicating every vertex of degree 3
as described above. By construction, H’ is a linear 4-uniform connected
hypergraph with minimum degree §(H’) > 1 and maximum degree A(H’) <
2. For i € [2], let n;(H’) be the number of vertices of degree ¢ in H’. Then,
n(H') =n1(H')+no(H’) and 4m(H’) = 2no(H') + ny(H’). We are now in
a position to state the following claim, the proof of which we omit.

Claim D: The following properties hold in the hypergraph H’.

(a) 7(H) = 7(H').
(b) def(H’) = 0.
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We now consider the multigraph G whose vertices are the edges of H’
and whose edges correspond to the na(H’) vertices of degree 2 in H': if a
vertex of H' is contained in the edges e and f of H’, then the corresponding
edge of the multigraph G joins vertices e and f of G. By the linearity of
H’, the multigraph G is in fact a graph, called the dual of H’. We shall
need the following properties about the dual G of the hypergraph H’, the
proof of which we omit.

Claim E: The following properties hold in the dual, G, of the hyper-
graph H'.

(a) G is connected, n(G) = m(H') and m(G) = ny(H').
(b) A(G) <4, and so m(G) < 2n(G) and 8n(G) + 6m(G) < 20n(G).
(c) 7(H') = m(H') — a'(G).

Suppose that z is a vertex of degree 3 in H, and let z’ be the vertex
duplicated from = when constructing H. Adopting our earlier notation, let
e1, e2 and e3 be the three edges incident with . Further, let e be the edge
in the Hy-component of H — z, and let y be the vertex of degree 1 in e.
Let y; be the vertex common to e and e; for z € [3], and so y; = (ee;) and
V(e) = {y,v1,¥2,y3}. We note that in the graph G, which is the dual of
H’, the vertex e has degree 3 and is adjacent to the vertices e;, e; and e3.
Further, we note that in the graph G, the vertex e; has degree 3, while the
vertices e; and e3 are adjacent and have degree at most 4. Further, the edge
y; in GG is the edge ee;, while the edge z in G is the edge ezes. The vertex e,
is adjacent in G to neither e nor e3. This set of four vertices {e, e;,eq, €3}
in the graph G we call a quadruple in G. We illustrate this quadruple in G
in Figure 3. We denote the set of (vertex-disjoint) quadruples in G by Q.

RIS

@| |O] |O

@ o) o
(] €9 €3

Figure 3: The transformation creating a quadruple.

We shall need the following additional property about the dual G of the
hypergraph H’, the proof of which we omit.
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Claim F: If G is the dual of the hypergraph H’, then

457(H') < 6n(H') + 13m(H’) — 6|Q|
& 450/(G) > 8n(G) + 6m(G) + 6|Q)|.

Let S be a set of vertices in G such that (n(G) + |S| — oc(G — 5))/2 is
minimum. By the Tutte-Berge Formula,

&/ (G) = %(n(G’) + S| = oc(G — 9)). (1)

We now consider two cases, depending on whether S =0 or S # 0.
Claim G: If S # 0, then 457(H') < 6n(H') + 13m(H’) — 6|Q)|.

Proof of Claim G: Suppose that S # (. For i > 1, let n;(G — S) denote
the number of components on G — S of order i. Let n}(G — S) be the
number of components of G — § isomorphic to K5 — e and let nZ(G — S)
denote all remaining components of G — S on five vertices (with at most
eight edges), and so ns(G — S) = nl(G — S) + nZ(G — S). For notational
convenience, let n = n(G), m = m(G), ni = nd(G - 9), n2 = n3(G-9),
and n; = n;(G — S) for i > 1. Let Z' denote the set of all positive
integers, and let Z},_ and Zg‘dd denote the set of all even and odd integers,

even

respectively, in Z*. Further for a fixed j € Z1, let Z>; = {i € Z | i > j},

Zion = {3 € Z>j | i even}, and Z! y, = {¢ € Z>, | i odd}. We note that
n=|S|+Zz’-ni. (2)
i€Zt

By Equation (1) and Equation (2), and since
oc(G-8)= > n,
ezt ,

we have the equation

45a’(G)=45|S|+42—5 (( Y-+ > zn) (3)

