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Abstract. Let G'bea finite simple graph. The vertex clique covering number vec(G)
of G is the smallest number of cliques (complete subgraphs) needed to cover the vertex
set of G. In this paper we study the function vec(G) for the case when G is r-regular
and (r — 2)-edge-connected. A sharp upper bound for vee(G) is determined. Fur-
ther, the set of possible values of vec(G) when G is a 4-regular connected graph is
determined.

1. Introduction

All graphs considered in this paper are finite, loopless and have no multiple edges.

For the most part our notation and terminology follows that of Bondy and Murty
(1). Thus G is a graph with vertex set V(G), edge set E(G), v(G) vertices, e(G)
edges, minimum degree §(G), maximum degree A (G) and edge-connectivity
x'(G). However, G denotes the complement of G.

A clique of G is a complete subgraph of G. A vertex clique covering C of
G is a set of cliques such that every vertex of G belongs to at least one of the
cliques in C. A minimum vertex clique covering of G is one having the fewest
elements. The vertex clique covering number vcc(G) of G is the cardinality
of a minimum vertex clique covering of G. Thus the complete graph K, onn
vertices has vcc( K,) = 1, the complete bipartite graph K, , with bipartitioning
sets of order m and n has vee( K ») = max{m,n}.

We have studied the function vec(G) for: the case when G is a tree with each
vertex having degree 1 or k in [2]; and for the case when G is a cubic graph in[4].
In this paper we consider the case when G is r-regular and (r—2) -edge-connected.
For such a graph we prove, in Section 3, that

L) +1), forodd v(G) <3(r2 +7—1)
vel @) < 52%?%%’-, otherwise.

Further, the above bound is sharp for even »(G) > 2 and for odd v(G) > 3.

An interesting problem that arises is that of determining the set of possible val-
ues of vee(G). We have resolved this problem for the case of connected cubic
graphs [4]). In Section 4 we present the solution for the case of 4-regular con-
nected graphs.
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2. Preliminaries
A matching M in G is a subset of E(G) in which no two edges have a vertex
in common. M is a maximum matching if |M| > |M’| for any other matching
M' of G. A vertex v is saturated by M if some edge of M is incident with v;
otherwise v is said to be unsaturated. A matching M is perfect if it saturates
every vertex of the graph. The deficiency de f(G) of G is the number of vertices
unsaturated by a maximum matching M of G. Observe that de f(G) = v(G) —
—2|M|. Consequently, de f(G) has the same parity as v(G), and def(G) = 0
if and only if G has a perfect matching.
The functions vec(G) and de f(G) are related as follows. When M is a maxi-
mum matching in G, it is clear that vec(G) < v(G) — |M| and hence

vee(G) £ %(U(G) + def(G)). 2.0

Observe that when G is triangle free vee(G) = v(G) — |M| and hence equality
holds in (2.1).

Let G(n, r, k) denote the class of r-regular, k-edge-connected graphs on = ver-
tices. Throughout this paper k > 1. The following result was proved in [3].

Theorem 2.1, Let G € G(n,7,k), with1 < k< r—2. Then

@ def(G) <2|5E|225]), if nis even;

(b) def(G) =1, if nisoddand n < ZtE [ 30,

© def(G) <1+2|5X |25 — ). otherwise;
where k' is the least integer not less than k which has the same parity as r and r*
is the least odd integer greater than r. 1

The bounds given in (a) and (c) above are sharp provided k' > 2.
Let
G'(n,1,k) = {G: G € G(n,7, k)and G has no triangles}. 2.2
In [5] we studied the subclass G'(n, 1, k) of G(n, T, k). We obtained bounds on
def(G),G € G'(n,r, k), which are better than those given in Theorem 2.1. How-
ever, the bounds obtained are sharp for k = » — 2 or r — 3, but not always sharp
for k < r — 3. One result from [5] that we make use of is the following.

Theorem 2.2, For an integer v > 4, let
D'(nr,r—2) = {def(G):G € G (nr,r—2)}.

Then

@ D'(mr,r—2)=¢, ifnandrareodd,orn<2rorn< 3t isodd;
() D'(mrr—2) ={1}, ifnisoddand 3 <n<3(+*+7r—1);

©) D'(nrr—2)={d0<d<2|5zh=] diseven}, ifniscven and

n>2r;
(d) D'(nr,r—2)={d:1<d<1+ 2| 5% — ). d isodd}, otherwise.
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Since for a graph G € G'(n,r,r — 2) we have equality in (2.1), we have the
following corollary to Theorem 2.2.

