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Abstract. A 1-spread of a BIBD D is a set of lines of maximal size of D which
partitions the point set of D. The existence of infinitely many non-symmetric BIBDs
which (i) possess a 1 -spread, and (i) are not merely a multiple of a symmetric BIBD, is
shown. Itis also shown that a 1-spread S gives rise to a regular group divisible design
G(S). Necessary and sufficient conditions that the dual of such a group divisible design
G(S) be a group divisible design are established and used to show the existence of an
infinite class of symmetric regular group divisible designs whose duals are not group
divisible.

1. Introduction.

A line of a BIBD D is the intersection of all the blocks on two points of D. There
is a well-known upper bound on the number of points in a line of a BIBD. A line
whose number of points meets this upper bound is said to be of “maximal length”.
A 1-spread of a BIBD D is a set of lines of maximal length of D which partitions
the point set of D.

In Section 3, we determine the form of the parameters of a BIBD possessing a
1-spread and also show the existence of an infinite class of non-symmetric BIBDs
each member of which

(i) possesses a 1-spread; and

(ii) is not a multiple of a symmetric BIBD.

In Section 4 we show that any 1-spread of a BIBD give rise to a regular group
divisible design. We then give a proof (alternative to the one given in [10]) of the
following result: If a (486 + 15,246 + 7,128 + 3)-design D has a 1-spread S,
then there is an affine BIBD with four blocks in each affine resolution class and
with each pair of non-disjoint blocks meeting in 38 + 1 points.

In Section 5 a major aim is to give necessary and sufficient conditions that the
dual of the regular group divisible design obtainable from a 1-spread of a BIBD
is also a group divisible design. We also construct an infinite class of self-dual
regular group divisible designs using “geometric” 1-spreads in PG(2d + 1,q).
Symmetric regular group divisible designs whose duals are not group divisible
seem to be rare. In Section 5 we also show the existence of an infinite class of
symmetric regular group divisible designs

(i) whose duals are not group divisible; and

(ii) whose parameters are not the same as those of the group divisible designs
of this type given by Jungnickel and Vedder [7].

The author acknowledges the support of an ARC Research Fellowship.

JCMCC 12 (1992), pp. 141-151



2. Preliminaries.

We denote the set of points incident with a block B of an incidence structure
by (B). Let F = (P, B,T) be an incidence structure and consider P C P and
B = B. We say that P and B are disjoint if P N (B) = ¢ and that P is incident
with B if P C (B). The intersection of blocks By, ... , Bm of F is N2, (B).
The multiplicity of B is |{C € B: (C) = (B)|.

A finite incidence structure with v points, b blocks, T blocks on each point and
k points on each block is called a (v, b, 7, k)-configuration. For a (v,b, T, k)-
configuration we must have vt = bk. An incidence structure F = (P,B,T) is
said to be 2-balanced if every 2 -subset of P is incident with the same number
(), say) of blocks of B. The number M is called the index of F. For the pur-
poses of this paper, a balanced incomplete block design (BIBD) is a 2-balanced
(v, b, 7, k)-configuration with positie index and v > k > 2. A (v,b,7,k)-
configuration which is a BIBD with index ) is called a (v, b, 7, k, A)-design. For
a(v,b, T k,\)-design we must have vr = bk, A(v—1) = 7(k— 1) and b > v.
A (v,wb,wT, k,w))-design where b > v, is said to be an w-quasimultiple of a
(v,b, 7, k,\)-design.

For further basic notions, definitions and facts concerning incidence structures
[1], (2] or [5] could be consulted.

3. Spreads.

A line of a BIBD D is the intersection of all the blocks of D on two distinct
points of D. If D is a (v, b, 7, k, A)-design and L is a line of D, then |L]| < %:—;
((S, p. 781). Also, for any block B of D we have L C (B) or [LN(B)| < 1.
If|L] = %‘;, then L is said to be of maximal length and we have L C (B)
or |[L N (B)| = 1 for all blocks B of D. A 1-spread of a BIBD D is a set of
lines of maximal length which partitions the point set of D. A 1-spread S is said
to be uniform if the number of blocks containing a pair of distinct lines of S is
independent of the pair of lines chosen.

The following lemma will prove of use.
Lemma 1. Every I-spread of a BIBD is uniform.