€23, i€z2,
Claim G.1: m < 4|S| 4+ n2 +3n3 + 6nyg + 9n§ + 87‘&% + Z (2¢ — 1)n; — IQ'
icz6
Proof of Claim G.1: Since G is connected and A(G) < 4, we note that

if F' is a component of G — S of order i, then m(F') < 2¢ — 1. Further, every
component of G — S of order 5 is either isomorphic to K5 — e or contains
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at most eight edges, while every component of G — S of order 2, 3 and 4
contains at most 1, 3 and 6 edges, respectively. The above observations
imply that

m < 4|S| + ny +3ns + 6ng + 90} +8n2 + > (2 — In,.
1€Z5

We show next that each quadruple in the graph G decreases the count
on the right hand side expression of the above inequality by at least 1.
Adopting our earlier notation, consider a quadruple {e,e;,e2,e3}. Recall
that the vertices e and e; both have degree 3 in GG, and there is no vertex
in G that is adjacent to both e and e;. Further, recall that the vertices e
and ez are adjacent in G. If e or e; or if both e; and e3 belong to the set
S, then the quadruple decreases the count 4|S| by at least 1. Hence, we
may assume that e, e; and e, all belong to a component, C say, of G — S.
In particular, we note that C has order at least 3. Abusing notation, we
say that the component C contains the quadruple {e, e;, ez, e3}, although
possibly the vertex es may belong to S. Since no vertex in G is adjacent
to both e and e;, we note that if the component C has order 3, 4 or 5,
then it contains at most 2, 4 and 7 edges, respectively. Further, since we
define a component to contain a quadruple if it contains at least three of
the four vertices in the quadruple, we note in this case when the component
C has order at most 5 that it contains exactly one quadruple. Further, this
quadruple decreases the count 3n3 + 6n4 + 9n} + 8n? by at least 1.

It remains for us to consider a component F of G — S of order i > 6
that contains ¢ quadruples, and to show that these ¢ quadruples decrease
the count 2¢ — 1 by at least g. We note that each quadruple contains a pair
of adjacent vertices of degree 3 in G. Further, at least one vertex v in F
is joined to at least one vertex of S in G, implying that dp(v) < dg(v).
These observations imply that 2m(F) = }° oy () dr(v) < 4n(F)—2¢—1 =
4i —2q—1, and therefore that m(F') < 2i — ¢ — 1. Hence, these g quadruples
contained in F' combined decrease the count 2 — 1 by at least q. This
completes the proof of Claim G.1. (o)

By Claim G.1 and by Equation (2), we have
8n+6m +6|Q| < 32|S|+8ny + 22ny + 42n3 + 68ny

+88n3 + 94ng + ) (20i — 6)n;. (4)
I€Z8
Let
1
2even = Z (—'l + 6) o (7 and Eodd = Z 5 (51 — 33) n;
€25 0n i€Z7,,
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We note that every (odd) component in G isomorphic to K corresponds
to a subhypergraph Hy in H’, while every (odd) component in G isomorphic
to K5 — e corresponds to a subhypergraph H;; in H’. Hence the odd
components of G isomorphic to K; or isomorphic to K5 — e correspond to a
special H'-set, X say, where | X| = | X4| + |X11], | X4] = n1 and |X;;| = nd.
Further, the set S of vertices in G correspond to the set E*(X) of edges in
H’, and so |[E*(X)| < |S|. Thus,

def g/ (X) = 8| X4| + 4| X11| — 13| E*(X)| > 8ny + 4ni — 13|S)|.
By Claim D(b), def g/ (X) < def(H’) = 0, and therefore we have that
13|S| > 8ny +4ni. (5)

By Equation (3), and by Inequalities (4) and (5), and noting that ¥.yen, > 0
and Y,qq > 0, the following now holds.

3
150/(G) 2 32/8| + 8ny + 22ns + 42n5 + 68n4 + 88nZ + 04n) + 3 (20i — 6)n,
1€Z8
+13|S| — 8n; + 23ny + 3na + 22n4 + 2n2 — 4n) + Zeven + Toad

(1)
>

(8n + 6m + 6|Q|) + (13|S| — 8ny — 4nl)
(5)
S 8n+ 6m +6|Q|.

Claim G now follows from Claim F. (o)
Claim H: If S = 0, then 457(H) < 6n(H) + 13m(H) — 6|Q)|.
Proof of Claim H: Suppose that S = §). Then, o'(G) = (n(G)—oc(G))/2.
Since G is connected by Claim E, we have the following.
in(G if n(G) is even
v = | 1@ (@)
+(n(G) — 1) if n(Q) is odd.

