Resolvable Designs Applicable to Cryptographic Authentication Schemes
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Abstract. We consider certain resolvable designs which have application to doubly
perfect cartesian authentication schemes. These generalise structures determined by
sets of mutually orthogonal latin squares and are related to semi-latin squares and other
designs which find application in the design of experiments.

1. Introduction.

Sets of mutually orthogonal latin squares find applications in design of experi-
ments for multifactor experiments (John and Quenouille [4]). They can also be
used to construct (optimal) semi-latin squares, known as Trojan squares, which
find also application in design of experiments (Bailey [2]).

An orthogonal array (Raghavarao [5]) of strength 2 and index 1 is a k x s matrix
with entries from a setof s (> 2) elements such thatany 2 x s> submatrix contains
each possible 2 x 1 column vector exactly once. Such an array is equivalent to a
set of k£ — 2 mutually orthogonal latin squares. Orthogonal arrays have been used
to construct doubly perfect cartesian authentication schemes (Brickell [3]).

When s is a prime power there exist sets of s — 1 mutually orthogonal latin
squares, and this is the maximum number possible. For s not a prime-power no
set of s — 1 mutually orthogonal latin squares is known. Interest arises, therefore,
in semi-latin squares and doubly perfect cartesian authentication schemes which
do not arise from sets of mutually orthogonal latin squares. A semi-latin square
arising from a set of k£ mutually orthogonal latin squares of order s has ks treat-
ments and an authentication scheme arising from such a set has k source states.
The problem is to construct semi-latin squares with more treatments and doubly
perfect cartesian authentication schemes with more source states than would arise
from a set (of maximum size) of mutually orthogonal latin squares.

Brickell [3] has defined an orthogonal multi-array OM A(k, s; r1,... ,7¢) asa
8% x k matrix A = (a;;) whose entries are subsets satisfying:

(i) ajj is an rj-subset of the set {1,2,... ,sr;};
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(ii) given columns {; and {2 and integers z; and z; with 1 < 71 < 87y, and
1 < z; < sry, there is exactly one row 4 such that z; € a;; and z; € ayj,.

Thus, an OM A(k, s; 1,...,1) is an orthogonal array.

IfAisan OMA(k,s;1,1,73,...,7¢) thencolumn £(3 < £ < k) of A deter-
mines a semi-latin square on sr, treatments. The entry in row ¢ and column ; of
the semi-latin square is a,,¢ Where a1 = 1 and ap2 = j. Superposing (see Baily
[2]) two or more of these semi-latin squares provides other semi-latin squares.

As there do not exist a pair of orthogonal latin squares of order 6 there does not
exist an OM A(4,6;1,1,1,1). However, the following example (Brickell [3])
isan OMA(4,6;1,1,1,2).

Example 1.
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5 4 6 5,9

5 51 6,12

5 6 2 1,7

6 1 6 3,6

6 2 4 9,12

6 3 5 7,11

6 4 3 1,4

6 5 2 25

6 6 1 8,10

Rows 3 and 4 determine semi-latin squares.

1 2 3 4 5 6

2 1 6 5 3 4

3 61 2 45

4 5 2 1 6 3

5 3 46 1 2

6 4 5 3 2 1
1,2 3,4 56 7,8 9,10 11,12
9,11 5,7 1,10 2,12 3,8 4,6
7,12 2,8 4,9 6,10 1,11 3,5
5,10 1,6 8,12 3,11 4,7 2,9
4,8 10,11 2,3 9 6,12 1,7
3,6 9,12 7,11 1,4 2,5 8,10

whose superposing provides the following semi-latin square on 18 treatments (re-
placing 1,2,3,4,5,6 of the first square with @, b, ¢, d, e, f):

6,1,2 b3,4 ¢56 d7,8 9,10 f11,12
59,11 6,57 f,1,10 2,12 3,8 d4,6
¢,7,12  f2,8 44,9 b6,10 d1,11 ¢35
4,5,10 1,6 58,12 43,11 £4,7 2.9
4,8 10,11 d,2,3 £59 46,12 51,7
£3,6 49,12 7,11 ¢1,4 52,5 a,8,10

2. Resolvable designs.

AnOMA(k,s;1y,... ,7x) corresponds o a block design on s? points and s(ry +
-+ + 1) blocks. The blocks are partitioned into k classes Cy ... , C; where C;
contains sr; blocks. The s? points correspond to the s rows of A and the sr;
blocks of class C; correspond to the sr; elements appearing in column i. The block
corresponding to element £ in column ; is incident with the point corresponding
torow i if and only if £ € a;;.

