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Abstract. R.A. Bailey has conjectured that all finite groups except elementary Abelian
2-groups with more than one factor have 2-sequencings (.., terraces. She verified this
for all groups of order n, n < 9. Results proved since the appearance of Bailey’s paper
‘make it possible to raise this bound 10 n < 87 with n = 64 omitted. Relatively few
groups of order not 2, n € {4, 5} must be handled by machine computation.

1. Introduction
Bailey [10] defined 2-sequencings (she called them terraces) of finite groups. Her
interest was in generalizing a construction of Gordon [12] to build quasi-complete
Latin squares. Since then 2-sequencings have been used to find 1-factorizations
of K3, with interesting symmetry groups [2], [5] and to solve certain partitioning
problems involving the edges of a complete graph [9].

A sequencing of a finite group G of order n with identity e is an ordering

S: €,82,83,...,8y
of all the elements of G such that the partial products
P:e,es1,es283,...,€57...8,

are distinct and hence also all of G. A finite group G is a A -group if and only if
G has a unique element of order 2. A sequencing S of a A -group G of order 2n
with unique element z of order 2 is a symmetric sequencing if and only if spe; = 2
andfor1 < i< n—1, 8014 = (Sm1-;) . A symmeltric sequencing S with
associated partial product sequence

P:e,tr,ts,...,t4

is a symmetric d-sequencing if and only if there isa 7, 2 <7 £2n-1 and there
isa y in G such that

) y#e#y
i) (t,401) € {(,v)), (42, 9)}
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Suppose G is a group of odd order 2n+ 1 and identity e. Then L = {{z1, 1},
eees{Zn, yn}} is aleft starter for G if and only if

i) every nonidentity clement of G occurs in some pair of L,
ii) every nonidentity element of G occurs in {z;'y;, y;7 'z 1 1 < i< n}.
If h € G, then hL = {{hz;, hy;} : 1 < i< n}isaleft translate of L.
Suppose H is a finite group of order n with identity e. A 2-sequencing of H is
an ordering
g:.€,82,83,...,3,

of certain elements of H (not necessarily distinct) such that
i) the associated partial products

ple,esy,es283,...,€82...5, =¢,12,13,...,1,

are distinct and hence all of H,
ii) ifye Handy # y~! then

|{i:2 <1< nand(s;=yors; = y")}l =2,
iii) ify € Handy=y~" then
Hi:1<i<nands;=y}| =1.

If | H| is odd, then the collection {{z,z7'} : z € H\{e}}, the patterned starter,
will be denoted PSy. It is easily scen that PSy is a left starter for H. The state-
ment that the 2-secquencing a is a starter-translate 2-sequencing (st-2-sequencing)
means that both

Sotmy = {83,85,...,8a} and oy = {52,54,...,801}

are transversals of (the pairs of) PSy. Note that if Sy¢yyy is a transversal of PSy
then

A= {{t2,t3},{ta,ts}, ..., {ta1,ta}}

is a left starter for H and if T,y is a transversal of PSy;, then

B = {{e,t2},{t3,t4},..., {tn-2,tn1}}

is a left translate by ¢, of a left starter for H.
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2. Reductions

Excluding order 64, there are 493 groups of order < 87. The goal is to show that

all but 4 of these groups have 2-sequencings. Bailey [10], showed that the groups
Z3 (where Z; is the cyclic group of order 7), n > 2, do not have 2-sequencings.
Several recent theorems allow one to construct 2-sequencings on most of the 493
groups. The groups of odd order can be handled by the following

Theorem 1. [6) All groups of odd order have st-2 -sequencings.

It is well-known that if p is an odd prime, then every group of order 2 p is either
cyclic or dihedral (e.g., [13, p. 62]). The next two results will control this situation.

Theorem 2. [1] All Abelian A -groups have symmetric sequencings.

Theorem 3. [5] If n > 3, then D,, the dihedral group of order 2, has a 2 -
sequencing.

This disposes of the even orders
6,10,14,22,26,34,38,46,58,62,74,82,86.

Here is a very useful construction.

Theorem 4. [7] If G is a finite group, C is a normal odd order subgroup and
G/C has a 2 -sequencing, then G has a 2 -sequencing.

Another result of that same paper is
Theorem 5. (7] If p is an odd prime and w is a positive integer, then the semi-
direct product [(Z,)"1(Z, x Z3) has a 2 -sequencing.

A few simple applications of the Sylow Theorems will pay nice dividends.

Lemma 6. If p > 5 is an odd prime and G is a finite group of order 2%p, then
the Sylow p-subgroup Z, of G is normal.

If G is a group of order 4 p, p an odd prime > §, then by Lemma 6, G is a semi-
direct product of Z, by either Z4 or Z; x Z,. Theorem 2 implies that Z4 has a
2-sequencing. Thus G has a 2-sequencing by application of either Theorem 4 or
Theorem 5. The orders 20, 28, 44, 52, 68 and 76 fall to this method.