By Claim E(b), A(G) < 4. As every quadruple in G contains two
vertices of degree 3,

2m(G) = Y _ de(v) < 4n(G) — 2|Q)|,

veG

implying that 12n(G) > 6m(G) + 6|Q|. If n(G) is even, then o'(G) =
n(G)/2, and so

450/ (G) = ilzén(G) > 8n(G) + 12n(G) > 8n(G) + 6m(G) + 6|Q).
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This completes the case when n(G) is even by Claim F. Suppose next that
n(G) is odd. In this case 45a’(G) = 45(n(G) — 1)/2, and so

900/ (G) = 45n(G)—45 = 21n(G)+24n(G)—45 > 21n(G)+12m(G)+12|Q|—45.

If 5n(G) > 45, then 900/ (G) > 16n(G) + 12m(G) + 12|Q|, which com-
pletes the proof by Claim F. We may therefore assume that 5n(G) < 45,
implying that n(G) € {1,3,5,7}. Since every quadruple contains four ver-
tices, we must therefore have |Q] < 1.

We first consider the case when |Q| = 1. In this case n(G) > 6, as the
quadruple contains four vertices and one vertex (called e; in the definition of
a quadruple) has two neighbours outside the quadruple. Therefore, n(G) =
7. Since two vertices in the quadruple have degree at most 3, 2m(G) =
2 wev(c) dv) < 4n(G) — 2 = 26, and so m(G) < 13. If m(G) < 12,
then 450/(G) = 45-3 > 8- 74+ 6-12+ 6 > 8n(G) + 6m(G) + 6|Q|, and
the desired result follows from Claim F. Therefore, we may assume that
m(G) = 13, for otherwise the case is complete. In this case, all vertices
in G have degree 4 except for two vertices in the quadruple which have
degree 3. Let {e,e;,e2,e3} be the vertices in the quadruple in G, such
that d(e) = d(e;) = 3 and e, e; and ez form a 3-cycle in G. Define u;
and ug such that N(e;) = {e,u1,u2} and define w, such that V(G) =
{e,e1,e2,e3,u1,uz,w}. As d(w) = 4 and w is not adjacent to e or e; we
have N(w) = {ez2,es,u1,u2}. Therefore, e, is adjacent to e, ez and w.
Its fourth neighbour is either u; or us. Renaming u; and us if necessary,
we may assume that N(ez) = {e, e3,w,uz}. This implies that u; must be
adjacent to us and e3 and G is the graph shown in Figure 4.

Figure 4: The graph G if |Q| = 1.

If we draw the corresponding hypergraph whose dual is the graph G,
we note that it is obtained by duplicating the vertex of degree 3 in Hy4 3.
However, H is not equal to Hj43 by Claim C, implying that G cannot
be the graph in Figure 4, a contradiction. This completes the case when
|@Q| = 1. Therefore, we may assume that |Q| = 0.
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If n(G) = 1, then H = Hy, a contradiction. Hence, n(G) € {3,5,7}.
Suppose that n(G) = 3. Then, o/(G) = 1 and m(G) < 3. In this case,
8n(G) + 6m(G) < 8-3+6-3 =42 < 45 = 450/(G), which by Claim F
completes the proof. Hence we may assume that n(G) =5 or n(G) = 7.

Suppose that n(G) = 5. Then, o'(G) = 2 and by Claim E(b), m(G) <
10. If m(G) = 10, then G = K5. In this case, H is a 4-uniform 2-regular
linear intersecting hypergraph. However, Hg is the unique such hypergraph
as shown, for example, in [11, 26]. Thus if m(G) = 10, then H = Hjg, a
contradiction. Hence, m(G) < 9. If m(G) = 9, then G = K5 — e, where e
denotes an arbitrary edge in K5. In this case, H = H;;, a contradiction.
Hence, m(G) < 8. Thus, 8n(G)+6m(G) < 8-5+6-8 = 88 < 90 = 450/(G),
which by Claim F completes the proof in this case.

Finally suppose that n(G) = 7. Then, a'(G) = 3 and by Claim E(b),
m(G) < 14. Suppose that m(G) = 14. Then, G is a 4-regular graph
of order 7. Equivalently, the complement, G, of G is a 2-regular graph
of order 7. If a = 03 Uy 04, then H = H14‘2. If 5 = 07, then H =
H,4,4. Both cases we produce a contradiction. Hence, m(G) < 13. Thus,
8n(G)+6m(G) <8 -7+6-13 = 134 < 135 = 45a/(G), which by Claim F
completes the proof. (o)

Recall that n(H’) = n(H) + |Q| and m(H’) = m(H). By Claim D(a),
Claim G and Claim H, 457(H) = 457(H’) < 6n(H’) + 13m(H’) — 6|Q| =
6n(H)+13m(H), a contradiction. This completes the proof of Theorem 6. O

4.5 Proof of Theorem 3

We are finally in a position to present a proof of Theorem 3. Recall its
statement.