Corollary. Let V'(n,r,r — 2) = {vec(G):G € G'(n,r,7v — 2)}. Then for
r>4
@ V'(n,r,r—2)=¢, ifnandrareodd,orn< 2rorn< 3r is odd;
®) V'(nrr-2)={i(n+1)}, ifnisoddand3r < n<3(r? +r—1);
©) V'(n,r,r—2) = {c€N:[}n] < c < |50% |}, otherwise.
|

Inequality (2.1) together with Theorem 2.1 yield an upper bound on vec(G) for
G € G(n,1k),1 < k < r—2. Unfortunately, the resulting bound is generally
not sharp. In this paper we provide a sharp upper bound on vcc(G) for the case
when k = r —2 > 2. The case r = 3 was resolved in [4].

For § C V(@G), G - S denotes the graph formed from G by deleting all the
vertices in S together with their incident edges. We make use of the following
lemma proved in [3].

Lemma 2.1. LetG € G(n,7,k), 1 < k < r—2, beagraph withdef(G) # 1.
Then there exists a non-empty set S C V(G) such that G - S has

2> ——def(G)
r—k

odd components each of which is joined to S by at mostr — 2 edges, where k' is
the least integer not less that k having the same parity as r. 1

Our next result makes use of the concept of graph closure. The closure c(G)
of a graph G is the graph formed from G by recursively joining pairs of non-
adjacent vertices whose degree sum is at least »(G) until no such pair remains. A
well known result (see [1] p. 57) states that G is hamiltonian if and only if ¢(G)
is hamiltonian. We use this result in the following lemma.

Lemma 2.2. Let G bean odd order graph with v(G) < 2A(G)—1 and e(G) >
+A(GY(W(G) — 1) + 1. Then

vee(G) < %(V(G) - 1.

Proof: We first show that G is hamiltonian. Suppose to the contrary that G is
non-hamiltonian. Then the closure ¢(G) of G is also non-hamiltonian. Let m
be the order of the largest clique in ¢(G). The restriction on £(&) implies that
8(G) > 2 and thus §(c(G)) > 2. Consequently m < v(G) - 2.
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Let G have p vertices of degree at least A — 1 (for convenience we omit the
letter G from A (G) and v(@G)). Then

pA + (v —p)(A —2) >2&(G)
>SA(v—1)+2,

and so 1
p.>_v—5(A -2).

When v < 2A -2, the vertices of G that have degree at least A — 1 are adjacent
in ¢(@G) and thus

‘mzu—-;-(A—Z).

Whenv = 2A —1, G has atleast A + 1 vertices of degree A and hence the vertices
of G having degree at least A — 1 form a clique in ¢(G). Thus we always have

mZu—%(A -2). (2.3)

Let A denote the vertices in the maximum clique of ¢(G). In ¢(G), and hence
in @, every vertex not in A has degree at most » — m. Hence

E dg(v) < mA + (v —m)?
vev(G)

<mA + %(A —2)(v—m) (using(2.3))
=Av+ %(A +2)(m—v)

<Av+ %(A+2)(—2)
=Av—A-2,

a contradiction. Thus G is hamiltonian.

Let H = vivz2 ...v,v; be a Hamilton cycle in G and suppose without loss of
generality that dg(v1) = A. Since A > 1(v + 1), v; must be adjacent to an
adjacent pair, vz¢ and vz Say, of vertices of H. Now

C = {v1v20V2641,12V3, 00, V2421241, V2442 V2143, o o, Vp1 U }

is a vertex clique covering of G of order ;—(u — 1). This completes the proof of
the lemma. |
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We conclude this section by observing that forn > r+1 agraph G € G(n, 7, 1)
has no clique of order greater than r, and hence

' vee(G) > [nf7]. 2.4)

3. Upper Bound

In this section we determine an upper bound for vee(G), G € G(n, 7,7 — 2).
The bound is sharp for even n > 2r and for odd n > %r. We begin with some
constructions.

