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Abstract. Let G be the automorphism group of an §(3, 5, 26). We show the follow-
ing: (i) if 13 divides |G] then G is a subgroup of Z» x Fry3.12, where Pry3 12 is the
Frobenius group of order 13.12; (i) if 5 divides |G| then G ~ Zs or G ~ Dyo; and
(iiii) otherwise, either |G| divides 3-23 or24.

1. Introduction.

A Steiner system S(t, k, v) is an ordered pair (X, B) where X is a v-set of points

and B a collection of k-subsets of X, called blocks, such that any ¢-subset from
X appears exactly once among the blocks of B. For any fixed z € X, define
B; = {B\{z} | z € B € B} and X; = X \ {z}. Then (X, B.) is an S(t —
1,k—1,v—1) called a derived design of the S(t, k, v). Equivalently, we say that
(X, B) is an extension of (X, B;). If G is a group acting on X, then G is said to
be an automorphism group of (X, B) if G also preserves B. For more details and
basic facts on Steiner systems, t-designs, and groups see [1] and [3]. Throughout
this paper G will be the automorphism group of an $(3, 5, 26) unless specifically
stated otherwise. If p is a prime and s | p — 1, we denote by F'r,,, the Frobenius
group of order ps.

Table 1
Summary of 5(2,4,25) designs and their automorphism groups
Design number 1G] G
1 504 PSLy(7T) x Zs
2 63 Z3 x F T7.3
3 ) 4 ) 5 9 Z3 X Z3
6 150 (25 X Zs)+Ss
7 21 Frs
8 6 S3
9-16 3 73

*The firt two authors were supported in part by NSA grant number MSPF-089-91, and by the Center
for Communication and Information Science of the University of Nebraska.
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Table 2
Types of elements in G = Aut(DES;) = PSL3(7) x Z;.

Order Type Number || Order Type Number
1 12 1 6 164 42
2 112% 21 7 147° 48
3 1437 112 12 1112° 48
3 1'3° 58 21 131217 36
4 114° 42 Total 504

2. Bounding the order of G.

Because the sixteen S(2,4,25)’s with nontrivial automorphism groups have
been completely determined (see [6]) we can often deduce information about the
automorphism groups of their extensions. To aid the reader we summarize some
of the information from [6] in Tables 1 and Table 2. Further, as in [6], we let
DES,, for1 < n< 16, denote the sixteen S(2,4,25)’s listed in [6].

The cycle type of an element of order 3 in PSL,(7) is 1437 and in Z; it is
1138,

Theorem 2.1. Let G be the automorphim group of an S{3,5,26). Then the

order of G divides 2#3.5-13. Also, 5-13 does not divide the order of G.
Theorem 2.1 will follow from the Lemmas below:

Lemma 2.1. The only primes that can divide the order of G are 2,3,5,7, and
13.

Proof: If an element g of prime order fixes no points then it is of order 2 or 13. If
the element g fixes at least one point then the derived S(2, 4, 25) through the fixed
point has g as an automorphism (on the restricted point set) and all $(2,4,25)’s
with nontrivial automorphism groups have been determined [6). |

Lemma 2.2, Let H be a subgroup of G where |H| = 2°. Then a is at most 4.

Proof: Since v = 26, H must have a point orbit of length at most 2. If {z,y} is
an orbit then the point stabilizer H; of z is isomorphic to the point stabilizer H,
of y. Then [H: H,] = 2 so that |H,| is 2(*~D., But the biggest 2-group on an
S(2,4,25) is of order 23 = 8. So 2%~V is at most 8 and a is at most 4. 1

Lemma23. If |H|=p% wherepis3 or5,thena < 2.

Proof: If |H| = p®, where pis 3 or 5, then H fixes a point by orbit length argu-
ment. But there is no group of order p*, for p = 3 or 5, onan (2,4, 25). Thus,
a is at most 2. |
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Lemma 24, Let (X,B) bean S(2,4,25) system and £ an automorphism of
order 3 of (X,B), fixing 4 points, z\,Z2,T3,74. Then § fixes exactly five
blocks of B, of the form B; = {z;} U{ a 3cycleof €}, for 1 < i < 4, and
Bs = {z1,...,74}.