Theorem 3. g4 = %

Proof of Theorem 3. Let H € L4 have n vertices and m edges. We
show that 7(H) < (n + m)/5. We proceed by induction on n. If n = 4,
then H consists of a single edge, and 7(H) =1 = (n+m)/5. Let n > 5
and suppose that the result holds for all hypergraphs in £4 on fewer than
n vertices. Let H € £, have n vertices and m edges.

Suppose that A(H) > 4. Let v be a vertex of maximum degree in H,
and consider the 4-uniform, linear hypergraph H' = H — v on n’ vertices
with m’ edges. We note that n”’ =n —1and m’' =m — A(H) < m — 4.
Every transversal in H' can be extended to a transversal in H by adding
to it the vertex v. Hence, applying the inductive hypothesis to H’, we have
that 7(H) < 7(H)+1< (n"4+m')/5+1 < (n+m—5)/5+1= (n+m)/5.
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Hence, we may assume that A(H) < 3, for otherwise the desired result
follows. With this assumption, we note that 4m < 3n. Applying Theorem 6
to the hypergraph H, we have

457(H) < 6n(H) + 13m(H) + def(H).

If def(H) = 0, then 457(H) < 6n(H) + 13m(H) = (9n + 9m) + (4m —
3n) < 9(n+m), and so 7(H) < (n +m)/5. Hence, we may assume that
def(H) > 0, for otherwise the desired result follows. Among all special
non-empty H-sets, let X be chosen so that |[E*(X)| — | X| is minimum. We
note that since def(H) > 0, |[E*(X)| — |X| < 0. As in Section 4.2, we
associate with the set X a bipartite graph, Gx, with partite sets X and
E*(X), where an edge joins e € E*(X) and H' € X in Gy if and only if
the edge e intersects the subhypergraph H' of X in H. Suppose that there
is no matching in Gx that matches E*(X) to a subset of X. By Hall’s
Theorem, there is a nonempty subset S C E*(X) such that |[Ng, (S)| < |S].
We now consider the special H-set, X' = X \ Ng, (S), and note that
| X'| = | X| = [Ngx (S)| > |E*(X)| — |S]| 2 0 and |E*(X")| = |[E*(X)| - |S].
Thus, X’ is a special non-empty H-set satisfying

|E*(X)| =X = (E*(X)|=|S]) = (IX]| = INax (5)])
= (IE"(X)] = |X]) + (INax (S)| - IS])
< |E*(X)| - IX],

contradicting our choice of the special H-set X. Hence, there exists a

matching in Gx that matches E*(X) to a subset of X. By Observation 2(f),
there exists a minimum X-transversal, T, that intersects every edge in

E*(X). By Observation 2, every special hypergraph F satisfies 7(F) <
(n(F) +m(F))/5. Hence, letting

n(X)= Y n(F) and m(X)= > m(F),
FeX FeX
we note that

Txl = 3 n(ry < 3 MO EmE) )+ mlX)
Fex FeX

We now consider the 4-uniform, linear hypergraph H' = H — V(X)
on n’ vertices with m’ edges. We note that n’ = n — n(X) and m’ =
m—m(X)—|E*(X)| < m—m(X). Every transversal in H' can be extended
to a transversal in H by adding to it the set Tx. Hence, applying the
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inductive hypothesis to H’, we have that

T(H) < 7(H')+|Tx|
< (0 +m)+[Tx]|
< (n+m)— 3(n(X) + m(X)) + [Tx|
< zn+m)

Thus, ¢4 < -51~ Since the affine plane AG(2,4) exists, we know by Theo-
rem 2(b) that g4 > &. Consequently, ¢4 = 3. O

5 Applications of Theorem 3

In this section, we present a few applications to serve as motivation for the
significance of our result given in Theorem 3.

5.1 Application 1

The following conjecture is posed in [22].

Conjecture 1 ([22]) If H is a 4-uniform, linear hypergraph on n vertices
with m edges, then T(H) < 2 + %.