For an integer » > 4 define the graph A(7) as follows. Take the complete
bipartite graph K,,_; and add two new vertices, say z and y. Join z and y and
join each vertex in the larger bipartitioning set of X, ,_; to exactly oneof z and y
in such a way that the degree of z and y differ by at most one. Call the resulting
graph A(r). This graph will become our basic building block. We assume without
loss of generality that d(z) < d(y). Observe that every vertex of A(») other than
z and y has degree r and d(z) = [}7] + 1 and d(y) = [57] + 1. Further, A(r)
has 2r + 1 vertices, is triangle free, is -%-'r-edge-connected anddef(A(r)) =1.

Define a graph H(r) as follows. Take an empty graph K,_, with vertices
u1,42,...,4,-2 and r — 1 copies Ay, Aa,..., A, of A(r). We relabel the x
and y vertices of the ith copy A; as z; and y;, respectively. Join each z; to u; for
1< j < [37]1—1,and joiny; to u; for f-,}'r] < j £ r—2. Call the resulting graph
H(r). Observe that H(r) has 272 — 3 vertices and is triangle free. Further, all
vertices of H(r) except uy, us,...,u,.3 have degree r: the u;’s all have degree
r — 1. The important properties of H(r) which are needed to establish our main
result of this section are given in the following lemma.

Lemma 3.1. For r > 4 the graph H(r) has the following properties:
(@) ForeachU C {uy,uz,...,u,_2}, vec(H(r) = U) =2 — 1.
®) &'(H(r)=7r-2.
Proof: Sincedef(A4;) =1,1< i< r— 1, wehave vee(4;) = r+ 1. Consider
the subgraph H;; of H(r) induced by the vertices V( A;) U {u;}. It is easily seen
that
vee( Hij = vee(Ay) =T+ 1

foralli,j,1 <i<r—1landl < j < r— 2. Consequently for each U C
{u1,u2,...,u,—2} we have

vee(H(r) = U) =(r—D(r+ 1)
=7 -1,

proving (a).
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Suppose that x'( H(r)) = t. Since the vertex partition
X=V(A1),X =V(H(r)) —V(A)

gives rise to an edge-cut set (X, X) containing r — 2 edges, we have t < r — 2.
We now prove that { = r — 2. Suppose to the contrary thatt < r — 3 and
let (Y,Y) be an edge-cut set of size ¢. It is clear that for each i the vertices of
Ai—z;—y;areallinY orallinY. LetU; = ¥ N {u,u2,...,4,2} and
U, = Yn {ul,uz,...,u,_g}.

We first prove that U} # ¢ and Uz # ¢. For suppose without loss of generality
that Uy = ¢. Then V(A;) € Y for any i and further V(4;) N'Y # ¢ for some i,
Suppose V(A;) NY 76 $. Since t < r — 2 and the vertices of A; — z; — y; are
eitherall in Y orall in Y. Y contains exactly one of z; or y;. But each of these
possibilities results int > v — 2. Thus we have U; # ¢ and U, # ¢.

Let p; and p, denote the number of A;’s that have all their vertices in Y and
Y, respectively. Then, since each A; is —r edge-connected we have by simple
counting

1
t2p|U2|+ p2|Uh] + 57(r =1 —p1 ~p2).
Sincet < r—3 wemusthaver — 1 — p; — p» < 1 and hence

t>2p+m
>r—2.

This contradiction proves (b). 1
We now establish an upper bound on vee(G) for G € G(n, 7, T — 2).

Theorem 3.1. Let G € G(n, 7,7 —2),r > 4. Then
@ vee(Q3) <L -lf('n+ 1),if nisoddand n< 3(r* + r—1),
®) vee(@) < é;';:—:’_%), otherwise.
Moreover, this bound is sharp for even n > 2 r and for odd n > %r.

Proof: In view of the corollary to Theorem 2.2 it suffices to establish the bounds.
Since vee(@) < {,-(n-l- de f(G)), the result is true when def(G) < 1. So
suppose that def(G) > 2. By Lemma 2.1, there is a vertex set S C V(&) such
that G-S has £ > 1r de f(G)(> r) odd components each of which is joined to §
by exactly r — 2 edges. It is easily established that each of the odd components
of G-S has atleast r + 1 vertices. Since G is r-regular, simple counting implies
Lhat r|S| > &(r - 2) and hence |S| > r—2. Consequently, n > |S|+ £&(r+ 1) >
r24+2r-2.
We define a maximal sequence of vertex disjoint subgraphs G1,Ga, ..., Gy of

non-decreasing order as follows:

(i) eachG;isoddand v (G;) < 2r—1;

(i) each G; has r — 2 edges going to the vertices of G — V(G5).
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Observe that ) o
UG = { r+2m, 1 TTS odd G1)
Lr+2m-~-1, ifriseven
for some positive integer m < zlr. Let p, denote the number of G;’s having order
r+ 2m when r is odd and order r + 2m — 1 when 7 is even.