Proof: An S(2,4,25) system D = (X, B) admitting an automorphism of order
3 fixing 4 points must be isomorphic to one of DES,, DES,, DES3, DES;,
DESs,DES;, DES,s,and DES)¢. Since an element of order 3 belongs to some
Sylow-3 subgroup of Aut(D), and Sylow-3 subgroups are conjugate, it suffices
to prove the assertion of the lemma for the elements of order 3 fixing 4 points in
a particular Sylow-3 subgroup T of Aut(D). In the cases of DES),.. s DES;s,
the Sylow-3 is elementary abelian of order 9, and is conjugate to (@, §), where
a=(]123)(456)(7.89)(10 11 12)(13 14 15) (16 17 18) (19)(20)(21)
(22 23 24)(25),and B = (14 7)(2 5 8) (36 9(10 13 16)(11 14 17)
(12 15 18)(19 20 21) (22)(23)(24)(2S). The elements of order 3 fixing 4
points in T are &, E, a2, ﬁ"' , and the statement of the lemma holds for these ele-
ments and for designs DES),... , DESs. Inthe case of designs DES,, DESs,
DES;¢, the Sylow-3 subgroup is conjugate to < 4 > and the statement of the
lemma is verified for 8 and 8% for each of the designs DES;, DES;s, DES)¢.
|

Lemma 2.5. Let ¢ be an automorphism of order 3 of an S(3,5,26) system
(X, B). Then & has exactly two fixed points on X .

Proof: Any element of order 3 on a derived S(2,4,25) design has either 1 or
4 fixed points, so £ has either 2 or 5 fixed points. Suppose £ has the five fixed
points z,, 22,3, T4, z5. Let D; be the derived S(2,4,25) through z;. There
are 5 fixed blocks as described in the previous lemma inside each D;. Thus, B
contains fixed blocks of the type {z;, z;} U{ a 3-cycle of £} for each of the ten
unordered 2-subsets of {z1, ... ,zs}. But§ has only seven 3-cycles and any 3-set
determines a unique block of B, a contradiction. Thus, £ can not fix 5 points of
X. ]

Lemma 2.6. Let G be an automorphism group ofan S(3,5,26) design (X, B).
Then, 32 does not divide the order of G.

Proof: Suppose there is an automorphism group H of order 32 foran S(3,5,26).
Then H must fix at least 2 points of X, and H is an automorphism group of a
derived S(2,4,25). But such a group of order 9 contains elements of order 3
fixing 4 points out of the remaining 25, a contradiction. [ |

Lemma 2.7. Let G be an automorphism group of an S(3,5,26). Then 5% does
not divide |G|.

Proof: Assume |G| = 25. Then G fixes a point and the derived design is DESs.
Thus, we need to find 210 = (260 — 50) 5 -sets that cover triples not containing
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the fixed point and not covering triples in D ES¢. There are 92 = (84 + 8) orbits
of 3-sets under G where exactly 8 are covered by the 4-sets of DESg. There are
53,130 = 2125-25+ 6-5 5-sets where G decomposes them into 2125 orbits
of length 25 and 6 orbits of length 5. Only 1770 of the 5-set orbits cover 3-sets
at most once, and if a design preserved by G exists, exactly 2 short orbits must
be used. We sieve out rows and columns corresponding to the 3-sets covered in
DESg and a complete search is negative. 1

Lemma 2.8. The prime 7 does not divide the order of G.

Proof: Let o(g) = 7 so g has 3 seven cycles and fixes 5 points. Derived designs
through any fixed points are S(2,4,25)’s that have an automorphism of order 7.
Without loss of generality we can assume that any of these five S(2,4,25) s have
the automorphism (1,2,...,7) (8,...,14)(15,...,21) (22)(23)(24) (25)
(26). Now there are exactly 3 nonisomorphic $(2,4,25)’s with an automor-
phism of order 7, namely, DES;, DES;, and DES; (see [6]). In each of these
there is a cyclic Fano plane on the point set {1,...,7}, that is, if we intersect
{1,2,3,4,5,6,7} with the blocks of B,, for each fixed = € {22,23, 24, 25,
26}, we must either get the seven 3-sets generated by {1,2,4 } or the seven 3-
sets generated by {1, 3,4 }. This obviously forces a repeated 3-set in the original
S(3,5,26). ]

Lemma 29. Let H be a sbgroup of G. Then |H| is not 132,

Proof: Assuming the contrary, then H is elementary abelian which requires ele-
ments of order 13 that fix 13 points. However, no §(2,4,25) has an automor-
phism of order 13, so this is clearly impossible. ]

Lemma 2.10. The primes 5 and 13 cannot both divide |G)|.

