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1. Introduction

A Steiner triple system (more simply, triple system) is a pair (S, T"), where T is a
collection of edge disjoint triangles (or triples) which partition the edge set of the
complete undirected graph K, with vertex set S. The number n = |S] is called
the order of the triple system (S, T') and it has been known forever (= since 1847
[4]) that the spectrum of triple systems (= the set of all n such that a triple system
of order = exists) is precisely the setof alln = 1 or3 (mod 6). It is trivial to
see that if (S, T') is a triple system of order nthen |T'| = »(n— 1) /6.

A partial triple system of order = is a pair (S, P), where P is a collection of
edge disjoint triangles of the edge set of K, with vertex set S. The difference
between a (complete) triple system and a partial triple system is that the edge
disjoint triangles belonging to a partial triple system do not necessarily include all

of the edges of K.
In what follows we will denote the triangle
a
ce# *b
by {a,b,c}.

Example 1.1. (S, P) is a partial triple system of order 6, where S = {1,2,3,4,
5,6}and P={{1,2,4},{1,5,6},{2,3,5},{3,4,6}}.

Now given a partial triple system (S, P) we can ask whether or not it is pos-
sible to decompose E( K,)\ E( P) into edge disjoint triangles. The above exam-
ple shows that this cannot be done in general, since the deficiency graph D =
E(K¢)\E(P) = {{1,3},{2,6},{4,5}}, is triangle free, not to mention the
fact that 6 is not the order of a triple system! Since a partial triple system cannot
necessarily be completed to a triple system, the problem of embedding a partial
triple system in a (complete) triple system is immediate. The partial triple system
(S, P) is said to be embedded in the triple system (S*, T) provided that S C S*
and P C T. Naturally, we would like |S*| to be as small as possible.
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Example 1.2. Let (S*,T) be the triple system of order 7 defined by S = {1,2,
3,4,5,6,7} and T = {{1,2,4},{2,3,5},{3,4,6},{4,5,7},{1,5,6},
{2,6,7},{1,3,7}}. Then the partial triple system (S, P) in Example 1.1 is
embedded in (S*,T).

In 1971 Christine Treash [11] gave the first embedding of partial triple sys-
tems. Treash’s embedding gives an extremely large containing system, guaran-
tecing only that a partial triple system of order n can be embedded in a triple
system of order < 22", Subsequently, this bound was improved in 1975 by C. C.
Lindner to 6 n+ 3 [5] and finally in 1980 (the best so far) to the smallest admis-
sible order > 4n+ 1 by L. D. Andersen, A. J. W. Hilton, and E. Mendelsohn [1].
The best possible bound is the smallest admissible order > 2n+ 1. An extremely
difficult problem!

Now a triangle is also a 3-cycle and so a Steiner triple system (S, T") can be
described as an edge disjoint collection of 3-cycles which partition the edge set
of K,, (based on §). Since there is nothing particularly sacred about the number
3, we can certainly ask the same questions for m-cycle systems that are asked for
triple systems. In particular, for a given m > 4, we can ask for the spectrum
of m-cycle systems as well as for an embedding (as small as possible) of partial
m-cycle systems. An obvious definition here: an m-cycle system of order n is a
pair (S, C), where C is an edge disjoint collection of m-cycles which partition
the edge set of K, based on S. If the edge disjoint m-cycles belonging to C do
not necessarily partition the entire edge set of K, then we have the definition of a
partial m-cycle system.

The obvious necessary conditions for the existence of an m-cycle system (S, C)
of order |S| = nare

(2) misodd,and

{ (1) n>m,ifn>1,
(3) n(n-1)\2m is an integer.

Although these necessary conditions are sufficient for all m < 50 [2] the ex-
istence problem is far from settled. However, in contrast to block designs, it may
well be the case that these obvious necessary conditions are also sufficient.