Now we define the sequence of graphs G(® GV | ... G(® as follows. G(? =
G.Forl < i < pweform G® from G~P as follows. Take G-V —V(G;) and
acopy H; of H(r). Recall that H; has » — 2 vertices, say u;1, ui2,..., Ui(r—2),
having degree r — 1. Let v;1,v;2,. . ., vig denote the vertices of G — V(G;)
that are adjacent to the vertices of G;. Note that ¢ < r — 2. Our graph GP
is obtained by adding r — 2 edges between the vertices u;;, u;2,. .., tijy—2 and
Vi1, Y32, .. ., Vig such that each vertex has degree r. Observe that if G¢~V is (v —
2)-edge-connected, then G(? is also (r — 2)-edge-connected, since by Lemma
3.1, s'(H;) = r — 2. Consequently, since G € G(n,r,r — 2), each G¥ is
(r — 2)-edge-connected.

Let G* = G'P. Since v( H(r)) = 27* — 3, we have

[r/2]
n=v(G)=n+ me(Zrz—r—Zm—S-l- M) (3.2

\ m=1

where A(7) is 1 or O according as r is even or odd. Further, since by Lemma 3.1
@) vec(H; — U) = vee(H;) = v* — 1 forany set U C {ui1,ui2,...,Ui(r=2) }»
we have

P p
vee(G*) = vee(G* ~ UV( Hy)) + E vee( Hy)
i=1 i=1

P
= vee(G — UV(G.-) + p(r2 —-1).

i=1
Now for G we have
P P
vee( @) < vee(G — U V(Gy)) + Z vee( Gy)
i=1 i=1

P
= vee(G*) + Z(vcc(G’,-) -+

i=1

P
< %(n‘ +def(G*) + Y (veo(Gy) — 7 + 1). (33)

i=1
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Since Gj satisfies the hypothesis of Lemma 2.2 we have

veo(G) < (UG — D).

This together with (3.1), (3.2) and (3.3) yields

vee(G) < l('n+ def(G*)) —p.

34)

Consequently the result is true for de f(G*) < 1. So suppose that de f(G*) > 2.

Since G* is (r — 2)-edge-connected, Lemma 2.1 implies that there is a non-
empty vertex set S* C V(G*) such that G*-S* has £* > -;-'r de f(G*) odd com-
ponents each of which is joined to S* by exactly r — 2 edges. By the construction
of G*, each odd component of G*-S has at least 2r + 1 vertices. Now since G*

is r-regular, simple counting implies that

r|S* | > (r—-2)2.

Hence
7> |8+ 27+ 1)
> 2(1'2 +T7— 1)2‘.
T
Thus
rn*
&< 2t +r—1)°
and
22‘ *
def(G*) < =

r —r2+r—-1°

This together with (3.2) and (3.4) yields

n
r2+r—1
_ (r*+7)n
T2t 4r—1)

vee(G) < %(n+ )

This completes the proof.
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4. The Class G(n,4,2)

In this section we determine the set of possible value of vee(G) as G ranges over
the class G(n,4,2). Throughout this section G € G(n,4,2). If G is triangle
free then equality holds in (2.1). Further, the following construction shows the
existence of a graph Go € G(n,4,2) with vec(Go) = [n] for every n > 10.

LetV(Go) = {0,1,...,n—1}. Start witha Hamiltoncycle C=012 ...(n~

1) 0. Then for each 1, join vertex 1 to vertex 1 + 3, where addition is modulo n.
Call the resulting graphs G . Clearly Gy is triangle free and has deficiency 0 or 1
according as = is even or odd.

Let
V(n,4) = {vee(G): G € G(n,4,2)}.

Theorem 3.1 gives a sharp upper bound for vee(G) when n > 10. The following
lemma establishes V(n,4) for small values of n.

Lemma 4.1.

@ V(n4) ={n—-4},for5<{n<7.
() V(8,4 ={2,3,4}.
© V(9,4 ={3,4}.