Proof: Let S = {L1,... ,Ln} be a 1-spread of a (v,b, 7, k, \)-design D. Now
a block of D¢ (the complement of D) meets L; in % — 1 points or in no points.
So L; is a maximal (,f:—; -arc ([9]) of 'D°. Thus, {L,,...,Ln} a maximal arc
partition of D°. But the number of blocks not meeting each of a pair of maximal
arcs in a maximal arc partition of a BIBD is independent of the pair of maximal
arcs chosen (see [11]). The result follows. 1

Suppose D is a (v,b, T, k, A)-design and S is a 1-spread of D. From vr = bk
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and A(v — 1) = 7(k — 1) we obtain
Ak —7) =*(k—1)

whence
AMb=Nk= (7 =2k —1(T—))

and so

A(b'*)k=(-r+ Nk—T.
T—A

Clearly, we have T = pk for some positive integer p. But then

X(b;i-)=p(k+ 1+ A

andso ) | p(k—1). Letp(k—1) = a). We thenhave that D isa ( ka1, p(kat1),
pk, k, ﬂ("—;l)-) -design and |L| = %} = a + 1 for each line L of S. Note that
a>l.

Nowa+ 1 |v=Fka+landsoa+1|k—1. Letk=o(a+1)+1.
Immediately we have « | po. We note that there are g + 1 lines in S.

Consider the incidence structure D(S) whose points are the lines of S and
whose blocks are the blocks of D, incidence being defined by L is on B if and
only if L C (B). Clearly, D(S) has ca + 1 points and p(a + 1)(ca + 1)
blocks. Also, each line of D is in X blocks of D and so each point of D(S) is on
X = (a+ 1) (£) blocks of D(S).

Next let z be the number of lines of S in a block B of D and y be the number
of lines in S meeting B in a unique point. Then we have

r+y=oca+l
and
(a+ Dz+y=0c(a+1)+1.
Clearly, z = Z. Let o = 7a. We now have that D is an ((a+ 1)(7o? + 1),
pla+ (ra? + l),p('mz2 +ra+l), e +Ta+ 1, pr(a + 1))-design and

that D(S) isa (ra? + 1, p(a+ 1)(Ta? + 1), pr(a+ 1),7) <configuration. But
every 1-spread of a BIBD is uniform (Lemma 1). So D(S) isaBIBDorr= 1.
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But then X(1a?) = pr(a+ 1) (7 — 1), where X is the index of D(S). We then
infer that o | p(7— 1) andso 7= %az + 1 for some § > 0. We then have that
the parameters of D are given by

v=(a+1)(Aa?+1)

b=p(a+ 1)(Ad? + 1)

r=p(Aa® + Aa+ 1) )
k=Ac? +Aa+1

A= pla+ DA,

where A = -‘;a’. AlsoD(S)isa(Ad? + 1, p(a+1) (Aa?+1),p(a+1)A,A,

(a+1) §)-designoran (a? + 1, p(a? + 1), p(a + 1), 1)-configurationas § > 0
oré6=0.

Remarks:

@ Ifp =1,8 > 0 and D(S) has a block B of multiplicity « + 1, then
D(S) is (in the terminology of [13]) a “generalized symmetric design”.
The substructure of D(S) defined by the points of D(S) not on B and
the blocks of D(S) other than B and its repeats is a “generalized residual
design” with parameters v' = a?(A —8),b' = (a+1) a?A,r = (a+ 1)A,
kK'=A —8§and ) = (a+ 1)6. Such a block B also yields a “generalized
derived design”.

() Ifp=1andD(S) isan(a+ 1)-multiple of a (Aa? +1,A,6)-design, then
we say, for brevity, that D(S) is an “(a + 1)-multiple”. We also refer to a
BIBD with parameters (1) as a [ 8, p, a]-design”.

Let nand ¢ be integers'such that n > 3 and 1 <t < n. Also, let g be a prime
power and PG(n,¢) be the n-dimensional projective geometry over GF(g). A
t-spread of PG(n,q) is a set of t-dimensional subspaces of PG(=n,g) which
partitions the point set of PG(n,q). If S is a t-spread of PG(n,q) and U € S,
then we say U is a component of S. If S is a t-spread of PG(n,q) and V is
a subspace of PG(n, q) such that the components of S in V' form a ¢-spread of
V, then we say that S induces a t-spread on V. It is well-known that PG(n, q)
possesses a t-spread if and only ift + 1 | n+ 1 ([4, p.p. 72-3]). Letd > 1 and
PGy4(2d + 1,2) be the symmetric BIBD formed by the points and hyperplanes
of PG(2d + 1,q). We can identify the lines of PG, 4(2d + 1, ¢) (which are all
of maximal length) with the 1-dimensional subspaces of PG(2d + 1,q). Any
1-spread of PG(2d + 1, q), thus, yields a 1-spread of PG24(2d + 1,q). Note
that PG14(2d + 1, g) has parameters given by (1) withp=1,a=gandé=0
or 42 Pasd=1o0rd> 2.

