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Abstract. We consider the changing and unchanging of the edge covering and edge
independence numbers of a graph when the graph is modified by deleting a node, delet-
ing an edge, or adding an edge. In this paper we present characterizations for the graphs
in each of these classes and some relationships among them.

1. Introduction

Any invariant of a graph can change or remain the same when the graph is altered

by deleting a node, deleting an edge, or adding an edge. For several invariants this
problem of changing and unchanging has recently been investigated ([1], [2], (3],
(4], (5], (6], [9], (11], [12], [15], [16], [17], [19]). Results from such studies are
important in applications of graph theory where a property of a system’s graphical
model changes or remains intact when the system experiences a component failure
or a link addition ( [7], [13], [15], [16], [18]). The unchanging of a graphical
invariant upon such modifications is in some sense a measure of the stability of
the system for which the graph is a model. For example, when the graph is a
model for a computer network where an edge removal represents a link failure,
the unchanging of an invariant implies the network is fault tolerant with respect
to that invariant.

Let G = (V, E) be an undirected graph with node set V and edge set E where
|V| = p. Asetof edges, C, such that every node of G is incident to an edge in C is
an edge cover for G. The minimum cardinality among the sets of edge coverings
is the edge covering number of G and is denoted by a)(G), or simply by o
when G is clear from the context. The edge covering number is undefined when
G has isolated nodes. A collection of edges is independent if no two edges in the
collection are adjacent. The maximum cardinality among the sets of independent
edges is the edge independence number of the graph G and is denoted by 8, (G)
or just 8. In this paper we abbreviate “minimum edge covering” (“maximum
independent set”) as MEC (MIS). The notation and terminology not defined here
may be found in [10].

Gallai’s well-known result [8] states that for graphs with no isolated nodes

ar+ pr=p.
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This relationship made possible the parallel study of the changing and unchanging
of a; and §;.

Using the general approach and terminology first suggested to us by Frank
Harary, we consider the changing and unchanging of the invariants oy and £, un-
der three different graph modifications: deleting an arbitrary node, deleting an ar-
bitrary edge, and adding an arbitrary edge. Formally, we characterize those graphs
G for which

Class 1: a1 (G —v) # (@), (G —v) = fi(G)forallv e V;
Class2: a1 (G —v) = a1 (@), Bi(G—v) # fi(G)forallv eV,
Class3: a1 (G —€) # a1(G), Ai(G—e) # Bi(G)foralle € E;
Class4: a1 (G —¢e) = a1 (@), Bi(G—e) =pfi(Gforalle € E;
Class 5: a1 (G +€) # a1(B), Bi(G+e) # Ai(G)foralle € E;
Class6: a1 (G +¢e) = a1 (@), Bi(G+e) = pfi(G)foralle € E.

This report is organized as follows. Section 2.1 contains the results for graphs
in Class 1 where the edge independence number, S, is unchanged and the edge
covering number, a , is changed when any arbitrary node is removed. In Section
2.2 we present the results for Class 2 graphs, that is, those graphs for which 8, is
changed and o, is unchanged when any arbitrary node is removed. Both sections
2.1 and 2.2 contain material useful in the construction of families of graphs with
these properties as well as examples of such graphs. We consider edge removal in
Section 3 and present the characterizations of graphs in Classes 3 and 4. The last
type of modification, adding an arbitrary edge, is the subject of Section 4 where
we present characterizations of graphs in Classes 5 and 6. We establish some
relationships among the six classes in Section 5 and make concluding remarks in
Section 6.

2. Node Removal

When a node is removed from a graph neither a nor B, can increase, hence
a1( ) decreases or remains the same. Observe that if oy or §; changes it must
decrease by exactly one. That is, if @1(G) # ai1(G — v), then ay(G —v) =
a1(G) — 1. A corresponding statement can be made for 5.

2.1 The graphs for which the edge independence number, g, is unchanged
and the edge covering number, a), is changed when any arbitrary node is
removed. [Class 1 graphs]

We consider the characterization of graphs where «; changes upon node re-
moval, followed by the characterization of graphs with unchanging 5;.