Proof: Let o(g) = 13, o( k) = 5 where g, h are both elements of G. The cycle
structure of g is 132 and that of k is 5°. 1 so G is clearly transitive and, therefore,
130 divides |G]|. Since 5 divides |G|, any derived design must be of type DESs
and, therefore, |G| would divide 26 - 150. If G were non-solvable, then, by order
considerations, the only non-solvable simple group that could be involved in G
would be As. Therefore, since 52 does not divide |G|, we have |G| = 223-5-13.
Consequently, a Sylow-13 subgroup would be normal, hence, would be centralized
by an element of order 5, a contradiction. If G were solvable, then, by P. Hall’s
theorem, G would contain a subgroup H of order 65 having a normal subgroup
F of order 5 fixing a point of X. Then an element, of order 13, normalizing F
would have (o fix a point of X, a contradiction. 1

3. When 5 divides |G|.
In this section we prove the following theorem:
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Theorem 3.1. If 5 divides the order of G, then either G ~ Zs or G ~ Dyq.

This will follow from the Lemmas below. Throughout this section g; € G will
be an element of order S, whose cycle structure must be 5°- 1, and z will be the
point fixed by g; .

Lemma 3.1. Let g, € G and H = (g1). Then Ng(H) =~ Zs or Do and
consequently, the stabilizer G, of the point z is either Zs or Dy.

Proof: Since the subgroup H fixes the point z, Ng( H) also fixes z. It follows
that Ng( H) is in the automorphism group of the derived design D, = (X, B;).
Because only DES¢ has § dividing its order, No(H) < Gz < (25 X Z5)-Ss.
But 52 can not divide |G| so 52 can not divide | Ng( H)| or |G;|. S0 |G| divides
5-3.2. But there is no subgroup of order 15 in (Zs x Zs)-S3, and no cyclic
group of order 10. Our result follows. 1

Lemma 3.2. If 5 divides the order of G and 10 < |G| then 60 < |G).

Proof: Let g; be an element of G as indicated above. Suppose |G| < 60. None
of 52,7, or 11 divide |G| so the possible orders for G are 15,20, 30,40, or 45.
By Sylow’s theorem if |G| is 15,20,40 or 45 then (g, ) is normal, a contradiction
to Lemma 3.1. If |G| = 30 then by P. Hall’s theorem G has a subgroup of order
15 in which (g, ) is normal, again a contradiction to Lemma 3.1. ]

Lemma 3.3. If 5 divides the order of G and |G| > 60 then |G| = 60 and
G~ As.

Proof: Let g1 € G be an element as indicated above. Since |G;| < 10 and
|X| =26, |G| < 260. Further |G| divides 243-5 - 13 and 5- 13 does not divide
|G]. Assume |G| > 60. So |G| = 5-16,5-24, 0r 5-48. Let H = {(g;) be
our subgroup of order 5. Now [G: Ng(H)] = 1+ 5k = 1,6, 0r 16. So if
|G| = 5-24, 0or 5-48 we would have [Ng( H)| > 15, a contradiction to Lemma
3.1. If |G| = 5- 16 then we would have Ng(H) = H. Suppose |G| = 5-16. Let
N be a minimal normal subgroup in G, then by Lemma 3.1 N is an elementary
abelian group of order 16. Hence, G ~ Ej¢-Zs. Since Ng(H) = H, by Lemma
3.1, |G| = 5, so we have |z€| = 16. Let y be a point not in the orbit of z. Then
ly®| = 5 or 10. But then |G,| = 16 or 8 and the derived S(2,4,25) through
the point y would have an automorphism group containing an elementary abelian
subgroup of order 16 or 8. But the only S(2,4, 25) with an automorphism group
of order divisible by 8 is DES;. However, a Sylow-2 subgroup for DES; is not
elementary abelian. So |G| # 5-16. Thus, we have shown that if |G| > 60 then
|G| = 60. We see that G must be nonsolvable, otherwise by P. Hall’s theorem G
would have a cyclic subgroup of order 15, which is a contradiction of Lemma 3.1.
Hence, G ~ As. I
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Lemma 3.4. Assume G ~ As. Then the orbit structure of G on X, |X| = 26,
is one of the following: [5, 6, 15], [6, 10, 10], or [6, 20].