Considera 1-spread S of PG(2d+1, g). Each hyperplane H of PG(2d+1, q)
contains %% ¢** lines of § which cover 3% ¢ points of PG(2d + 1,g).
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So these lines generate a (2d — 1) -dimensional subspace or a (2 d) -dimensional
subspace of PG(2d + 1,q). Thus, the lines of S in H either generate a hy-
perplane of H or H itself. In the former case H, as a block of D(S), where
D = PGy4(2d + 1,q), has multiplicity ¢ + 1 and, in the latter case, H is a non-
repeated block of D(S). If the lines of S in each hyperplane of PG(2d + 1,q)
generate a (2d — 1) -dimensional subspace, then D(S) is a (¢ + 1)-multiple of a
(Tio % g g% 37 ¢%) design, whend > 2. (fd = 1, then D(S) is
(g+ 1)-multhleofa(q +1,¢% + 1,1, 1)-configuration.)

Now suppose S is a 1-spread of PG(4e + 3,q), where e > 1. Here D(S)
isa (g + 1)-quasimultiple of a (3257 ¢%%, T2 ¢ T2 2‘) -design. The
parameters of D(S) can be obtained from (1) by putting a =g, p=q+ 1land
§=0or(g+ 1) YT 2¢* ase = 1 ore > 2. SoD(S) might also possess a

-spread In fact, the number of points on a line of maximal length of D(S) is
g% + 1. Also, the number of lines in a 1-spread of D( S) is Y .o ¢** which equals
the number of 3-spaces in a 3-spread of PG(4e + 3, q).

Suppose T is a line of D(S) of maximal length with lines L;,... , Lgy of S
as points of L. A little thought shows that L1, ... » Lg241 generate a 3-space U of
PG(4e+ 3, q) and form a 1-spread of U. Conversely, if there is a 3-space U on
which S induces a 1-spread, then the g2 + 1 lines of S in U/ form a line of maximal
length of D(S). It follows that a 1-spread of D(S) corresponds to a 3-spread of
PG(4e+ 3,q) upon each of the components of which S induces a 1-spread, and
vice versa. However, PG(4e + 3,q) possesses 3-spreads and each component
3-space of a 3-spread must contain 1-spreads. So we can easily construct many 1-
spreads S of PG(4 e+3,q) which induce a 1-spread on each of the components of
a 3-spread We, thus, infer the existence of ( g+ 1) -quasimultiples of a (325 ¢2%,
E.—o g% 2"' ¢>%)-design which possess a 1-spread. This is not parhcularly
interesting when such a BIBD is a (¢ + 1)-multiple. So we next proceed to show
that 1-spreads S existin PG(4e + 3,q), e > 1, which are such that

(i) D(S) possesses a 1-spread, and
(ii) D(S) isnota (g + 1)-multiple.

Let 8' = (Ui = 1,...,0 = Y ioq*} be a 3-spread of PG(4e + 3,q).
Choose 1-spreads S; in each of U; ensuring that S; contains a 1-regulus ([2,
pp. 220-1]) R of U;. Let R’ be the opposite regulus of R and S; be the 1-spread
of U; obtained from S; by replacing R in S; by R'. Also, let S and S be the 1-
spreads UZ, S; and §; U(UL, S;) of PG(4e+3,q). Further, letL e R, L' € R/,
V be the 2-space generated by L and L' and H be a hyperplane of PG(4e+ 3, q)
containing V but not U . If the lines of S in H generate H, then D(S) isnot a
(g + 1)-multiple. On the other hand, if the lines of S in H generate a hyperplane
H~ of H, then the lines of S in H are those of S in H apart from a replacement
of L by L'. The lines of S in H excluding L' still generate H~. But L' is not in
H~ and so the lines of S in H generate H. Thus, D(S) is nota (g+ 1)-multiple.
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4. Regular group divisible designs.