Theorem 1. For any graph G, a1(G —v) = an(G) — 1 forall v € V if and
only if for any v there exists at least one MEC, C, and an edge e = uv € C where
e is only in C to cover v.
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Proof: For sufficiency let v be an arbitrary node in G, and suppose there exists a
MEC, C, such that for some u, uv € C and u is covered in C by another edge.
Clearly C— uv covers G—v, hence ay (G —v) = |[C—uv| = a1 (G) — 1. Suppose
next that o1 (G — v) = a1 (G) — 1 foreveryv € V. Let C' beaMEC for G — v
where v is an arbitrary node. Since v is not isolated there exists a node u € N(v)
coveredby C'. ButC'+uv = C is an edge cover of G whose cardinality is ) (G) .
Hence C is a MEC for G and the edge uv is in C only to cover v. ]

Observe that any minimum edge covering of a graph consists of a maximum
collection of stars and that from any covering a collection of independent edges
can be constructed by choosing one edge from each star ({10]). We note that the
following two conditions are equivalent: (1) for any v there exists at least one
MEC, C, and an edge e = uv € C where e is only in C to cover v and (2) for any
v there exists at least one MIS, I, that does not saturate v. Hence, assuming that
G and G — v can have no isolated nodes we can apply the relationship a; + 8; = p
and the above theorem to obtain results for 8; as follows.

Theorem 2. Forany graph G, 1(G — v) = Bi(Q) forall v € V if and only if
for any v there exists a MIS, I, that does not saturate v forall ve V.

Since the removal of an isolated node does not change 8, the graphs char-
acterized in Theorem 2 may have any number of isolated nodes. Assuming no
isolated nodes, Theorems 1 and 2 are equivalent and characterize the graphs of
Class 1. The following two theorems establish properties of and give a method
for constructing infinite families of Class 1 graphs. Although these results were
presented for B, in [12], they are restated here in terms of 8 and o) for complete-
ness. Two nodes are ‘identified” when they are replaced by a single node with a
neighborhood which is the union of the neighborhoods of the two removed nodes.

Theorem A ([12]). Any Class 1 graph with p > 3 has no bridges.

Theorem B ([12]). Let G be constructed from G and G, by identifying a node
of Gy withone of G». Then G is a Class 1 graph if and only if G, and G, are
Class 1 graphs.

In view of Theorem B, components are blocks (connectivity greater than one).
Hence we need only be concerned with a component. A stronger characterization
than the one in Theorem 2 for connected graphs with unchanging 8, is given in
{14] and is restated here.

Theorem C ([14]). Graph G is connected and B,(G—v) = 8,(G) forallve V
if and only if for any v, G — v has a perfect matching.

Assuming G is not the trivial graph, an analogous statement can be made for
a;. Hence connected Class 1 graphs have 8, = (p—1)/2 and oy = (p+ 1)/2.
Note that the union of Class 1 graphs is a Class 1 graph. Thus, for each component
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G; in a Class 1 graph, G; — v has a perfect matching for all v € V. We make the
following observations.

Observations. If G is a Class 1 graph, then

(a) every node has degree greater than or equal to 2 and must lie on a cycle,
® A(G-v—u)=p(G—v)—1forallu,veV,
© ay(G-v—u)=y(G—v)=ay(G) — 1 foralluveV.

The infinite families K241 and Caqey for n > 1 are examples of Class 1
graphs.
2.2 The graphs for which the edge independence number S, is changed and
the edge covering number «;, is unchanged when any arbitrary node is re-
moved. [Class 2 graphs]

The following Theorem reproduced here from [12] for completeness gives the
characterization for graphs with changing 8;.

Theorem 3 ([12]). Forany graph G, i(G —v) = i(G) — 1 forall v € V if
and only if G has a perfect matching.

