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Abstract. It is shown that the circuit polynomial of a graph when weighted by the
number of nodes in the circuits, does not characterize the graph. i.e. non-isomorphic
graphs can have the same circuit polynomial. Some general theorems are given for
constructing graphs with the same circuit polynomial (cocircuit graphs). Analogous
results can be deduced for characteristic polynomials.

1. Introduction

The idea of finding a polynomial which characterizes a graph, is an old one and
several attempts have been made to achieve this. Many of the well known graph
polynomials were, at one time or the other thought to be characterizing polynomi-
als; that is two graphs were isomorphic if and only if they had the same polynomial.
[t was once conjectured that the characteristic polynomial of the adjacency matrix
of a graph characterized the graph (see Harary et al [4]). However it turned out
that none of these polynomials characterized the graph. The problem of finding
such a polynomial is still essentially unsolved.

One interesting attempt to find a characterizing polynomial was made by Bala-
subramanian and Parthasarathy [1]. They have conjectured that their “permanent
polynomial” is a complete invariant for graphs i.e. it will characterize the graphs.
However this conjecture has not been proved.

In what follows, we show that the circuit polynomial of a graph when weighted
in a certain way, does not characterize the graph. We then give thcorems which
serve to identify several families of non-isomorphic graphs which have the same
sircuit polynomial.

2. Preliminaries

Let G be a graph. By a circuit cover of G, we will mean a spanning subgraph
of G whose components are circuits only. We take a circuit with one node to be
an isolated node and a circuit with two nodes to be an edge. Circuits with more
than two nodes will be called proper circuits. With every circuit « in G, let us
associate a weight w, and with every circuit cover C, the weight

w(C)= nat'waa
where the product is taken over all components of the cover. Then the circuit

volynomial of G is 3 W(C), where the summation is taken over all the circuit
sovers in G. The circuit polynomial was introduced in Farrell [2].
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If two graphs have the same circuit polynomial, we will say that they are cocir-
cuit and call them cocircuit graphs. 1t is clear that in order for two graphs to have
the same circuit polynomial, they must have not only the same types of circuit
covers, but also the same number of the same types.

It would seem therefore that it would be difficult for two non-isomorphic general
graphs to have the same circuit polynomial.

In order to obtain a practicable circuit polynomial of a graph G we must assign
weights to the circuits, in a less general form. However, when we do so, some
property of the relation of the circuits to the rest of the graph might be lost. This
loss might be sufficient to make the circuit polynomial of G equal to that of some
non-isomorphic graph H. Therefore the problem is this. How could we assign
weights to the circuits so that the resulting polynomial would characterize the
graph? Of course, we would be interested in the simplest assignment of weights
that would achieve this. An interesting and simpler problem is this. How could
we assign weights to the circuit so that particular kinds of non-trivial families of
graphs are characterized?

In [2], we assigned weights in a simple way. Circuits with k nodes were given
the weight wy;. We will assume in what follows, that weights are assigned in
this way, when speaking about the circuit polynomial of a graph. One reason for
assigning weights in this manner is because it yields an interesting connection
between the circuit polynomial and the characteristic polynomial of a graph. This
connection is given in the following theorem, which was proved in [2].

Theoreml. Let G be a graph. The characteristic polynomial of G is obtained
from its circuit polynomial by puttingwy = =z, wy = —1 andw; = -2, for
k>2.

We will normally represent the circuit polynomial of a graph G by C(G; w),
where w = (w;,ws,..., wg,...) is a vector of indeterminates. If we denote the
characteristic polynomial of G by ¢(G; z), then Theorem 1 can be restated as

#(G;z) = C(G;(z,~-1,-2,-2,...,-2)).

The following corollary is immediate from the theorem.

Corollary 1.1. LetG, and G, be two graphs such that
C(Griw) = C(Grw).

Then
#(G152) = $(Ga; 7).



3. Some Basic Properties of Circuit Polynomials

Let G be a graph containing an edge ab joining nodes a and b. We can partition
the circuit covers in G into three classes, (i) those which do not contain ab, (ii)
those in which ab is a component by itself and (iii) those in which ab is part of
a proper circuit. The covers in Class (i) will be covers of the graph G’ obtained
from G by deleting ab. The covers in Class (ii) will be covers of the graph G"
obtained from G by removing nodes a and b, i.e. the graph G— a — b. The covers
in Class (iii) will be covers of the graph G* obtained from G by distinguishing
ab in some way and requiring it to belong to every cover that we consider. We
then say that ab is incorporated in G* and call G* the restricted graph in which
ab is incorporated. Our discussion leads to the following fundamental theorem for
circuit polynomials.