A (v, b, 7, k)-configuration G = (P, B,T) is said to be a group divisible design
(GDD) if there is a partition of P _into “groups” Py, ... ,Pm where 7@ > 2, such
that there are integers %@ > 2 and A; and X such that

@) [Pi|=nforalli=1,...,m, _
(b) any two points common to a group are on ), blocks of B,
(c) any two points in different groups are on X, blocks of B, and
d X # 2.
P1,... ,Pmiscalled a group division of G.
The parameters of a GDD satisfy 77 = bk, ¥ = W% and (F—1) X + 7 (i—1)
2= 7(k - 1).

Let A be an incidence matrix of a GDD with parameters v, b 7.k, 7, m, 1 and
X2. (We adopt the convention that t points correpond to rows of A.) The eigenval-
ues of AA* are 7k, 7 — X and 7k — T ). It is well-known that group divisions
can be exhaustively classified into the following mutually exclusive types:

(1) Singular for which 7= X;. _ L
(2) Semiregular for which7 > X, and 7k =7);.
(3) Regular for which7 > X; and Tk > v ;.
Since a GDD has a unique group division we can apply the terms “singular”,
“semiregular” and “regular” to GDDs as well as to group divisions.
Clearly, for a semiregular GDD we must have

F=X1 =732 —M). ¥))]

Also, a regular GDD is of rank v ( [5, p. 4]) and so we must have

.

ol
v
<|

€)

for regular GDDs.

A GDD @ is said to be self-dual if G¢ (the dual of G) is a GDD with the same
parameters as G.

Suppose S isa 1-spread of a (v, b, 7, k, \) -design D = (P, B, T) with parame-
ters (1). Define an incidence structure G(S) = (P, B,I\I'), where (P,B) € T'
ifand only if L, C (B). (Here Ly, denotes the line of S on P.) Then G(S) is a
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group divisible design with parameters

- _ 2 é_
k=o (A’p) @
n=a+l
m=Ac?+1
=0
%= ata-1 (a-2)
p

where (as earlier) A — % o? + 1. The groups of G(S) are the lines of S.
To show this is quite straightforward, let k* be the blocksize of D(S). Each

block G(S) has k— k*(a+1) = (A - -g) o? points of G(S) on it. Each point of

G(S)isonr — X =p (A - £) o blocks of G(S). Clearly, each pair of poins
of G(S) in the same group are on no blocks of G(S). Consider two points P and
Q on different lines L p and Lq of S. The number of blocks of D containing both
Lp and Lgq is the index of D(S) which is §(« + 1). The number of blocks of D
containing Lp and Q is LJ‘:TT (see [10]) and similarly for the number of blocks of

D containing Lq and P. But 2= = p (A + %a). So the number of blocks of

v-1
G(S) on Pand Qs pA(a+1)—2p (A + ga) +6(a+ 1) = p(a—1) (A - g).
The GDDs G(S) are regular. First, 7 > 0 = X; and so G(S) is not singular. To
eliminate G(S) being semiregular it is sufficient, from (2), to show that 7 — X, >
7(X2 — M), that is, to show that 7 > Tx, . But this can be easily verified.
From Section 3 we have that, for all prime powers g,
(i) there exist (symmetric) GDDs with parameters (4) withp = 1, & = ¢ and
§=00r %2 ¢%,d >2,and

(ii) there exist (non-symmetric) GDDs with parameters (4) with p = ¢ + 1,
a=g*and§ = 0 or 1,52 ¢*, e > 2, which are not multiples of a
symmetric GDD.

Suppose D is a Hadamard design with parameters (1). It is easily shown that
wemusthave p=1anda=2. Disthena (486+ 15,246+ 7,126+ 3)-design.
The following result (as well as its converse) was obtained in [10]. Here we give
another proof of it.
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Theorem 1. Ifa (486 + 15,248 + 7,126 + 3)-design D has a 1-spread S,
then there is an affine BIBD with four blocks in each affine resolution class and
with each pair of non-disjoint blocks meeting in 38 + 1 points.