Note that there can be no isolated nodes in the graphs G from Theorem 3, so
the following corresponding characterization follows directly from the fact that
a+ p=p.

Theorem 4. For any graph G where for any v, G — v has no isolated nodes
a1(GB) = a1 (G —v) forall v € V ifand only if G has a perfect matching.

Corollary. A graph G is a Class 2 graph if and only if G has a perfect matching
and forall v € V,G and G — v have no isolated nodes.

Examples of infinite families of Class 2 graphs include K3, forn > 2, Ca,
forn > 2, Kn, forn > 2, G x K3, for connected graphs G with two or more
nodes. Note that paths with an even number of nodes satisfy the characterization
of graphs of Theorem 3, but fail in Theorem 4 since G — v may have an isolated
node.

We complete this section with a Theorem that is useful in the construction of
arbitrarily large Class 2 graphs. The proof is immediate from the fact that G has
a perfect matching when G and G have perfect matchings.

Theorem 5. Let G be constructed from G and G2 by connecting an arbitrary
node of G, with an arbitrary node of G, with a bridge. If G, and G, are Class
2 graphs, then G is a Class 2 graph.

3. Edge Removal

Observe that the removal of an edge cannot increase 81,50 81 (G —e) < i (G).
Furthermore, the removal of an edge can decrease 8, by at most one. Hence, if
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B changes when an edge e is removed, 8, (G — e) = 81(G) — 1. Since both G
and G — e are the same order p and p = o + f;, when there are no isolated nodes
inGorG—e, fi(G—e)=p1(G) — 1 implies a; (G —e) = a1(G) + 1.
3.1. The graphs for which the edge independence number, 8, is changed
and the edge covering number, «;, is changed when any arbitrary edge is
removed. [Class 3 graphs]

Theorem 6 gives a characterization for graphs whose edge independence num-
ber changes upon the removal of an arbitrary edge.

Theorem 6. Ina graph G, 1 (G — e) = fi(G) — 1 forall e € E if and only if
G =mK; UnK,.

Proof: Suppose 81(G —e) = $i(G) — 1 for all e € E. Then e must be in every
MIS forall e € E. Thus G = mK; U nK,. Sufficiency is obvious. 1

Again when there are no isolated nodes, changing 8, implies changing c; . Thus
only the graphs G = nK in Theorem 6 can be considered. However, G — e has
isolated nodes so a; (G — e) is not defined and Theorem 7 follows directly.

Theorem 7. Class 3 graphs do not exist.

3.2, The graphs for which the edge independence number, 3,, is unchanged
and the edge covering number, a, is unchanged when any arbitrary edge is
removed. [Class 4 graphs]

The next two characterizations are for the families of graphs that have unchang-
ing ay and hence unchanging 3; when any arbitrary edge is removed. The proofs
of Theorems 8 and 9 are straightforward.

Theorem 8. A graph G has ay(G — e) = a1(G) forall e € E if and only if
for any e there exists a MEC, C, of G such thate ¢ C.

Theorem 9. A graph G has 1 (G —e) = Bi(G) forall e € E ifand only if for
any e there exists a MIS, I, of G such thate ¢ 1.

Notice that Theorem 9 allows the existence of isolated nodes while Theorem
8 does not. Assuming no isolated nodes in either G or any G — e, Theorems 8
and 9 characterize Class 4 graphs. Examples of infinite families of Class 4 graphs
include Cp, Kp for p > 3, and K,nn Wwhere m > 2 and n > 2. Paths of length
two or more satisfy conditions for Theorem 9, although they are not Class 4 graphs
since G — e may have an isolated node.

4. Edge Addition

Consider the modification of the graph G by the addition of an edge from the com-
plement of G. Here we assume that E is not empty. Again we use the relationship
P = a; + B to establish that &) changes (stays the same) when 8, changes (stays
the same).
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4.1. The graphs for which the edge independence number, 3, is changed and
the edge covering number, «;, is changed when any arbitrary edge from the
complement is added. [Class S graph]

The next two Theorems characterize the Class S graphs where 8 and a; change
when an arbitrary edge is added.