We remark that the linearity constraint in Conjecture 1 is essential.
Indeed if H is not linear, then Conjecture 1 is not always true, as may be
seen, for example, by taking H to be the complement of the Fano plane,
F, shown in Figure 1. The second consequence of our main result proves
Conjecture 1.

Theorem 7 Conjecture 1 is true.

Proof. Let H be a 4-uniform, linear hypergraph on n vertices with m
edges. We show that 7(H) < Z + 2. We proceed by induction on n. If
n =4, then H consists of a single edge, and 7(H) =1 < 2+ %2. Let n > 5
and suppose that the result holds for all 4-uniform, linear hypergraphs
on fewer than n vertices. Let H be a 4-uniform, linear hypergraph on n
vertices with m edges. Suppose that A(H) < 6. In this case, 2m < 3n. By
Theorem 3, 607(H) < 12n 4+ 12m = 15n + 10m + 2m — 3n < 15n + 10m,
or, equivalently, 7(H) < & + %. Hence, we may assume that A(H) > 7,
for otherwise the desired result follows from Theorem 3. Let v be a vertex
of maximum degree in H, and consider the 4-uniform, linear hypergraph
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H' = H —v onn/ = n— 1 vertices with m’ edges. We note that n’ =n —1
and m’ = m — A(H) < m — 7. Every transversal in H' can be extended
to a transversal in H by adding to it the vertex v. Hence, applying ]:he
inductive hypothesis to H’, we have that 7(H) < 14+7(H') < 1+ 5+ % <
1+2pm=lczim g

5.2 Application 2

A total dominating set, also called a TD-set, of a graph G with no isolated
vertex is a set S of vertices of G such that every vertex is adjacent to
a vertex in S. The total domination number of G, denoted by v:(G), is
the minimum cardinality of a TD-set of G. Total domination in graphs is
now well studied in graph theory. The literature on this subject has been
surveyed and detailed in a recent book on this topic that can be found
in [24]. A survey of total domination in graphs can be found in [17].

The Heawood graph, shown in Figure 5(a), is the unique 6-cage. The
bipartite complement of the Heawood graph, shown in Figure 5(b), is the
bipartite graph formed by taking the two partite sets of the Heawood graph
and joining a vertex from one partite set to a vertex from the other partite
set by an edge whenever they are not joined in the Heawood graph.

(a) The Heawood graph (b) The bipartite complement

Figure 5: The Heawood graph.
Thomassé and Yeo [37] established the following upper bound on the

total domination number of a graph with minimum degree at least 4. Recall
that 6(G) denotes the minimum degree of a graph G.

Theorem 8 ([37]) If G is a graph of order n with §(G) > 4, then 1(G) <
3
=n.

The extremal graphs achieving equality in the Thomassé-Yeo bound of
Theorem 8 are given by the following result.
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Theorem 9 ([22, 24]) If G is a connected graph of order n with §(G) > 4
that satisfies v,(G) = 2n, then G is the bipartite complement of the Heawood
Graph.

We remark that every vertex in the bipartite complement of the Hea-
wood Graph belongs to a 4-cycle. It is therefore a natural question to
ask whether the Thomassé-Yeo upper bound of %n can be improved if we
restrict G to contain no 4-cycles. As a consequence of our main result
Theorem 3, this question can now be answered in the affirmative. For
a graph G, the open neighborhood hypergraph, abbreviated ONH, of G is
the hypergraph Hg with vertex set V(Hg) = V(G) and with edge set
E(Hg) = {N¢g(z) | © € V} consisting of the open neighborhoods of ver-
tices in G. As first observed in [37] (see also [24]), the transversal number of
the ONH of a graph is precisely the total domination number of the graph;
that is, for a graph G, we have v(G) = 7(Hg).

As an application of Theorem 3, we have the following result, which
significantly improves the upper bound of Theorem 8 when the graph G
contains no 4-cycle.