Proof: G(S) is a regular GDD with parameters T = b = 3(166 + 5), 7= k =
4(36+1),7=3,m=165+5,) = 0 and X\, = 35+ 1. Clearly, the parameters
of G(S) satisfy k = (% + 1)X,. The result follows upon applying a result of
Jungnickel and Vedder (see {7, p. 277]). 1
Remarks: One way to obtain a GDD with the parameters of G(S) in the proof of
Theorem 1 would be to sign ([3, p. 124]) a (166 + 5, 125 + 4,95 + 3)-design
over the cyclic group Z3 of order three. A GDD G so obtained would have an
automorphism of order three acting regularly on each of its groups ([6]). The
affine BIBD A corresponding to G would possess an automorphism of order three
fixing a point and each affine resolution class of .A. The smallest value of which
yields an affine BIBD with “non-classical” parameters is § = 2. The problem as
to whether any of the four (37, 28, 21)-designs can be signed over Zs is open ([3,
p. 261).

5. Dual properties.
Consider a (v, b, 7, k, \) -design D = (P, B,T) whose parameters are given by
(1) with p = 1 (that is, a [ 8, 1, o] -design). Let S be a 1-spread of D.

Lemma 2.

(@) If B is a block of multiplicity n > 2 of D(S), then B and the n— 1 other
blocks of D containing the same lines of S as B form a line % of D¢ (the
dual of D).

(b) The multiplicity of a block of D(S) is less than orequal to a + 1,

(¢) If B is a block of multiplicity o+ 1 of D(S), then L is a line of maximal
length of D4,

Proof:

(a) For any block X of D denote the set of lines contained in X by Sx. Let A
and B be blocks of D such that Sy = Sp and A # B. Now D¢ is a BIBD
with index (82 + 1) (a+ 1). So the (8a? + 1) (a+ 1) points of D on the
lines in Sp = S are all of the blocks of D¢ incident with B and A. The line

% which is the intersection of all the blocks of D¢ on A and B contains
precisely the blocks E of D such that Sg = Sp.

(b) Suppose B is a block of D of multiplicity . If = 1, then a+ 1 > 7 since
a > 1. If n > 2, then B is contained in a line L} of D¢ with [L}] = 7.
But|Lj|< 2 =a+1.

(¢) Immediate.

Next we establish the following proposition.
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Proposition 1. Suppose D(S) is an (a+ 1) -multiple and S* = {L%: B € B}.
@) S* is a 1-spread of D* and D% S*) is an (a + 1)-multiple. In conse-
quence, the lines Ly of maximal length of D defined by points P of D (as
in Lemma 2(a) form a 1-spread S** of D. Furtherrnore, Ly = Lp for all

P € P and, in consequence, S** = S

(®) LpC (B) ifandonly if L} C (P).

Proof: (a) That S* is a 1-spread of D¢ is immediate using Lemma 2(c).
Consideraline L = {Py,... , Pas1} Of S. The set of (8a? + 1) (a + 1) blocks
of D containing L is partitioned by a® + 1 sets of blocks of D, each of which is

aline of S*. So Py,... , P,.1 as blocks of D%, contain §a? + 1 common lines of
S*. Soeach of Py, ... , Pas1 is a block of D¥(S*) of multiplicity o + 1. But the
lines of S partition P.

Consider a point P € P and a block B € Bsuch that Lp C (B). Now P
isin Lp and Lp is contained in all of the blocks of D which constitute L%. So
P, as a block of D, contains L%. Now B is in L% and D4(S*) is an (a + 1)-
multiple. So, by the same reasoning we have that B contains L. Thus, all blocks
of D containing L p contain L. But Lp is the intersection of all the blocks of D
containing L p. We conclude that Ly = L p and then that S** = S.

" (b)" That Lp C (B) = L} C (P) was established in Part(a). We then have

Ly C(P)=Lp C(B)
= Lp C(B) (since Lp=L%).

We are now in a position to establish the following theorem.
Theorem 2. Suppose D isa [8, p, o] -designand S isa 1-spread of D. G(S)¢
isa GDD ifand only if p = 1 and D(S) is an (a+ 1) -multiple.

Proof: Suppose p = 1 and D(S) is an (a + 1)-muitiple. Let D¢ = (B, P, 7).
Analogously to G(S) we define G(S*) = (B,P, T\ J'), where (B, P) € J' if
and only if L% C (P). Now

(P,BYeI' & Lp C(B)
% L C(P) (Proposition 1(b))
& (B,P)el.

It follows that G( §*) = G(S)%. But D¢ is a BIBD and S* is a 1-spread of D¢. So
G(S*) isaGDD.