Theorem 10. In a graph G, B,(G + ¢) = B1(G) + 1 forall e € E if and only
if for every pair of non-adjacent nodes u and v, 1 (G — u — v) = B1(G).

Proof: Let u and v be non-adjacent nodes of G. Since 81 (G + uv) = 81 (G) + 1,
a MIS of G + uv must include uv. Thus there are 8, (G) independent edges not
incident to either u or v s0 £, (G — u—v) = $5;(G). Suppose a set of independent
edges of size ) (@) can be found in G'— u — v for an arbitrary pair of non-adjacent
nodes u and v. Then 8, (G + uv) = £ (G) + 1. [ |

To characterize the class of graphs where a; changes when an arbitrary edge is
added, we assume that G has no isolated nodes and restate Theorem 10 in terms
of ag.

Theorem 11. Inagraph G, a)1(G + ¢€) = a,(G) — 1 forall e € E if and only
if for every pair of non-adjacent nodes v and v, ) (G — u — v) = a1(G) — 2.

Theorem 11 implies that G — u — v also has no isolated nodes for any pair of
nonadjacent nodes u and v.

Corollary. In a Class 5 graph, for any component on p nodes

(a) any degree 1 node must be adjacent to a degree p — 1 node;
(b) any degree 2 node must be in a triangle.

Proof: Suppose there is a degree 1 node u with neighbor v in a component of a
Class 5 graph G. Then there exists anode w ¢ N(v). ButG —w — v will leave u
isolated. Hence the degree of v is p— 1. For the proof of (b) suppose u is a degree
2 node with neighbors v and w in a component of a Class 5 graph G. Suppose v
is not adjacent to w. Then u is isolated in G — v — w, a contradiction. Hence v
must be adjacent to w. | |

Assuming no isolated nodes, Theorems 10 and 11 characterize Class S graphs.
Lovasz and Plummer, [14), present a characterization of saturated non-factorizable
graphs, that is, a graph G which has no perfect matching, but G + uv does for all
uv € E. We note that these graphs are a subset of Class 5 graphs. We restate their
characterization in Theorem D.

Theorem D ([14]). A graph G is saturated non-factorizable if and only if it has
the following structure: either p is odd and G is complete, or p is even and G
consists of point-disjoint complete subgraphs S,G\, ...,Gy suchthat k = |S[|+2,
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the number of nodes in each G; is odd and every point of every G; is adjacent to
every point of S.

Next we present a generalization of Theorem D that characterizes the structure
of graphs with changing 8;. The proof to this characterization is based on the
following lemma.

Lemma. If i(G+¢€) = fi(G)+ 1 forall e € E and S C G is the sub-
graph containing the nodes of G that are adjacent to every other node, then every
component of G — S is complete.

Proof: Since E # ¢, S # G, hence G — S # ¢. If each component in G — § is
either an isolated node or a K, , we are finished. Hence consider three nodes in any
component of G — S, say u,v, and w where uv and vw are edges. We claim that u
is adjacent to w. Suppose not. Since v ¢ S, there exists an z € V where z is not
adjacent to v. Since 81 (G + uw) = B1(G) + 1 there exists a MIS, M}, of G + uw
where uw € M; and |My| = 61(G) + 1. Similarly there exists a MIS, M, of
G + vz where vz € M; and |M;| = |M|. Notice uw ¢ Mz, vz ¢ Mj, and
uv is not in either M, or M,. Let H be the symmetric difference of M; and M, ,
thatis H = M) & M. The components of H are isolated points, even paths, and
even cycles (since M} and M; are the same size). Since uw € M; and uw ¢ M3
and vz € M, and vz ¢ M, we know u, v, w, and z are not isolated nodes in H.
Thus, uw and vz are either on even paths or cycles. Suppose that uw and vz are
in the same component of H . Then there exists a path containing both vz and uw
and hence a path exists from v to u that may or may not include z. For the first
case, let P be the path from v to u (or w, if w is encountered before 1) containing
z thatis, P = v,xz,...,u. Then M2 & (P + uv) (or M3 @ (P + vw)) is a MIS
of G of size | M2, a contradiction. Otherwise let P be the path from v to u (or
w) where z is not on the path. Then M & (P + vu) (or M; & (P + vw)) is a
MIS of G of size | M, |, a contradiction. Hence uw and zv cannot lie in the same
component of H. Now we suppose that uw is on an even path, P, or an even cycle
C.Herewelet M = My @ Cor M = M; & P and M is a MIS of G with size
Bi1(G) + 1, acontradiction. Hence the node u must be adjacent to the node w and
the components of G — S must be complete. [ |

