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Abstract. A set § of vertiices of a graph G = (V, E) is a global dominating set if §
dominates both G and its complement G. The concept of global domination was first
introduced by Sampathkumar. In this paper we extend this notion to irredundancy. A
set S of vertices will be called universal irredundant if S is irredundant in both G and
G. A set § will be called global irredundant if for every z in §, z is an irredundant
vertex in § either in G or in G. We investigate the universal irredundance and global
irredundance parameters of a graph. It is also shown that the determination of the upper
universal irredundance number of graphs is NP-Complete.

1. Introduction

Let G = (V, E) denote a simple graph. For any vertex v, the open neighborhood
of vin G is the set N(v) = {z | zv € E} and the closed neighborhood of v
in G is the set N[v] = N(v) U {v}. Forasubset S of V, N(S) = UyesN(v)
and N[S] = N(S) U S. The complement of G, G is the graph with vertex set
Vandedge set E = E(G) = {zy | z,y € V and zy is not in B(G)}. For
any z € V(Q), if y € N(z) in G, then we will say y is a G-neighbor of z
and write y € Ng(z). If y € N(z) in G, we will say y is a G-neighbor of =
and write y € Ng(z). Similar notations for Ng(S) and Nz(S) will be used.
A subset S of V is a dominating set of G if N[S] = V, and § is a minimal
dominating set of G if no proper subset of S dominates G. A vertex z € S is
irredundant in S if N[z] — N[S — z] # ¢. A subset S of V is an irrredundant
set if forall z in S, N[(z] — N[S — z] # ¢. Thatis S is irredundant if for
every z in S, there exists a vertex y in N[x], which is not in N{S — z]. Such
a vertex will be called a “private neighbor” of z, it could be z itself if z is an
isolate in (S), the induced subgraph of S; if z is not an isolate of (S}, then a
“private neighbor” of z must be a vertex outside of S. The minimum number
of vertices in a dominating set is called the domination number of G, denoted
v(G). The upper domination number of G, I' (G) is the maximum number of
vertices in a minimal dominating set. The irredundance number ir(G) and the
upper irredundance number IR(G) are respectively the minimum cardinality and
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maximum cardinality of a maximal irredundant set of G. The following string of
inequalities connecting these parameters of any graph G is well known [2]

ir(G) < (@) <H(G) < A(G) <T(G) <SIR(B),

where i(G) and B (G) are minimum and maximum cardinalities of a maximal
independent set of vertices.

We will use expressions like IR-set for a set S of vertices of G if S is an irre-
dundant set with |S] =IR. Similar expressions will be used for other parameters.

Recently Sampathkumar introduced the concept of global domination [6]. A
set S C V(G) is a global dominating set if S dominates both G and G. In other
words, S is a global dominating set if for every z not in S, there exist vertices y
and z in S such that zy € E(G) and zz € E(G). Sampathkumar showed in
particular, that if T is a tree then v(T) < 4,(T) < 4(T) + 1, where 7(T), the
global denomination number of T" is the minimum number of vertices in a global
dominating set of G. In [5] Rall has shown that for trees (with two exceptional
cases) and for graphs having diameter at least five, the global domination num-
ber and the upper global domination number are equal to the domination number
and the upper domination number respectively where the upper global domina-
tion number I';( G) of any graph is the maximum number of vertices in a minimal
global dominating set of G.

In this paper, we introduce two similar concepts of irredundancy. A set S of
vertices is called a universal irredundant set if S is an irredundant set in both G
and G. In other words, § is a universal irredundant set if for every z € S,

i) Nglz] — Ng[S —1z] # ¢,and

i) Nglz] - NglS—z] # ¢.

We will callaset S C V(QG) a global irredundant set if for every z € S, either

i) Nelz] — NglS —1z] # ¢, 0r

if) Nglz] - NglS—z] # 4.

If § C V(G) is irredundant in G, we will say S is G-irredundant and if S is
irredundant in G, then S will be called G-irredundant.

The universal irredundance number , ir,(G) and the upper universal irredun-
dance number IR, (G) are respectively the minimum and maximum cardinalites
of a maximal universal irredundant set. Similarly the global irredundance num-
ber, iry,(G) and the upper global irredundance number IR,(G) are defined.

In this paper we investigate parameters IR,(G) and IR,(G) of any graph and
their relations with related parameters. We also show that determining IR,(G)
is NP-complete for any arbitrary graph G. In the conclusion we state some open
problems.