Lemma 7. If p is an odd prime, n is a positive integer and G is a group of order
2p*, then the Sylow p-subgroup of G is normal.

This can be used with Theorem 4 to climinate orders 18, 50 and 54.
If p and g are odd primes, p < ¢, then often Sylow type arguments will give
useful information for groups of order 2 pg. In the cases

42=2.3.7,66=2-3-11,70=2.5-7and 78 =2.3-13
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it is easy to see that the Sylow g-subgroup must be normal. Since all groups of
order 6 = 2.3 and 10 = 2-5 have 2-sequencings, all groups of orders 42, 66, 70
and 78 do also. One must be slightly more careful with30 = 2.3.5. A simple
counting argument shows that every group of order 30 must have either a normal
Z3 oranormal Zs. In fact all groups of order 30 have both {14], and this case can
be settled like the others.

All groups of order 12 were shown 2-sequenceable in [2]. Actually, Ay is the
only group of order 12 that can’t be 2-sequenced by the methods given here so far.
A Sylow argument will then work for all groups of order 84.

Consider next the 14 groups of order 36. Four of these groups are Abelian and so
they all have a normal Z3. Since all groups of order 12 have 2-sequencings, so do
these groups. The Supplementary Summary Sheet (SSS) of [14] gives much useful
information. By SSS, 3 of the non-Abelian groups are of the form [ Z21( 23) so
that Theorem 5 applies; 3 are of the form [Z21Z,4 and one is of type [ 29124
so that Theorem 4 works. One group is dihedral and the remaining 2 are of the
form [ Z21(2%) and [ 2312,. Fortunately both of these last two groups have a
Z3 center so they can be 2-sequenced in the same way as the Abelian groups.

There are 13 groups of order 60. By SSS, all of these groups except As have
a normal Zs. Since As has a sequencing [4], all groups of order 60 have 2-
sequencings. The question has now been reduced to groups of order a multiple
of 8.

3. Groups of Order 8 N

Currently some machine computation is required for an thesc orders except 8
and 72. First consider the orders 8, 16, 24 and 32. The following result gives
2-sequencings for several of these groups.

Theorem 8. [8) Ifa finite A -group G has a symmelric d-scquencing, then G x
Zy has a 2 -sequencing. All Abclian A -groups except Z, have symmetric d-
sequencing.

There are 5 groups of order 8. Theorems 2 and 8 yield 2-sequencings for Zg and
Z4 x Z, respectively. By [10], zg does not have a 2-sequencing. The dihedral
group D4 does have one by Theorem 3 and the quaternion group Qs does also [2].

The non-Abeclian groups of orders 16, 24 and 32 arc covered by the application
of an algorithm developed in [3], [4].

Theorem 9. All non-Abelian groups of order n, 10 < n < 32 arc sequenceable
(and thus 2 -sequenceable).

There are 14 groups of order 16; 5 of them arc Abelian. As with the groups of
order 8, Z;¢ and Zg x Z, have 2-scquencings by Theorems 2 and 8, respectively,
and Z3 does not have a 2-sequencing. Solutions for the 2 remaining Abelian
groups, Z? and Z4 x Z, have been found by machine and will be listed shortly.
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The order 24 is associated with 15 groups. Twelve of these groups have a normal
Z3 and the other 3 groups are all non-Abelian [14] and thus sequenceable. If G is
one of the 12 with a normal Z3 , then Theorem 4 applies unless G/Z3 ~ Z3. This
happens twice with Dg x Z; and Z3 x Z3. But Dg x Z, is non-Abelian and a
2-sequencing for Z3 x Z3 will be listed shortly.

There are 51 groups of order 32; 7 of them are Abelian. As before, Z3; and
Zy6 x Z, are 2-sequenceable and Z3 is not. The other 4 Abelian groups can be
2-sequenced by machine. At this point, then, there are 7 Abelian groups to be
2-sequenced.

The numbering system of [14] will be used here. In (14] the groups of order
2mare labelled 2m/1,2m/2,.... The group2m/1 is the cyclic group of order
2m and the Abelian groups are always first in the ordering.

A 2-sequencing o of a finite group H is a minimal deficiency 2-sequencing (see
(3] for the reasons for this terminology) if and only if o is a 2-sequencing and there
is exactly one pair {z, ™'} of distinct elements of A such that z appears twice in
o. Thus for all other pairs {y, y~' } of H, each element appears exactly once in o as
do all self-inverse elements of H. The algorithm of [3] is easily modified to search
for minimal deficiency 2-sequencings. Thus modified algorithm is successful on
the 7 groups listed above. Here are solutions in the notation of the appropriate
table of [14].