Using this lemma we now give the following structural characterization.

Theorem 12. Foragraph G, $i(G+ ¢) = fi(G) + 1 forall e € E if and only
if G consists of node disjoint subgraphs S,G1, G, ..., Gy where no node of G;
is adjacent to any node of G; fori # j, every node in S is adjacent to every node
in'V, each G, is complete with an odd number of nodes, and k > |S| + 2 when
pisevenand k > |S| + 3 for p odd. Moreover, B, (G) = (p—k + |S])/2.

Proof: The proof of sufficiency is straightforward. To show necessity suppose that
Bi(G +e) = fi(R) + 1 forall e € E. The lemma implies that the components,
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G, of G — S are complete. If there exists a component with an even number of
nodes then any edge from a node in this component to any other node could not
increase 8;. Hence no component has an even number of nodes. If k < |S] + 1
then G has a perfect matching if p is even or there exists av € V for whichG —v
has a perfect matching if p is odd. In either case 51 (G + €) # f1(G) + 1. Hence
k > |S| + 1. Then there are k — |S| nodes not matched in any MIS of G, and
p — (k — |S]) is even. Thus, for p even, k and |S| have the same parity and for p
odd, k and |S| have opposite parity. It follows that for p even, & > |S| + 2 and
for p odd, k > |S] + 3. Moreover, 51 (G) = (p—k+|S]) /2. ]

Assuming there are no isolated nodes in G, Theorem 12 gives a complete char-
acterization of the structure of Class 5 graphs. See Figure 1 for an example. Other
examples of Class 5 graphs include bipartite graphs K ,,n > 3, the union of
any arbitrary number of odd complete graphs on at least three nodes, and K, , U
K2m+lyn2 3$m 2 1.

[ J
Figure 1: An example of a Class 5 graph.

4.2. The graph for which the edge independence number, 3, is unchanged
and the edge covering number, «;, unchanged when any arbitrary edge from
the complement is added. [Class 6 graphs]

Now consider the classes of graphs where «; and §; stay the same when an
arbitrary edge is added.

Theorem 13. A graph G has /(G + e) = Bi(G) forall e € E if and only if
B(G) = [(p—1)/2].
Proof: Assume §;(G) = [(p—1)/2]. Hence 8, (G) is at its maximum possible
value for a graph on p nodes. Suppose B1(G + ¢) = B1(G) foralle € E and
Bi(@) < [(p—1)/2]. Forany MIS, I, of G there exist at least two unsaturated
nodes, say u and v. However, u and v must be nonadjacent, otherwise 8; would be
larger. But 81 (G+ uv) > 81(G),a contradiction. Hence 81(G) > [(p—1)/2].

|

We now assume no isolated nodes and restate the Theorem in terms of «; .

Theorem 14. A graph G has a,(G + €) = a,(G) forall e € E if and only i
a1(G) = [(p—-1)/2].
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Assuming no isolated nodes, Theorems 13 and 14 are equivalent and charac-
terize Class 6 graphs. Examples of Class 6 graphs include C,,, K, forn > 2,
paths, wheels, and H x G where G is any connected graph on p > 2 nodes and
H is any graph with a perfect matching.