Theorem 2. Let G be a graph containing an edge ab joining nodes a andb. Then
C(Giw) = C(Gsw) + w2 C(G"; w) + C(G*; w),
where G',G" and G* are as defined above.

It is clear that Theorem 2 yields an algorithm for finding circuit polynomials
smaller and smaller graphs of graphs. We simply apply the theorem recursively to
smaller and smaller graphs, until we obtain graphs whose circuit polynomials are
known. This algorithm, called the fundamental algorithm for circuit polynomials,
will be referred to as the reduction process.

The following lemmas will be useful when using the reduction process. They
can be easily established from the definition of G*.

Lemma 1. IfG* contains more than two incorporated edges incident (o a node,
thenC(G*; w) = 0.

Lemma 2. IfG* is a tree, then C(G*; w) = 0.

Lemma 3. IfG* has an incorporated bridge, then C(G*; w) = 0.

If G contains several components then the circuit covers of G can be obtained
by independently taking covers in each component. This leads to the following
theorem.

Theorem 3. LetG be agraph consisting of k components Hy, Ha ,. .., Hy. Then
C(G:w) = &, C(Hi w).

Let G be a graph and H a subgraph of G, We will use the notation G — V(H),
or simply G — H, to denote the graph obtained from G by removing the nodes of
H . For simplicity of notation we will sometimes write C(G) for C(G; w) when
it is convenient to do so.

The following theorem is the node analogue of Theorem 2 (u adj v means node
u is adjacent to node v).



Theorem 4. Let G be a graph with p nodes and v a node of G. Then

C(Gw) = wIC‘(G—v)-i-wzEC(G—u—v)+Ew,ZC(G G,

uadjv i=3

where the final summation is taken over all the cycles C; with i nodes and con-
faining node v.

Proof: In any circuit cover of G, node v can either be (a) a component by itself,
(b) incident with an edge which is a component or (c) part of a proper circuit. The
result therefore follows.

The following corollary is immediate from Theorem 1.

Corollary 4.1. For any nodev of G,

$(Giz) =26(G—v) — Y H(G—u—v) -2 EE:#(G o).
uadjv i=3

This corollary is also given in Schwenk [10]. Also, some of the results given
in this section are given in [2]. For other basic properties of circuit polynomials,
the reader can consult [2].

4. Cocircuit Rooted Graphs

Let G and H be connected graphs. By attaching G to H (or H to G) we will
mean that a specified node v of G is identified with a specified node z of H to
yield a connected graph, denoted by G, + H;, in which G and H are subgraphs.
The node formed by identification, denoted by v,, will be called the node of at-
tachment. When either G or H is rooted, we will assume that the root is used in
the identification process, unless otherwise specified.

Theorem 5. Let G be a graph rooled at a node v and H a graph rooted at a node
. Then

C(G,+ H;)=C(G) C(H-z)+ C(G—v)C(H) —uw1 C(G—-v)C(H — ).
Proof: In any cover of G, + H either
(i) vgisisolated ;

(ii) v, is incident with a component edge either totally in G or totally in H;
(iii) v, belongs to a circuit either totally in G or totally in H.
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By using Theorem 4 with v replaced by v, we get

C(Gy+ Hy) =wy C(G - v)C(H —z) + w; C(H—13) Y, C(G—u—v)

(=3

+w C(G-v) Y, C(H-z-y)

6~2

+C(H—z)§m:w,- Y oG-

i=3 veCiCG

+C(G —v) f:w,- S o -0y,

=3  zeC,CH

where m and » are the number of nodes in G and H respectively.
By simplifying the RHS, using the relation

m
w Y O(G-u—v)+Y w Y C(G—C)=C(G)—wC(G~v)
w€G i=3 veCiCG
usadjv
from Theorem 4, and the analogous relation for H, we obtain the desired result.
|
The following definition is suggested by an analogous definition given by Schwenk
[11].
Let G be a graph containing a node v and H a graph containing a node z, such
that
() C(G)=C(H) and
(i) C(G—-v)=C(H-2).
Then G and H will be called a pair of cocircuit rooted graphs (with root pair
(v, %)) or a cocircuit rooted pair. If G = H, we say that G is cocircuit rooted.

Theorem 6. Any rooted graph may be attached to the roots of a pair of cocircuit
rooted graphs to form another pair of cocircuit rooted graphs.