Theorem 10 If G is a quadrilateral-free graph of order n with 6(G) > 4,
then v(G) < —g-n

Proof. Let G be a quadrilateral-free graph of order n with 6(G) > 4
and let Hg be the ONH of G. Then, each edge of Hg has size at least 4.
Since G is contains no 4-cycle, the hypergraph H¢g contains no overlapping
edges and is therefore linear. Let H be obtained from H¢ by shrinking all
edges of Hg, if necessary, to edges of size 4. Then, H is a 4-uniform linear
hypergraph with n vertices and n edges; that is, n(H) = m(H) = n(G) = n.
By Theorem 3 we note that 7(H) < {(n(H)+m(H)) = 2n. This completes
the proof of the theorem since v(G) = 7(Hg) < 7(H). O

That the bound in Theorem 10 is best possible, may be seen by tak-
ing, for example, the 4-regular bipartite quadrilateral-free graph Gsg of
order n = 30 illustrated in Figure 6 satisfying 7,(G30) = 12 = 2n. We note
that the graph Gy is the incidence bipartite graph of the linear 4-uniform
hypergraph obtained by removing an arbitrary vertex from the affine plane
AG(2,4) of order 4.

5.3 Application 3

There has been much interest in determining upper bounds on the transver-
sal number of a 3-regular 4-uniform hypergraph. In particular, as a conse-
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Figure 6: A quadrilateral-free 4-regular graph Gsp of order n = 30 with
7¢(G3o) = %n

quence of more general results we have the Chvatal-McDiarmid bound, the
improved Lai-Chang bound, the further improved Thomassé-Yeo bound,
and the recent bound given in [25]. These bounds are summarized in The-
orem 11.

Theorem 11 Let H be a 3-regular, 4-uniform hypergraph on n wvertices.
Then the following bounds on T(H) have been established.

(a) T7(H) < $5n = 0.41667n (Chvatal, McDiarmid [9]).
(b) T(H) < &n ~ 0.38888n (Lai, Chang [33]).

(c) 7(H) < 28;177, = 0.38095n (Thomassé, Yeo [37]).

(d) 7(H) < 3n =~ 0.375n (Henning, Yeo [25)).

The bound in Theorem 11(d) is best possible, due to the (non-linear)
hypergraph, Hg, with n = 8 vertices and 7(H) = 3 shown in Figure 7.

@ ><>'<;

Figure 7: A 3-regular 4-uniform hypergraph, Hg, on n vertices with 7(Hg) =
3

g‘n.

A natural question is whether the upper bound in Theorem 11(d),
namely 7(H) < gn, can be improved if we restrict our attention to lin-
ear hypergraphs. We answer this question in the affirmative. If H is a

3-regular, 4-uniform, linear hypergraph on n vertices with m edges, then
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= ;i—n, and so, by Theorem 3, 7(H) < %(n +m) = -El;(n + %n) = %n.
Hence, as an immediate corollary of Theorem 3, we have the following

result.

Theorem 12 If H is a 3-regular, 4-uniform, linear hypergraph on n ver-
tices, then T(H) < 5 n = 0.35n.

5.4 Application 4

Lai and Chang [33] established the following upper bound on the transversal
number of a 4-uniform hypergraph.

Theorem 13 ([33]) If H is a 4-uniform hypergraph with n vertices and m
edges, then T(H) < -g—(n +m).

W \S

Figure 8: The hypergraph T}.

The hypergraph T}, illustrated in Figure 8, shows that the Lai-Chang
bound is best possible, even if we restrict the maximum degree to be equal
to 2. Our main result, namely Theorem 3, improves this upper bound from

Zn+m)to i $(n+m) in the case of linear hypergraphs As an application
of the proof of our mam result, we show that the 1(n + m) bound can be
further improved to 5 3 (n+m) + 16 if we exclude the special hypergraph
Hyp.

For this purpose, we construct a family, 7, of 4-uniform, connected,
linear hypergraphs with maximum degree A(H) = 2 as follows. Let Fj
be the hypergraph with one edge (illustrated in Figure 2(a), but with a
different name, Hy). For ¢ > 1, we now build a hypergraph F; inductively
as follows. Let F; be obtained from F;_; by adding 12 new vertices, adding
three new edges so that each new vertex belongs to exactly one of these
added edges, and adding one further edge that contains a vertex in V(F;_;)
and three additional vertices, one from each of the three newly added edges,
in such a way that A(F;) = 2. Let F be the family of all such hypergraphs,
F;, wherei > 0. A hypergraph, Fg, in the family F is illustrated in Figure 9.

We proceed further with the following lemma. Let ¢(H) denote the
number of components of a hypergraph H. Recall that if X is a special
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Figure 9: A hypergraph, Fg, in the family F.

H-set, we write E*(X) to denote the set E};(X) if the hypergraph H is
clear from context.

Lemma 14 If H is a 4-uniform, linear hypergraph and X is a special H-
set, then 3|E5(X)| > | X| — ¢(H).