Figure 4.1

Proof: G(n,4 ,2) contains only one graph whenn = § andn = 6 ,namely K5 and
the complement of a perfect matching of size 3, which has vertex clique covering
number 2. The class G(7,4,2) consists of the two non-isomorphic graphs, see
[6]), pictured in Figure 4.1. Clearly vee(G1) = vec(Ga) = 3. This proves (a).
Part (b) follows from inequality (2.4), Theorem 3.1 and the graphs pictured in
Figure 4.2.

Now consider a graph G' € G(9,4,2). Inequality (2.4) and Theorem 3.1 imply
that 3 < vee(G) < 5. Since G cannot be bipartite it must have odd girth. It is
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Figure 4.2

easy to observe that the girth of G must be 3. Let u v w be a triangle in GG and let
G' = G—{u,v,w}. Thenv(G") = 6,&(G") =9 and since G is 4-regular G’ must
be connected. Now if G’ is bipartite, then G' & K3 3 and hence vec(G) < 4.
If G’ is not bipartite it contains a cycle of length 3 or 5. In either case it is easily
seen that vec(G") < 4. This proves that5 € V(9,4).

The graphs given in Figure 4.3 establishes that 3 and 4 are in V(9,4). This
completes the proof. [ ]

Figure 4.3

The corollary to Theorem 2.2 provides the members of V(n,4,2) which are
greater than or equal o [1n] for each n > 10. Inequality (2.4) implies that
vee(G) > [4n] forn > 5. We will establish that for each integer ¢, [+n] <
¢ < [3n], there exists a graph G € G(n,4,2) with vee(G) = c. The graphs
displayed in Figure 4.4 will form the basic building blocks in our construction.
Note that G.(n) denotes amember G(n, 4, 2) with vertex clique covering number
c.

Let G be a graph with minimum vertex clique covering C. A pair e) and ez
of edges of G is called free if e; and e; are independent and neither e; nor e; is
contained in any member of C. It is easy to find a free pair in each graph of Figure
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63(10) G‘(IO) GS(IO)

™~
Ga(ll) G‘(“) Gs(ll)
Go(ll) G3(12) G‘(IZD

GS(IZ) 66(12)

G, (13) Gs( 13)

Gs(l3) G,,(13)

Figure 4.4
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4.4. We define an operation « on a graph G with a free pair e}, ez as follows. We
replace e; and e; with a subgraph H as indicated in Figure 4.5. Call the resuiting
graph G'. Observe that v(G') = v(G) + 4, vee(G") = vee(G) + 1 and G’ has a
free pair.

[ ]

9
L ]
9

Figure 4.5

Lemma 4.2. Let n and c be integers with n > 10 and
1 1
77 <e< 5]

Then there exists a graph G .(n) having a free pair.

Proof: Letn= 4p+q+2,wherepand q are integers withp > 2 and0 < ¢ < 3.
We will establish the lemma using induction on p. The graphs given in Figure 4.4
establish the lemma for the cases p = 2. Suppose the lemma is true forp < m.
Thus there exists a graph G.(4m + g + 2) having a free pair e, , e, for each ¢

1 1 1
[m+ 79t -2—] <c<2m+ XAl 1].

Performing operation o on e; and e; yields a graph
Geri(4(m+1) +¢+2)

with a free pair. Hence there exists a graph G.(4m + ¢ + 6) with a free pair for
eachc

1 1 1
[(m+1)+ 79% 5] <c<[2(m+1)+ 5‘1]-

Now the existence of a triangle free graph

GeG(dm+ g+ 6,4,2) withvee(G) =[2m + %Q* 3]
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was established at the beginning of this section. Thus there exists a graph G.(4 m+
g + 6) for each c,

[(m+ 1)+4lq+%] <c<L [2m+ l)+%q+ 17,

completing the proof of the lemma. |
The Corollary to Theorem 2.2, Theorem 3.1 and lemmas 4.1 and 4.2 together
gives
Theorem 4.1.
@ V(nd)={n—-4},for5<n<7;
() V(8,4 ={2,3,4};
© V(9,4 ={3,4};
@ V(n4)={ceN:[in] <c< F(n+1)},if nisoddand 11 < n< 55;
€ V(n4) ={ceN:[in] <c< [} forevenn > 10 orodd n> 57.
|
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