16/3: Z4 X Z4
1 10 13 2 1215 5 9 8 3 7 11 16 14 6 2

16/4: Z4 X 72 X 7
1 12 10 13 8 14 1516 9 3 5 11 14 4 2 17

24/3: Z3 X 23 X 23 X Zs
1 22 4 9 21 16 5 14 2 7 20 12 15 3 17 8
18 20 13 11 23 6 19 10
32/3: Z3 X Za
1 11 4 31 5 21 8 11 17 13 22 24 10 15 20 32
12 14 19 3 6 26 18 2 9 23 16 25 29 30 28 7
32/4: Zg X Zy X Zz
1 9 17 12 3 16 21 14 19 31 24 20 26 9 27
15 28 18 29 32 13 23 2 7 11 5 8 30 22 10
32/5: Z4 X Z4 X Zz
1 23 10 3 9 7 21 16 27 18 15 28 20 25 6 29
2 11 22 17 5 24 4 26 32 8 12 19 30 31 14 29
32/6: Z4 X 2By X 21 X 2
1 25 27 6 2 11 4 22 5 24 3 23 15 19 17 16
28 29 14 20 12 18 9 32 10 13 8 31 14 26 7 21

Sylow theory shows that every onc of the 14 groups of order 40 has a normal Zs

L =)
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subgroup. If G is such a group and G/Zs # Z3. then Theorem 4 says that G has
a2-sequencing. Two groups Zs x zg and [zslzg must be considcred separately.

The order 48 is the most troublesome. This order has 52 groups, 5 of which
are Abelian. The Abelian groups all have a normal Zs, so all are 2-sequenceable
by Theorem 4 except Z; x Zs, which will be tackled later. Most of the non-
Abelian groups of order 48 can be taken care of similarly. In fact, 36 of these 47
groups have a normal Z3 with a complement that is not Z; see SSS of [14]). The
11 remaining non-Abelian groups and the single Abelian group make 12 special
cases of order

There are 13 groups of order 56. By [SSS], 12 of them have a normal Z; and so
problems arise only when such a group G has G/Z7 ~ Z3. This happens twice
with Z7 x Z3 and [ 27123 . The remaining group [ Z3 ] Z7 must also be dealt with.

It is, perhaps, somewhat surprising that all 50 groups of order 72 can be 2-
sequenced without resorting to machine testing. First, the 6 Abelian groups of
order 72 all have a normal Z3, and all groups of order 24 have 2-sequencings.
The list in SSS of [14] shows that the groups listed 7-10, 15-17, 19-32, 36-46
all have either a normal Z or a normal Z? and in all cases, a complement that
is not Z;’_‘. In the groups labelled 11-14, the center is always Zg. But then Z;
is a characteristic subgroup of Z¢ so each of these groups has a normal Z3 and
is 2-sequenceable. The group numbered 18 has a normal Zy and, as above, a
normal Z;. The commutator subgroup of group 34 is Z3 so, again this group has
anormal Z3. The commutator subgroup of group 47 is Z3 x Z, and certainly Z3
is a characteristic subgroup of it. Next, Z; is the center of group 48. The last two
groups numbered 49 and 50 have as commutator subgroups the last two groups
mentioned in the discussion of the order 36. Both these groups have a center of
Z3 and the center is a characteristic subgroup.

This leaves the two groups numbered 33 and 35. Both are [Z#]1Z3 and an
argument from [7] can be used. From the semi-direct product structure, each group
has an (in these two cases nontrivial) associatcd homomorphism

a:Z; — Au(Z?) ~ GL(2,3).

The idea is to show that each group has a normal subgroup Zs . Since « is not triv-
ial, Im(«) is an Abelian subgroup of GL(2,3) whose elements are the identity
transformation and a collection of involutions. But all involutions in GL(2, 3)
are diagonalizable. Thus, the vector space Z7 has a basis of simultaneous char-
acteristic vectors for the transformations in Im(c) [11, p. 200] and clearly each
of these vectors generates a normal subgroup Z3. The argument is completed by
noting that all groups of order 24 have 2-sequencings.

Finally, there are 52 groups of order 80. All but one of them has a normal
Zs (see SSS of [14]) and so problems arise only when G is such a group with
G/Zs ~ Z3. This happens twice with Zs x Z; and [Zs]Z3. The rcmaining
group is [ Z31Zs. These 3 groups are handled by machine.
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Here are sequencings for the 16 non-Abelian groups left with the group table
constructed via the disc of [14].