Proof. We proceed by induction on |Ey(X)| = k > 0. If £ = 0, then
c(H) = |X]|, and so 3|E*(X)| = 0 > |X| — c(H). This establishes the
base case. Suppose k > 1 and the result holds for special H-sets, X, such
that |E%(X)| < k. Let X be a special H-set satisfying |E};(X)| = k. Let
e € E}(X) and consider the hypergraph H' = H — e. We note that H’
is a 4-uniform, linear hypergraph, and that ¢(H') < ¢(H) + 3. Further,
the set X is a special H'-set satisfying |E};,(X)| = k — 1. Applying the
inductive hypothesis to the hypergraph H' € £4 3 and to the special H'-set,
X, we have 3(|E},; (X)| — 1) = 3|E}, (X)| = |X|—c(H') 2 |X| - (c(H)+3),
implying that 3|E(X)| 2 | X| —¢(H). O

We are now in a position to state the following result, where Hjo, Hy4 5
and H,46 are the 4-uniform, linear hypergraphs shown in Figure 2(b), 2(h)
and 2(i), respectively. As observed earlier, Hy = Fy, and so Hy € F.

Theorem 15 Let H # Hyo be a 4-uniform, connected, linear hypergraph
with mazimum degree A(H) < 2 on n vertices with m edges. Then, T(H) <
13—6(n +m) + %, with equality if and only if H € {H14,5, Hias} or H € F.

Proof. Let H # Hjg be a 4-uniform, connected, linear hypergraph with
maximum degree A(H) = 2 on n vertices with m edges. Suppose firstly
that H is a special hypergraph. By assumption, H # H;g. Since A(H) < 2,
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we note that H € {Hy, Hy1, H1a5,H1a,6}. If H = Hy;, then by Observa-
tion 2(e), v(H) = -i%(n +m). If H € {H4, Hia,5, Hi14,6}, then by Observa-
tion 2(a) and 2(d), 7(H) = 13—6(71 +m) + 3. Hence, we may assume that H
is not a special hypergraph, for otherwise the desired result holds, noting
that Hy € F.

Since A(H) < 2, we observe that m < Zn. By Theorem 6, 457(H) <
6n + 13m + def(H). Suppose that def(H) = 0. Then, since 0 < in —m,

we have
6n + 13m

6n + 13m + 13—4(%11 —m)
(6 + Win+ (13- P)ym
T(n_i_m):

457(H)

I IAIA

I

or, equivalently, 7(H) < :?—7(” +m) < %(n + m). Hence, we may assume
that def(H) > 0, for otherwise the desired result follows. Let X be a
special H-set such that def(H) = defy(X). If Hjp belongs to X, then,
since A(H) < 2 and H is connected, H = Hjg, a contradiction. If Hy4 5
or Hy46 belong to X, then, analogously, H € {Hi4,5, Hi14,6}, contradicting
our assumption that H is not a special hypergraph. Thus, if F' € X, then
F € {H4, H1:1}, noting that A(H) < 2. Recall that if F' is a hypergraph,
we denote by n;(F') the number of vertices of degree 1 in H. Let

m(X)= 3 ni(F),

FeXx

and note that n;(H) > n1(X) — 4|E*(X)|, since every edge in E*(X)
contains at most four vertices whose degree is 1 in some subhypergraph
F € X. Since A(H) < 2 and H is 4-uniform, we note that 4m = 2n—n,(H),
or, equivalently, n; (H) = 2n—4m. Let 8 = g—i If F = H,, thenn3(F) =4
and def(F) =8 = (8 —48)+48 = (8 —48) + n1(F) - 8. If F = Hy,, then
n1(F) = 2 and def(F) = 4 < 5.71875 = 8 — 28 = (8 — 48) + ny(F) - 8.
Hence, if F € X, then def(F) < (8 — 48) + n1(F) - 8, with strict inequality
if F = Hy;. Therefore,

def(H) = 8|X4|+ 4|X11|— 13|E*(X)]
= (Z def(F)) — 13|E* (X))
FeX

< (-49)X|+ni(X) -8 - 13|E* (X)),

with strict inequality if X # X4. By Lemma 14, |[E*(X)| > 3(|X|—1). We
also note that n > 4|X4| + 11|X 11| > 4|X|, and so |X| < %. Thus by our
previous observations,
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457(H) 6n + 13m + def(H)