Proof: Let G and H be a pair of cocircuit rooted graphs rooted at u and z respec-
tively. Let A be a graph rooted at a. By Theorem 5, we get

(i) C(Gu+A,) =C(G)C(A-a)+C(A)C(G-u)—w 1 C(G—-u)C(A—a),
(ii) C(H,+A,) =C(H)C(A—a)+C(A)C(H—-z)—wC(H—-x)C(A-0a).
But G and H are cocircuit rooted (with root pair (u, z) ). Therefore

C(G)=C(H) and C(G-u)=C(H-1). {1
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Hence
C(Gu+ Ag) =C(Hz + A,).

Let the cutnodes formed by identifying u and a in G, + A, and z and a in
H; + A, be u, and z, respectively. Consider G, + A, to be rooted at u, and
H. + A, tobe rooted at z,. Then

C(Gu+ Aa—u,) =C(G—-u)C(A—a)

and
C(Hy+ Ay —1,) =C(H—3)C(A—a). (Theorem 3)

Hence from Equation (1), we get
C(Gu + A, —u,g) = C(H;+ A, — 3,).

It follows that G, + A, and H_ + A, are cocircuit rooted. [ ]
The following corollary is immediate.

Corollary 6.1. Any rooted graph may be attached to the roots of a cocircuit rooted
graph to form a pair of cocircuit rooted graphs.

5. Some Deductions For Pseudo-Similar Nodes

Let G be a graph containing two nodes u and v. We say that u and v are pseudo-

similar if G — u and G — v are isomorphic, but no automorphism of G maps
u onto v. Several articles have been written about graphs with pseudo-similar
nodes and their properties. For example, see Herndon and Ellzey [5], Kimble,
Schwenk and Stockmeyer [6], Kocay [7] and Krisnamoorthy and Parthasarathy
[9]. A method for constructing graphs with pairs of pseudo-similar nodes is given
in [5). A technique for constructing infinite graphs with pseudo-similar nodes is
given in Godsil and Kocay [3].

Lemma 4. Let G be a 2-connected graph with a pair of pseudo-similar nodes u
andv. Let H be a graph containing a node . Then

Gu+ H: # G+ H;.

This result was recently proved by Kocay [8]. Since the condition of 2-connecte
ness is sufficient, it is possible that further classes of graphs with this property will
be identified in the near future. In his paper [8], Kocay gave a technique for con-
structing a graph G with pseudo-similar nodes u and v, for which

Gu+ H, =2 G, + H,.

The following corollary is immediate from Theorem 6.
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Corollary 6.2. LetG be a graph containing a pair of pseudo-similar nodes u and
v. Let H be a graph containing a node x. Then

C(Gu+ Hzw) = C(Gy+ Hzw).
The following theorem can be obtained by combining the results of Corollaries
1.1 and 6.2. It is a well known result.
Theorem 7. Let G be a graph containing a pair of pseudo-similar nodes u and v.
Let H be a graph containing a node y. Then
Gy + Hy; z) = ¢(Gy + Hy; z).

The smallest non-isomorphic graphs satisfying Corollary 6.2 and Theorem 7
are the graphs G, and G» shown below in Figures 1(ii) and (iii) respectively. The
“parent” smallest graph with a pair of pseudo-similar nodes is shown in Figure
1(i) (This was taken from [3])

/\u - G /\/ y S Gz’A, /
\/ B \/ v \/v
(i) (ii) (iii)

Figure 1

It can be easily confirmed that

C(G1;w) = C(G2: W) = wd + 10w] wa + 29w w? + 25w w3 + Swyw)
1 1 1w 1w 2

+ 2wl ws + 10wfwrws + dwlwiws + wiws + wiw? + wiwawl.

We note however that not all pairs of non-isomorphic cocircuit graphs arise
in this way. The following graphs H; and H; are the smallest non-isomorphic
cocircuit graphs.

It can be easily verified that

C(Hy;w) = C(Haiw) = wl + dwiwy + 3wiwi.
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(i) (ii)
Figure 2

The converse of Corollary 1.1 is false. This is confirmed by the following
cospectral graphs A, and A, taken from [4] (Figure 3).

| ]

>

(i) (ii)
Figure 3

$(A1T) = p(A2;2) =2° - T3 -4 + 72> + 4z — 1.

However, it can be seen that A; has a circuit of length 4, while A has no circuits
at all, Therefore

C(A1w) # C(Aw).

It is clear that the circuit polynomial gives a greater degree of characterization
than the characteristic polynomial.

7. Final Remarks

We have shown that therc exist non-isomorphic cocircuit graphs, when weights
are given to circuits according to the number of nodes that they contain. We also
implicitly gave several methods for constructing pairs of non-isomorphic cocircuit
graphs, and therefore pairs of cospectral graphs. It would be interesting to find
other general techniques for constructing non-isomorphic cocircuit graphs. Any
such technique will automatically be a technique for constructing non-isomorphic
cospectral graphs.
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