The design D has s? points, kr blocks where r = r{ + ... + rk, each block
contains k points, and each point belongs to r blocks. The blocks are partitioned
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into k classes Cy, ... , Ci such that each point is incident with r; blocks of C;.
Such a partition of the blocks is called a resolution of the design D. If r; = ... =
r; = « then the design is a-resolvable as defined by Shrikhande and Raghavarao
71

This resolvable design has an extra property: any two blocks from distinct
classes are incident with exactly one common point. In terms of the semi-latin
squares associated with an OMA, this property means that in a square obtained
by superposing, treatments from different squares will have concurrence 1. Thus,
as discussed by Baily [2], since it seems likely that the most efficient semi-latin
squares have concurrences 0 and 1, the efficiency of the superposed semi-latin
square will be highly dependent on the concurrences and efficiencies of the com-
ponent semi-latin squares. If the only concurrences are O and 1 then in the corre-
sponding resolvable design two blocks from distinct classes meet in 1 point and
two blocks from the same class meet in 0 or 1 point. Anthony et al [1] discuss a
generalisation of an OMA which also provides doubly perfect cartesian authenti-
cation schemes. Such a generalisation also corresponds to a block design for which
there is a partition of the blocks. However, this partition need not be a resolution
as the condition on the blocks within a class is relaxed. No longer is it required
that each point be incident with a fixed number r; of blocks of class C;, but only
that each point be incident with at least one block of each class. The requirement
that two blocks from different classes meet in exactly one point is also relaxed to
the requirement that two blocks from different classes meet in at most one point.
If such a block design contains two classes each containing k blocks then the re-
maining classes determine irregular semi-latin squares (Bailey [2]) whose rows
and columns are indexed by the blocks of these two special classes.

The array (Anthony et al [1]) given in Example 2 determines a doubly perfect
cartesian authentication scheme.

3. Authentication designs.

A block design is a triple (P, B, I) where P is a set of points, B is a set of blocks
and I C PxBis an incidence relation between them. We define an Authentication
Design AD(n,t) to be a block design (P, B, I) with »? points P and n points per
block together with a partition of the blocks B into classes Cy,. .. ,C; such that:

(i) every point belongs to at least one block of each class;
(ii) two blocks from different classes meet in at most one point.
If S is an AD(n,t) satisfying the stronger condition
(i") for each class C; there is an integer r; such that every point belongs to r;

blocks of C;;
(ii’) then S is called resolvable and we say S is a RAD(n,t;r1,... ,7).
If Sis a RAD(n,t;r,..., 1) then two blocks from different classes meet in

exactly one point. (The n points of a block of class C; are each incident with
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r; distinct blocks of class C; and so account for all the nr; blocks of C;.) A
RAD(n,t;7y,...,7) is equivalent toan OM A(n,t;71,... ,7). Ifry =73 =
1, it is equivalent to a collection of semi-latin squares.

Lemmal. Let S bean AD(n,t). Thent < n+ 1. Ift=n+ 1 then S isan
RAD(n,n+1;1,...,1),

Proof: Let P be a point of S. P is incident with at least one block of each class.
Let zy,..., ¢ be blocks incident with P and belonging to distinct classes. Any
two of z1,... ,7; meet only in P. Thus, the points incident with z,,... , z; ac-
count for 1+ ¢(n— 1) points of . Thus, 1 + ¢(n— 1) < r, thatis,t < n+ 1.
Ift = n+ 1 then z, is the only block of C) incident with P. It follows that each
point is incident with exactly one block of each class. |

The bound of the lemma is obtained only when there exist a set of n+ 1 mutually
orthogonal latin squares. Such sets are known only when # is a prime power.
When n is not a prime power the following product construction (analogous to
results on latin squares and orthogonal arrays) provides examples.