Proof: From [6] we see that an automorphism of order 5 fixes exactly one point
of X . Similarly, automorphisms of order 2 fix 0, 2 or 6 points of X . Moreover, by
Lemma 2.5 automorphisms of order 3 fix 2 points. An application of the Cauchy-
Frobenius lemma yields that an As must have 2 or 3 orbits on X. The possible
transitive representations of As of degree < 26 are of degrees 1,5,6,10, 12,15,
or 20. Furthermore, since none of the 16 designs [6] have an As in their auto-
morphism group, As cannot fix a point of X. It easily follows that the ways of
decomposing 26 as the sum of 2 or 3 integers from among {5,6,10,12,15,20}
is20+ 6,15+ 6+ 5,and 10+ 10+ 6. 1

Lemma 3.5. If 5 divides |G|, then G cannot be isomorphic to As.

Proof: From Lemma 3.4 we have 3 cases:

Case 1. As has point-orbits of lengths 15,6,5. Here G is generated by g; =
(12345)(678910) (1112 13 14 15)(16 17 18 19 20) (21 22 23 24 25)
(26) and g2 = (1 11 9)(2 13 4)(3 7 10)(5 8 15) (6 14 12)(16 17 18)(19)
(20) (21 25 23) (22 24 26). Now there is a special orbit on 3-sets of length 5,
namely, {1,9,11}, {2,10,12},{3,6,13},{4,7,14}, and {5,8,15}. The set
stabilizer Gg of S = {1,9, 11} is isomorphic to A4, of order 12, and is generated
by g2 and g3 where g5 = (1)(2 5)(3 4)(6 7)(8 10) (9)(11) (12 15) (13
14) (16 19) (17 18)(20)(21)(22 25)(23 24)(26). Note that the above orbit
containing S consists of blocks of imprimitivity. If an element of G stabilizes a
5-set that contains S, then it must also stabilize S. But Gg stabilizes no 2-set so
the stabilizer of a 5-set containing S has order less than 12 and, hernce, the lengths
of 5-set orbits covering S are greater than 5. Hence, S is covered at least twice in
any such orbit. Thus, an S(3, 5, 26) using this As is not possible.

Case 2. As has point orbit lengths 10,10,6. Here G is generated by g; =
(D(23456)(7891011) (1213 1415 16) (17 18 19 20 21)(22 23 24 25
26)andg; = (13 5)(264)(7)(8 12 15)(9 10 13) (11 16 14)(17)(18 22 25)
(19 20 23) (21 26 24). We examine 5-set orbits that cover the 3-set S =
{7,8,12}. This S is in an orbit of 3-sets whose length is 20. Let A be an or-
bit of 5-sets that cover S. If A has length greater than 20 then it is easily seen that
S is covered more than once. Scrutiny of the elements of G reveal that the only
elements stabilizing a 5-set F, containing S, are elements of orders 2 or 3. In fact,
the shortest such orbit of 5-sets is of length 20 and there is exactly one — namely,
the orbit containing F' = {7,8,12,15, 17 }. Butthis F contains four 3-sets in the
orbit of S, namely {7,8,12}, {7,8,15}, {7,12,15}, and {8,12,15}. Thus,
S is covered (20 x 4) /20 = 4 times in F'. Hence, there is no S(3, 5,26) using
this As.
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Case 3. As has point orbit lengths 20, 6. In this case As is generated by g; =
(1)(23456)(7891011)(121516 17 13) (14 1920 21 18) (222324 25
26) and g2 = (12 3)(4 6 5) (7)(8 11 12)(9 13 14)(10 18 15)(16 21 23)
(17 22 19) (20 26 24)(25). An exhaustive computer run easily rules out this
permutation group. Our lemma and main theorem is proved. |

4. When 13 divides |G|.

Lemma 4.1. If 13 divides |G|, then |G| = 2°3%13 with 0 < o < 3 and
0<b< 1.

Proof: From Theorem 2.1 |G| = 2°3%13 where0 < a < 4and0 < b < 1.
Now let Z13 = {(g) be a Sylow-13 subgroup of G. By Sylow’s theorem, Z3 is
normal in G. Suppose that a = 4. Since Aut(2Z13) ~ 21,22 divides |Cg(Z13)|
and a Sylow-2 subgroup of Cg(Zy3) has order at least 22. But this implies that
there is an involution ¢ € Cg(Z13) which fixes points of X. Hence, by [6], the
number of fixed points of ¢ is either 2 or 6, which leads to a contradiction, because
the element of order 13 must fix the fixed points of ¢. Our lemma follows.

Theorem 4.1. If 13 divides |G|, then G is isomorphic to a sugroup of Z, x
Frizaa.