40/11:  [Z5)23
1 2729 8 1928 363517382623 5 332415
32163118 7 40301220 2 6 21 3 2514 13

48/15:  [2212,
131111327 8 264742252030 3 15 9 2317 46 1443 6
3722101921 7 1639 38 40 35 18 33 4536 24 4844 34 28 5
4294132 2 12

48/16:  [Z4 x 22125
1 1824254 38 9 482814 26 15372227414721 7 30 6
2946394433102013 3 2 113543 8 401736324216 5
31 23 34 19 45 12

48/17: (23123
1 32143719483425114318394135332621 2 6 3 28
23271636 9 22 4 124015 5 38 7 1031 13 17 20 46 8 24
47 30 45 42 29 44

48/18: (23123
110251838 4 5 3111 7 6 14 47 21 27 40 46 37 28 12 44
329 9 2 3922451541 17 42 32 36 34 24 13 16 19 23 33 20
48 3543 26 30 8

48/19: [Qs X 23125
1 4304622111339 8 3 242129 5 2018311240 7 36
17 42 34 43 253347 9 14 1526 38 44 23 1927 48 37 16 6 35
28 41 2 4510 32

48/20: [[Z4 > 22122125
1 39224833142030 5 9 47 24 36 16 11 19 27 35 46 13 43
232417 10 8 12 4 6 3 40 34 28 44 17 29 26 23 31 45 38
15 25 21 4237 18

48/27:  [23123
223943 3 2342 5 17 12 16 45 28 31 20 15 38 40 44 41 24
352948133410363246 1 33 2 27 9 1830 8 26 25 11 47
144 6 73719

3734112210
394 9

The 4 remaining groups of order 48 are such that no Sylow subgroups Sy, are
normal. Clearly, Sy; must be Z;.

48/49: Sy, = D4 x 2,
1 4 43 15 38 36 31 46
13 20 11 45 48 6 37 35
7 242842 8 26

0235 9 3222729321214 1844
4 33

1
3 304041 17194739 2 212516
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48/50: Syz =[24 X 2212,
1 2444353629 16 46 11 22 122147322337 2 39 8 48 18
1745 4 43 7 42.9 13 6 2715403828 1410 3 5 3033 19
26 25 20 31 34 41

48/51: Sy = Qe
1 3825283448 33 43474142 6 3044 3146 11 23 17 37 22
352429191821 26 2 3613 9 7 2739 8 4532 5 3 1514
40 1210 4 16 20

48/52: Sy =1[2Z312
1 272244 5 1237 2119 6 46 7 14 38 28 23 13 42 47 43 25
313648 8 11 2 353032151034292018 3 26 16 24 33 45
173940 4 9 41

56/6: [Zg]Z-]
1 2822 9 472012 6 1327542433213615302625 5 43
56 2 51142923 3219413234 7 3 4937463511 4 4052
18 17 53 50 42 44 31 16 45 55 48 38 10

56/10: (27123
1 2656253644 11 14 2 31 154622495341 9 4 30 6 55
232419 8 271742 5 43 7 16503834 3 32524829 12 45
51 20 54 37 2 13 10 35-21 33 18 47 39 40

80/15: [2312s
46 39 18 22 10 13 33 29 59 12 66 0 67 14 43 49 26 74 52 58
42 5 68776153 51794536 6 69 4 4 154075 57 20 27 35
37 8 7123 5516 17 60 21 28 30 63 47 44 9 78 65 19 34 31 11
64 544162 3 38733270 7 502524 2 567672

80127: [Z512;
1 4129373860 34 57 7 66 53 77 24 43 16 36 65 26 10 35 8
2 5245722231 73 51 59 32 2549 48 17 63 14 56 39 33 42 55
79 6 6278 3 18 74 1927 64 75 13 58 1271 21 68 15 9 30 67
50 46 20 40 76 80 23 47 11 4 28 5 69 61 70 54 44

Lastly, each of the 4 Abelian groups still to be 2-sequenced has a minimal defi-
ciency 2-sequencing as follows.

4083: 25 x 23
1231835 7 283138 9 22 17 202125 4 37 26 11 34 27 13
36302410 5 1912144039 6 151633 3 10 8 29 32

48/5: 23 x Z3
1 2 53930441428 9 15
10 18 26 45 35 43 11 41 13 20
6 3 32314823

38 34 2236 17 37 47 2
7 27214024 46 191
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56/3: 27 x 2}
13139424824 7 532921142022 1649 25 6 1553 3
36 5 3855134454 11 4 9 30 8 3 37 17 51 46 45 18 4
4123 27 10 56 12 26 50 32 2 43 19 28 34

80/5: Zs x 23
1 18 7149 452821 25 247970 76 3 12 37 40 73 59 77 36 43
38 9 47 7 6680 6 39 6975 10 60 65 8 33 6264 32 11 2 44
15 58 67 56 16 53 20 5 26 48 74 17 35 52 68 30 63 27 42 41 18

4 317822196172 5513 50 34 23 51 57 54 46 29

552
033
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