Example 2.
1 1 1 1,7
1 2 2 2
1 3 3 5
1 4 4 6
1 55 3
1 6 6 4,8
212 6
2 2 3 1,8
2 3 6 3
2 4 1 2
2 5 4 4,7
2 6 5 5
31 3 3
3 2 6 6
3 3 2 4,7
3 4 5 1,8
3 5 1 5
3 6 4 2
4 1 4 8
4 2 1 4
4 3 5 2,6
4 4 2 3,5
4 5 6 1
4 6 3 7
S5 15 4
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The fourth column determines the following irregular semi-latin square:

Theorem 1. Let S bean AD(m,t,) withclasses Cy,... ,Cy, and S, = (P,B, I
bean AD(m,t) withclasses Ci,... ,Cy,. Putt = min(t,,t;). Define a deign
S= (P, xP,,B,I) where B=C) x C{U...UGC; x C} and (P,Q) € (z,y)
ifandonlyif P € z and Q € y. Then S is an AD(mym,t). If 8, is an
RAD(nt;m,...,7,) and 8" is an RAD(my,t2;71,...,7y,) then S is an
RAD(mm, t;r17y,... ,7ery).

Proof: Clearly, S has (n;m)? points and any block (z, y) of S is incident with
the nymp points (P, Q) where P € zand Q € y. Weshow thatSisan AD(nyn;,t)
with classes C; x Cj,...,C; x Cj}. Let (P,Q) be any point of S. For each i,
P belongs to at least one block z of C; and Q belongs to at least one block y of
C;. Thus, (P,Q) belongs to at least one block (z,y) of C; x C!. Any block
(zi,¥3) € C; x C; meets a block (z;,y;) € Cj x CI’ in a point ( P, Q) such that
P € x;, P € z; and Q € y;, Q € yj;. Since there is at most one such P and at
most one such Q, (z;, y;) and (z;,y;) meet in at most one point.

If S) and S, are resolvable then any point P of S; is incident with r; blocks of
C; and any point Q of S; is incident with | blocks of C}. Thus, ( P, Q) is incident
with r;7} blocks of C; x C; and S is resolvable. [ |

Generalised Bhaskar Rao Designs or GBRD’s (Seberry [6]) also determine au-
thentication designs. Let G be a group of order g and let AbeaGBRD(v, v, g; G).
A = (ai;) is a v x g array whose columns are labelled by the g elements of G and
whose entries come from G, such that, for all i # j, the elements ay a7;' (£ € G)
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constitute the g elements of G. Definea RAD(g,v+ 1;1,...,1) §=(P,B,I)
as follows.

P=GxG
B={[hi|heG0<iLv}

Incidence is determined by:

block [ 4, 0] is incident with the points {(h,z) | z € G}
block [k, i1(i #0) is incident with the points {(£, z) | £€G, Tai=h}.

The sets C; = {[h,i] | h € G} partition the blocks and every point belongs
to exactly one block of each of these classes. Furthermore, blocks from distinct
classes meet in exactly one point.

A skew symmetric Room square of side r determines a semi-latin square of
order r on 27 treatments. This corresponds to an RAD(r,3;1,1,2). A skew
symmetric Room square of side r exists forallodd r # 3,5 (Stinson [8]). A Room
square of side 7 is an r x r array such that each cell either is empty or contains two
elements from the set {0, 1,... 7} and such that every element appears exactly
once in each row and each column and every pair of elements appears exactly once
in the array. A Room square is skew symmetric if every diagonal cell contains 0,
and for ¢ # j thed, j cell is empty if and only if the 7, i cell is not empty.

Let R be a skew symmetric Room square of side r. Let Ry be obtained from R
by removing the symbol 0. Let R;, be obtained from Ry by replacing 1,2,... ,r
witha,b,..., g and let R be the transpose of Rj. Then the superposition of R}
and R{ is a semi-latin square.

Example 3. The following is a skew symmetric Room square of side 7,

01 — 45 67 —— —— 23
57 02 —— —— —— 13 46
— 5 03 12 —— 47 ——
—— 37 —— 04 26 —— 15
36 14 27 —— 05 —— ——
% —— —— 35 17 06 ——
—— —— 16 —— 34 25 07

and determines the following semi-latin square.

al e 45 67 cf bd 23
57 b2 ef cg ad 13 46
de 56 3 12 bg 47 af
fg 37 ab dd4 26 ce 15
36 14 27 bf e5 ag cd
24 ac dg 35 17 f6 be
be df 16 ae 34 25 g7
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