Proof: Now |G| = 2°3%13,0 < a <€ 3,0 < b < 1. Also G is solvable with
Z)3 normal in G. An element which commutes with an element of order 13 must
act fixed-point-free on X, hence, the order of the Sylow-2 subgroup of Cg(Z13)
is at most 2 (see the argument in the preceeding Lemma), and G is a subgroup of
Zy X Frisga.

Note that the S(3, 5, 26) designs found independently by Hanani [5], Dennis-
ton [2], and Grannell, Griggs, and Phelan [4] are isomorphic. Such a design has
Z3 X Fry3.2 as its full automorphism group. 1

5. The case |G| = 2°3%,
Here we assume that neither 5 nor 13 divide |G| so that |G| = 2°3b with 0 <
a<4,0 <b< 1. Weshow in what follows thatif b= 1 then 0 < a < 3.

Theorem 5.1. If |G| = 3-29, then |G| divides 3-23.

Proof: Suppose that G is an automorphism group of order 3.2 foran S(3, 5,26).
Recall that the only S(2,4,25)’s which admit an automorphism of order 2 are
DES,, DESs, and DES3. Moreover, the Sylow-2 subgroups of these designs
have orders 22, 2, and 2, respectively. Also recall that an automorphism of order
2 for DES, fixes exactly one point. Further, an automorphism of order 3 of an
S8(3,5,26) fixes exactly 2 points.

Consider the action of G on points. Easily, the possible orbit lengths are {24, 16,
12,8,6,4,3,2,1}. Let H be a Sylow-2 subgroup of G, so that |H| = 24, If
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G has an orbit of length 1, then G fixes a point and G would be an automorphism
group of the derived design through that point, a contradiction since 24 divides
|G|. If G had an orbit A of length 3, then the stabilizer G,z € A, would have
order 24, a contradiction to the fact that 2# does not divide the order of any of the
automorphism groups of S(2,4,25)’s.

Suppose G has an orbit A of length 4. Then the stabilizer G, forany z € A,
would have order 12, hence, the derived designs are isomorphic to DES;. Now,
G is represented as a subgroup of S4 on A. By order consideration the kernel of
this representation is non-trivial. Furthermore, since elements of order 3 can not
fix 4 points, the kernel can not be of order divisible by 3. Hence, the kernel has
order divisible by 2, and so there is an element of order 2 in Aut( DES,) fixing
at least four points, a contradiction,

Suppose that G has an orbit {z,y} of length 2. Then the stabilizer G, = G,
would have order 24, hence, the derived designs through = and y are isomorphic
to DES) . Hence, Gz < PSL3(7) x Z;. Up to conjugacy there are exactly two
subgroups of order 24 in PSL,(7) x Z3. One of these subgroups is isomorphic
t0 Sy < PSL,(7),but elements of order 3 in PSL, (7) fix 4 of the 25 points. By
Lemma 2.5 such an S4 can not be a group of automorphisms of an S(3,5,26).
The other subgroup of order 24 in G, is L ~ Dg x Z3, where Ds is a Sylow-2
subgroup of PSL(7). Computationally it is verified that L is regular on the 24
points, and fixes z and y pointwise. Hence, if G has an orbit of length 2, then the
other orbit has length 24,

Easily, the only orbit length combinations of G are {24,2}, {12,8,6}, and
{8,6,6,6}.

Suppose G has an orbit A of length 6. Let H be a Sylow-2 subgroup of G.
Then H has an orbit of length at most 2 on A, so H has a subgroup K of order 8
that fixes two points = and y. Moreover, the derived designs through either z or
y are isomorphic to DES;. If G has another orbit of length 6 (or 12), then K has
an orbit of length at most 2 (or 4) and, hence, an element of order 2 fixing at least
two more points. But then there is an element of order 2 in Aut( DES)) fixing at
least 3 points, a contradiction. Thus, G must have {24,2} as its orbit lengths.

Suppose now that L = Dg x Z3 is a subgroup of G. Using a computer we have
ruled out such a group being the automorphism group of an S(3,5,26). Our
proof is complete and the following is clear. [}

Corollary 5.1. If G is the automorphism group of an S(3,5,26) and neither 5
nor 13 divides the order of G, then |G| divides 3-23 or 24,

In closing note that if |G| = 3-23 or2* then G cannot fix a point of X and must
have exactly one point-orbit of length 2. Moreover, if |G| = 24 then G contains
Dy < PSL>(7) as a normal subgroup.
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