6n + 13m + (8 — 48)|X| + n1(X) - 8 — 13| E*(X)]

6n + 13m + (8 — 48)| X | + (n1(H) + 4|E* (X)) - B — 13|E* (X))

6n + 13m + (8 — 48)| X |+ n1(H) - B — |E*(X)|(13 — 48)

6n + 13m + (8 — 48)| X |+ nu(H) - B — 3(|1X| — 1)(13 — 4B)

6n + 13m + (8 — 46 — 1(13 — 48))|X | + (2n — 4m) - B+ 5(13 — 48)

6n+ 13m + (8 — 48 — (13 — 48))2 + (2n — 4m) - B + 3(13 — 48)
8 1 ipn+ (13— 48)m + (13 — 40)

(13 — 48)(n +m) + 3(13 — 45)

135
Bn+m)+ 3,

I VAN | I VAN | I VAN VAN VA

or, equivalently, 7(H) < & (n+m)+ . This establishes the desired upper
bound.

Recall that H is a 4-uniform, connected, linear hypergraph with max-
imum degree at most 2. Suppose that 7(H) = 13—6(17, +m) + %. Then we
must have equality throughout the above inequality chain. This implies
that X = X4, V(H) = V(X), n = 4X|, E(H) = E(X)U E*(X), and
|E*(X)| = 3(]X| —1). We show by induction on n > 4 that these con-
ditions imply that H € F. When n = 4, |X| = 1 and |E*(X)| = 0,
and so H = Hy € F. This establishes the base case. Suppose that
n > 4. Thus, |X| > 2 and n = 4|X| > 8. We now consider the bi-
partite graph, Gx, with partite sets X and E*(X), where an edge joins
e € E*(X) and H € X in Gy if and only if the edge e intersects the
subhypergraph H’ of X in H. Since H is 4-uniform and linear, each ver-
tex in E*(X) has degree 4 in Gx. Let n; = n(G), and so n; is the
number of vertices of degree 1 in G. Counting the edges in G, we note
that 2(|X| — 1) = 4|E*(X)| = m(G) > n; + 2(|X| — ny), implying that
n1 > 3(2|X|+4). By the Pigeonhole Principle, there is a vertex of E*(X)
adjacent in G to at least

2| X|+4
|E*(X)] (X3—1) X1 T X -1

vertices of degree 1 (that belong to X). Thus, since |X| > 2 here, some
vertex e € E*(X) in Gx is adjacent to three vertex of degree 1, say z;,
and z3. Let x4 be the remaining neighbor of e in Gx. We now consider the
hypergraph H’ obtained from H by deleting the 12 vertices from the three
special Hy-subhypergraphs, say Fj, Fy, and F3, corresponding to z,, Zo
and z3, respectively, and deleting the hyperedge corresponding to e. Since
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H is connected and linear, so too is H'. Let X' = X \ {F,, F», F3}, and
so |X'| = |X| —3. We note that [E}(X')| = |[Ep(X)|—1 = 3(|X]| —
1)—1= %(IX’I —1). Further, X' = X4, V(H') = V(X’), n’ = 4| X’|, and
E(H') = E(X')U Ef,(X’). Applying the inductive hypothesis to H’, we
deduce that H' € F. The original hypergraph H can now be reconstructed
from H’ by adding back the three deleted edges and 12 deleted vertices in
F, U F3 U F3, and adding back the deleted edge e that contains the vertex
z4 € V(H’) and contains one vertex from each edge in Fy, F5 and F3. Thus,
H € F. This completes the proof of Theorem 15. O

6 Closing Comments

For small k£ € {2,3,4}, we now know that g = T:% The asymptotic
behaviour of g as k grows is of the order In(k)/k. It would be extremely
interesting to determine precisely the value of gi for every £ > 5, and we
pose this as an open problem.

Problem 1 Determine the precise value of qi. for any k > 5.

The amount of work to show that q4 = % suggests that Problem 1
may be difficult, even in the special case when k£ = 5. Recall that by
Observation 1, gx > g7 for all ¥ > 2. By Theorems 2 and 3, we have
gk = 747 for k € {2,3,4}. It is shown in [27] that for k > 60, we have

qk > k—ql-f We pose the following open problem.

Problem 2 Determine the smallest value, kpyin, of k for which g, > ;jlr—l-
holds.

From our earlier observations and results, we note that 5 < k., < 60.

We conjecture that kmin, > 6. Equivalently, we conjecture that ¢s = é.
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