Conversely, suppose G(S?) is a GDD. Let A be an incidence matrix of G(S).
Now AA! has three different non-zero eigenvalues and so A'A has three such
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eigenvalues. It follows that G( S)¢ is regular. Then, using (3), we have that G(S)
is symmetric and so p = 1. By Mitchell [8], G(S) is self-dual and the groups of
G(S) and G( S)*¢ form a tactical decomposition ([2, p. 7]) of G(S). So, if a block
" Bof G(S) and a group L of G(S) (= aline of S) are disjoint, then L and each
of the other blocks in the group of G( S)¢ containing B are also disjoint. But this
means that these a+ 1 blocks, as blocks of D, contain precisely the same lines of
S. So the multiplicity of a block of D(S) is at least « + 1. But the multiplicity
of a block of D(S) is at most a+ 1 (Lemma 2(b)). We, thus, see that D(S) is an
(a+ 1)-multiple. ]

Letd and ¢ be integers suchthatd > 3 and 1 << d. A t-spread S of PG(d, q)
is said to be geometric if each component of S is contained in or disjoint from each
subspace of PG(d, q) generated by two of the components of S (or, equivalently,
if § induces a t-spread on each of the (2¢+ 1) -dimensional subspaces of PG(d, q)
generated by a pair of components S). It is known (Segre [12]) that PG(d, q)
contains a geometric t-spread whenevert + 1 | d + 1. Also, the ¢-spread induced
on the (2t + 1)-dimensional subspace generated by a pair of components of a
geometric t-spread is a regular ([2, p. 221]) t-spread; see [12].

The following lemma will be of use.

Lemma 3. If § is a geometric t-spread of PG(d,q) and H is a hyperplane of
PG(d,q), then the components of S contained in H generate a (d —t — 1)-
dimensional subspace of H. Furthermore, a t-spread S of PG(3t + 2,q) is
geometric if and only if the components of S contained in any hyperplane of
PG(3t+ 2,q) generate a (2t + 1) -dimensional subspace.

Proof: For a proof of the first statement see [11], Result 2. One half of the second
statement follows from the first.

Suppose S is a t-spread of PG(3t + 2, ¢) such that the components of S con-
tained in any hyperplane of PG(3t+ 2, ¢) generate a (2t + 1)-dimensional sub-
space. Consider components X and ¥ of S such that X # Y. Let T be the
subspace generated by X and Y and let H be a hyperplane of PG(3t + 2,4)
containing T'. There are g**! + 1 components of S in H. These components of S
generate T and form a 1-spread of T'. So § is geometric. 1

Let S be a geometric 1-spread of PG(2d+ 1,¢) and D = PGy (2d + 1,9).
From Lemma 3, the lines of S in a hyperplane H of PG(2d + 1,q) generate
a hyperplane of H. So D is a (¢ + 1)-multiple. Using Theorem 2, we infer the
existence of self-dual regular GDDs which have parameters (4) withp=1,a = ¢,
§=0,0r 42 ¢%,d > 2.

Next, let S be a geometric 1-spread in PG(S, q), U be a 3-space generated by
a pair of components of S and R be a 1-regulus in the 1-spread S, induced on U
by S. Replacing R by its opposite 1-regulus yields a 1-spread S' of PG(5, q)
which induces a 1-spread S, on U. Provided ¢ > 2, S, is not regular (see Re-
mark(a) below) and so S’ is not geometric. Using Lemma 3 we have that there is
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a hyperplane H of PG(5,q) such that the components of S’ in H generate H.
So D(§') is not a (g + 1)-multiple. Using Theorem 2 we infer the existence of
a symmetric regular GDD with parameters (4) withp = 1=§anda = ¢ (> 2)
whose dual is not a GDD.

Remarks:

(@) The translation plane of order ¢? corresponding to the 1-spread S, of U
is a Hall plane. For ¢ > 2 a Hall plane is non-desarguesian and so S, is
not regular (see [2, p. 221]). For some details on the connection between
1-spreads in PG(3, ¢) and translation planes see [2, Chapter 3, and 5).

(b) The only other infinite class of symmetric regular GDDs whose duals are
not GDDs known to the author appears in [7].

(c) D(S') is a generalized symmetric design since a hyperplane of PG(5, ¢)
containing U is a block of multiplicity ¢ + 1 of D(S’).
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