5. Relationships Among The Classes Of Graphs

Considering the results from the previous sections we obtain some interesting
relationships among the six classes of graphs. Assume E # ¢ when Class 5 and
Class 6 graphs are discussed. Note that assuming E is not empty removes from
Class 1 complete graphs on an odd number of nodes and from Class 2 complete
graphs on an even number of nodes. (The only graphs in both Class 1 and 2 are
complete graphs.) It follows directly from the characterizations that both Class 1
and Class 2 graphs are Class 6 graphs. However, the converse is not true as can
be seen in Figure 2. The following two Theorems relate Class 1 graphs and Class

4 graphs.

Figure 2: Example of a graph in Class 6, but not in Classes 1 or 2.

Theorem 15. If B1(G — v) = B1(Q) forall v € V then (G — e) = fi(G)

forallec E.

Proof: Choose an arbitrary node v. Then 81(G) = £;(G —v) < fi(G —uv) <

B1(G) since removing v also removes its incident edges. [}
Theorem 15 can be restated in terms of a; as follows.

Theorem 16. In a graph G with no isolated nodes, if a, (G - v) = a1(G) — 1
forallv eV thena1(G —e) = a1 (G) forall e € E.

Theorems 15 and 16 show that a Class 1 graph is also a Class 4 graph. However,
the converse is not true. For a counterexample, an even cycle is a Class 4 graph
but not a Class 1 graph. Next we show that any Class 5 graph is also a Class 4
graph when «; is defined for both.

Theorem 17. If 8,(G+e) = fi(G) + 1 forall e € E then Bi(G—-e) = /i(G)
forall e € E.

Proof: Lete; = wv € E where e = uv € E. Now 8, (G + uv) = B1(G) + 1 so
Bi(G — u —v) = B1(G). Hence Bi(G) = (G — wv) = fi(G — e1). Now
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suppose that the degrees of wandvarep— 1. LetIbeaMISof G. If e; ¢ I,

Bi(G —e1) = fi(G). Suppose e, € I. If G = Kj,clearly 8 (G —e) = Bi1(G).

Ifp > 4 thereis second edge e2 = rs € I. Notice that w, v, r, s induces a K4 and

e1 and e; saturate the four nodes. Another MIS of G occurs by replacing e; and

e in I by wr and vs. Thus in this last case we also have 8, (G — e1) = A1 (G).
|

Theorem 17 can be restated in terms of «; as follows.

Theorem 18. Assume G and G — e _{_brall e € F have no isolated nodes. Then
a1(G+e) =a1(G) — 1 forall e € E implies that oy (G — e) = ay(G) forall
ec E.

Theorems 17 and 18 show that Class 5 graphs with no pendant edges are also
in Class 4. A star is a Class 5 graph, but not a Class 4 graph since removing any
edge leaves an isolated node. Again the converses of Theorems 17 and 18 are not
true. The cycle C, provides a counterexample.

Theorem 19. For connected graphs, Class 5N Class 1 = ¢.

Proof: Let G be a connected Class 5 graph. IfA < p— 1, then |S| = 0 where S
is the set of nodes adjacent to all nodes in G. By Theorem 12, G — S consists of
components G1,...,Gk, k > |S|+2. This implies G has at least two components,
a contradiction. Thus every connected Class 5 graph G has A(G) = p— 1. Since
E # ¢, there exists two nonadjacent nodes u and v such that 8;(G — u — v) =
B1(G). By Theorem C, GG is not a Class 1 graph. [ ]

Figure 3 gives an example of a Class 4 graph G where G is not in Classes 1 or
S.

Figure 3: Example of a graph in Class 4, but not in Classes 1 or 5.

6. Concluding Remarks

We have given characterizations of the six classes of graphs for which a; and 8
change or remain the same under node and edge removal and edge addition and
have explored some relationships among these classes of graphs. The character-
ization of graphs in each of the six classes for many other graphical invariants is
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still an open problem. It is an ongoing project of the authors to study this problem
for several invariants.
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