2. Maximum Universal Irredundance
For any graph G it is clear that IR(G) > IR,(G) and IR(G) > IR(G). Itis
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easy to verify that IR,(P,) = 2,forn > 3; IR,(Ki15) = i IRy(Kma) = 2
withm,n> 1;IR,(K,) = 1,and IR,( K, — 1-factor) = n.
Brewster, Cockayne and Mynhardt {1] showed the following result.

Lemma 1. G has an irredundant set of size 3 if and only if _G contains a K3
ora Cs = {v1,v2,v3,v4,vs, v} with the following edges in G: viva,v2vs and
V3 V.

An immediate consequence of the above lemma is the following:
Corollary 1. Foranytree T, IR (T) < 2.
Lemma 2. Forany graph G if diameter G > 3 then IR ,(G) > 2.

Proof: Let z,y € V(@) be such that d(z,y) = 3. Let z,v;, v2, y be a shortest
distance path in G joining z and y. Consider the set S = {v;,v;}. Clearly S
is independent in G and hence G-irredundant. The set § is also G-irredundant,
since both v, and vy have private G-neighbors z and y respectively. Thus S is a
universal irredundant set, and hence IR,(G) > 2.

From Corollary 1 and Lemma 2 we have the following result:
Theorem 3. Foranytree T # K1 4,IR(T) =2
Our next result gives an upper bound of IR, (G) for any G.

Theorem 4. Forany graph G, IR ,(G) < 1+~4(G) where 4(G) is the maximum
degree of G. Foraconnected graph G, with more than two vertices equality holds
ifandonly if G = Ky, — 1-factor.

Proof: Let S be an IR, (G)-set of any graph G. Let z € S. Suppose, IR,(G) >
1+ 4(G). Then there exists a vertex y # z in S, such that zy is not in E(G)
and so zy € E(G). Since § is G-irredundant, = must have a private G-neighbor,
outside of S. Thus, there exists a vertex z not in S, such that zz € E(G) and
zu € E(@),forallu # = in S. Hence 7(G) > deggz > IR,(G) — 1, thatis
IR,(G) £ 1+ 4(@), a contradiction.

Clearly if G = K, — 1-factor, G is connected and a partite set {vy,v2,...,vs}
of G is irredundant in both G and G and it follows IR, (G) = n= 1+ 7(G).

Now, suppose for any connected graph G, IR,(G) = 1+ 4(G). Let S be an
IR,(G)-set. Let z € S, suppose z is adjacent to all vertices y # z in S. Then,
since S is G-irredundant, = must have a private G-neighbor outside of S, but then
deg gz > 4(G). Therefore for every z € S, there must exista vertexy € S, such
that zy isnotin E(QG), thatis, zy € E( G) But then, since S is G-mcdundant and
TY € E( G), there must exist a private G-neighbor z’ of z, such that zz' € E( &)
and 'y € E(G) for all other vertices y of S. In other words, for every xz € S,
there exists ¢’ not in S, such that 2’ is not in E(G) but 2’ is adjacent to all other
vertices of S in G. Let &' be the set of all such z' vertices. Clearly each vertex
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of S and S’ is a max-degree vertex in G and both S and S’ are independent sets
of vertices in G. Also since G is connected and every vertex of S and S’ is a
- max-degree vertex of G, it follows that G = (SU §'), 50 G is a Kyn — 1-factor.

3. The Complexity of the Upper Universal Irredundance Number

Fellows, Fricke, Hedetniemi and Jacobs have recently established in [3] the NP-
completeness of the problem of determination of IR(G) of any graph G. In this
section we show that determining IR,(G) for any G is also NP-complete. The
decision problem we consider is as follows:

INSTANCE: G = (V, E), positive integer k.
QUESTION: IsIR,(G) > k?

Clearly if G = K, Ry(G) = 1. Let G # K, and G; = K, with V(G) =
{vi,v2,...,v,.} and V(G1) = {v},3,...,v,}. Construct G' as follows:

V(G = V(G) UV(Gy)
B(G") = E(G) UE(G1) U{wiv),i # j}

Theorem 5. IfIR(G) > k, then IR, (G") > k.

Proof: Let S be an IR(G) set with IR(G) > k. Clearly S is an irredundant set in
G'. Also, every v; € S has a private neighbor v} in G. So S is irredundant in G
also. Thus S is universally irredundant in G’ and hence IR,(G") > k.

Now we show the following:

Theorem 6. IfIR ,(G') > k, then IR(G) > k.

Proof: LetSbeanIR,-setin G’ with|S| > k. Let S = XUY, where X C V(G)
andY C V(Gh).

Claim 1. If v; € X thenv}isnotinY.

