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We describe an algorithm of constructive enumeration of minimal tree decom-
positions of K2,. This algorithm was implemented by a FORTRAN program
which enabled us to obtain a full list of nonisomorphic minimal tree decomposi-
tions of K¢. The list consists of 19 decompositions.

1. We use the term ‘graph’ in the sense of Harary [1].

Let G = {G),...,G,} be a family of graphs, and let H be a graph with a
nonempty edge sct. The subgraphs H;,..., Hy, of H form a G -decomposition
of H if (1) every H; is isomorphic to a member of G, (2) H;, H; have no edge
in common (1 < i < j < m), and (3)\J H; = H. The graphs H,,..., Hy, are
called components, and the number m is called the size of the G -decomposition.
When H admits a G -decomposition, we denote by g( H, G) the minimal size of
such a decomposition. A G -decomposition of H whose size is g( H, G ) is called
minimal.

2. We are interested in the list L(H, G) of all nonisomorphic minimal G -
decompositions of H, and in the number N(H,G) = |L(H,G)|. Here we con-
sider the special problem of the constructive enumeration of minimal T -decom-
positions of K, where T is the set of trees. Put V(K,) = {1,2,...,v}.

Some constructions of such decompositions (with isomorphic components) may
be found in [3].

Beineke (2] proved that g( K,,T) = [v/2] for all v > 1. Obviously the
components of the minimal T -decompositions of K3, are the spanning trees only.
It is easy to prove that if G is a component of a minimal T -decomposition of K3,
then A (G) < nwhere A(G) is the maximum vertex degree of G.

As a consequence, of the 6 nonisomorphic trees on 6 vertices (cf. [1]), only 4
can be components of minimal T -decompositions of K.

3. Let us now formulate our algorithm which permits us to construct L K2,, T).
Let@,,...,Q; bethelist of all trees which may appear as components of minimal
T -decompositions of K5,. We assume that there is an algorithm that generates,
without repetition, all the permutations of the set V( K,) in some fixed order

¢0:¢1,"'s¢l

where l = (2n)! — 1 and ¢y is the identity.
Before formulating the algorithm, let us introduce a linear order < in the set
of pairs (Q;, ¢;) so that (Qi,¢;) < (Qp,¢r) ifandonly ifi < pori = p,
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J < r. We call a trace the linear arrangement of pairs (Q, ¢) in accordance with
the order.

0. Putt=1,8 =@, m = 1. Construct the triple of objects (¢, Q" ,¢®) =
(1,Q1,90).

1. te—t+1;g0t02.

2. Ift=1goto1l;if1 <t < ngoto3;otherwise goto 9.

3. Ifthe pair (QU*~Y, ¢{*~1) is the last along the trace, go to 7.; otherwise go
to 4.

4. Let(Q,¢) directly follow (Q~1, ¢*=1)) along the trace.

5. If the tree Q4 has no edge in common with each of the trees Q(V ¢V ...,
QD=1 put (¢,Q9, ¢(t)) = (¢,Q, ¢) and go to 1.; otherwise go to
6.

6. If (Q,¢) is not the last pair along the trace, denote by (Q, ¢) the next pair
and go to 5.; otherwise goto 7.

7. Ift>1dot «t— 1 andgoto 8.; otherwise goto 11.

8. Denote (Q,¢) = (Q™,¢'?) and

9. Construct the canonical form R (see section 4 below) of the minimal T -
decomposition Q(V ¢V, ..., Q™ ¢ and go to 10.

10. IfRe Sgoto7.;otherwiseadd Rto Sandgoto7.
11. Stop. Theresultis S = L( K2,,T).

Remark: One may shorten the work of the algorithm by deleting from the trace
in advance all pairs (Q, ¢) with equal Q4’s except for one.

4. Let us represent the edges of a graph in the form ij where i < j. Thena
tree can be written as a lexicographically ordered sequence of edges. The lexico-
graphic order induces naturally an order in the set of spanning trees of K>,,.

A T -decomposition of K>, is called reduced if its components are written in
the Iexicographic order. In a natural way, a lexicographic order is induced in the
set of reduced minimal T -decompositions of K.

The smallest one among all the reduced minimal T -decompositions which are
isomorphic to D, is called the canonical form of D.

The canonical form is an invariant in the set of minimal T -decompositions of
K3,. Itis a complete invariant, i.e. it distinguishes the latter completely.

5. The algorithm described in section 3 was implemented as a FORTRAN pro-
gram. The canonical form was constructed by the subroutine KANON. The main
program and KANON both use the subroutine PERM (due to V.Bol’shakov [4])
which generates the permutations of order v.

The computation was made for the case 27n = 6 resulting in the following.

Theorem. N(K¢, T) =19.

6. Below we present the list L( K¢, T). The third components of the decom-
positions are not listed since they can be easily determined. The last column gives
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the order of the automorphism group of the corresponding decomposition.

1 12 23 34 45 56 13 14 25 26 36
2 12 23 34 45 56 13 14 25 35 46
3 12 23 34 45 56 13 16 24 25 35
4, 12 23 34 45 56 13 25 26 35 46
S. 12 23 34 45 56 13 24 25 35 46
6 12 23 34 45 56 13 15 25 26 46
7 12 23 34 45 56 14 26 35 36 46
8 12 23 34 45 56 16 24 25 35 36
9. 12 23 34 45 56 13 14 15 24 26
10. 12 23 34 45 56 16 24 35 36 46
11. 12 23 34 45 56 16 24 26 35 36
12. 12 23 25 45 56 13 26 35 36 46
13. 12 23 25 45 56 14 15 16 26 34
14, 12 23 25 45 56 13 14 26 35 36
15. 13 23 34 45 56 12 24 25 36 46
16. 13 23 34 45 56 12 14 25 26 35
17. 13 23 34 45 56 12 15 16 35 46
18. 12 23 34 36 45 13 14 15 25 46
19. 12 23 34 45 56 13 16 24 35 46
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