Suppose on the contrary both v; € X and v} € Y. Then by our construction
of G', v;v} is not in E(G’) and hence v;v, € E(G). Since S is universally
irredundant in G’, both v; and v} must have private E"-neighbors outside of S. But
v; is the only vertex adjacent to v} in G and hence v} has no private E‘"'-neighbor,
a contradiction.

Claim 2. |Y| < 2.

Suppose v}, v}, v}, are distinct vertices of Y. Since G is a complete graph,

v;, v}, v}, are mutually adjacent in G'. So each of these vertices must have G'-
private neighbors and these private neighbors must be in G. Let z be a private
neighbor of v]. Then z can not be adjacent to v; and vi.. However, by our con-
struction of G’, no such vertex z in G exists. Thus |Y] < 2.
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Claim3. If Y| =2, then | X|= 0.

Suppose Y = {v}} and let vj,vx € X. By claim 1 v is notin Y. So by
construction of G', vivy € E(G') and vjv; € E(G'). Hence vy must have a
G'-private neighbor say z which can be adjacent neither to v} nor to vj. But by
the construction of G’ no such vertex x exists.

Claim 4. If [Y|=1 then | X| < 1.

Suppose Y = {v}} and v;,vx € X. Then by claim 1,{ # j and ¢ # k and so
both v; and v are adjacent to v} in G'. Hence both v; and v must have distinct G'-
neighbors outside of S. Since G is complete, these distinct G'-private neighbors
must both lie in G and both be non-adjacent to v} in G'. But v} has only one vertex
v; non-adjacent in G’ and hence | X| < 1.

Claim 5. If [Y| =0, then |X| < 2 or X is irredundant in G.

If|Y| = 0 and X is notirredundant in G, then there exists v; € X whose private
G'-neighbor lie in G, say v}. But then there can be at most one other vertex in
X, namely v;, and thus | X| < 2.

Claim 6. IR(G) > k.

Claims 2, 3, 4, show that [S| < 2 when [Y| > 0. If [Y| = 0 then by claim 5
|S| € 2 or § is irredundant in G. If S is irredundant in G, then IR(G) > k. If
IS] < 2, then since G is not complete there exist two non-adjacent vertices v;, vj
and {v;, v;} is an irredundant set in G and so IR(G) > 2. Hence for all cases
IR(G) > k. Thus we have the theorem.

Theorem 7. Determination of IR ,(G) for any graph G is NP-complele.

Proof: Recently Fellows, Fricke, Hedetniemi and Jacobs [3] have shown that the
determination of IR(G) for any graph G is NP-Complete. Theorems S and 6
together with their result establish the theorem.

4, Universal versus Global Irredundance.
Recall the definitions of a dominating set and an irredundant set. A setS C V is
a dominating set if
i) N[S1=V

A dominating set $ C V is a minimal dominating setif Vz € S, S — risnota
dominating set. In other words

ii) Vz € S,N[z] — N[S—=z] # ¢.
Note that forany set S C V, satisfying (ii) implies S is irredundant. As a matter of
fact, any dominating set satisfying irredundancy condition (ii) is a minimal domi-
nating set. More precisely, that a minimal dominating set is maximal irredundant
is a well-known result [2].
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Now consider a global dominating set S. What makes S a minimal global dom-
inating set? A global dominating S set is a minimal global dominating set if for
allz € S, S — z is no longer a global dominating set. In other words, a global
" dominating set S is a minimal global dominating set if

(iii) forVz € S, either
Neglz] ~ NglS -zl # ¢

or
Nglzl = NglS—z] # ¢

Note that condition (iii) is exactly the definition of a global irredundant set. As
amatter of fact it is easy to verify the following:

Lemma 8. A minimal global dominating set is a maximal global irredundant set.
The following string of inequalities is obvious.
Forany G,ir, <7, < Ty < IR,.
Also note that IR, > IR. Strict inequality can occur as shown below.

The universal irredundancy condition for a set is much stronger than global
irredundancy. Each vertex in a universal irredundant set has to be irredundant in
both G and G. Thus IR, < IR, for any graph G.

5. Concluding remarks and some open questions

In this paper we have introduced two new concepts of irredundancy which fit
nicely with some of the well-studied dominating parameters. However, we have
just started investigating some of their properties. We list some open problems
here.

1. Determine the complexity of ir, and iry and IR,. Recently D. Jacobs has
shown that determining Iy and ~, for any graph G is NP-complete [4].
I’y < IR, for any graph G. Determine for which graphs I'y < IR,.
Does there exist a graph G for which IR, = IR?
Does there exist G for which IR, = IR,?
Find Nordhaus-Gaddum type results for these new parameters.

Ll ol N
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