In [8, 9] it is shown that a partial m-cycle system of order n can be embedded
in an m-cycle system of order 2nm + 1 when m is EVEN and embedded in an
m-cycle system of order m((m — 2)n(n— 1) + 2n+ 1) when m is ODD. Quite
a disparity!

Recently, C. C. Lindner and C. A. Rodger [6] removed this disparity by re-
ducing the bound for m = ODD to m(2n+ 1). The principal ingredient in the
construction used to obtain this bound is a generalization of Allan Cruse’s Theo-
rem [3] on embedding partial idempotent commutative quasigroups to embedding
partial idempotent commutative groupoids.
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What follows is an elementary account of the struggle to obtain this small em-
bedding for partial odd-cycle systems. Rather than obscure the essence of the
constructions with Professor Backwards type details, the author has chosen to il-
lustrate everything using triple systems and pentagon (= 5-cycle) systems. Pen-
tagon systems are just large enough to illustrate the fact that the techniques used
for triple systems do not necessarily work for larger odd-cycle systems, but small
enough to illustrate the general constructions without cluttering things up with
mind boggling details. The object of this paper is an attempt to popularize embed-
ding theorems for partial cycle systems. One way NOT to do this is to destroy the
reader’s will to resist with excruciating details (in full generality). The interested
reader who wishes to pursue the subject can, of course, go straight to the original
papers for a large dose of tedium. So be it!

2. Embedding triple systems.

As mentioned in the introduction the serious history of embedding partial odd-
cycle sytems began in 1971 with Christine Treash’s result that a partial triple sys-
tem of order ncan always be embedded in a triple system of order < 22®. In 1975
this was dramatically improved to 6 n+ 3 by C. C. Lindner and subsequently to
the smallest admissible order > 4n+ 1 by L. D. Andersen, A. J. W. Hilton, and
E. Mendelsohn. Although this is the best result to date, we will content ourselves
here with a description of the 6 n+ 3 embedding. The principal reason being that
the general embedding result for pentagon systems (as well as odd-cycle systems
in general) is a generalization of the 6n+ 3 embedding and not the > 4n+ 1
embedding. When you come to think about it, that's a pretty good reason!

The 6 n+ 3 embedding is based on the following (by now well-known) con-
struction for Steiner triple systems.

The 6 n+3 Construction. Let (Q, o) be anidempotent (z? = ) commutative
(zy = yz) quasigroup of order 2n+ 1, set § = Q x {1,2,3}, and define a
collection of triples T as follows:

1) {(z,1,(z,2),(z,3)} €T, forallz € Q,and
() ifz#y,{(z,1),(y,1),(z09,2)},{(2,2),(y,2),(z0y,3)},and
{(2,3),(1,3),(zoy,1)} belong to T.
It is a trivial matter to see that, in fact, (S, T’) is a triple system of order 6 n+ 3.

The 6 n+ 3 embedding for partial triple systems is a modification of the 6 n+ 3
Construction and is based on a remarkable result due to Allan Cruse on embedding
partial idempotent commutative quasigroups. A few preliminaries are in order.

A partial idempotent quasigroup is a partial quasigroup ( P, o) with the addi-
tional requirement that x o z is defined for every £ € P and z o = z. In other
words, the word “partial” quantifies products of the form = o y where z # y.
A partial idempotent commutative quasigroup is a partial idempotent quasigroup
( P, o) with the additional requirement that if £ o y is defined then so is y o x and
furthermore zoy = yo x.
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Example 2.1, Partial z* = z, zy = yx quasigroup of order 4.

3

EN
IR

4
2
1

& W ~o

2|11] |4

Now we can ask the same questions for partial 2 = z, Ty = yz quasigroups that
were asked for partial triple systems. Namely, can a partial z2 = z, zy = yz
quasigroup be “completed” to an 22 = z, Ty = yx quasigroup? And if not, can
it be embedded in an 22 = z, Ty = yz quasigroup? Example 2.1 shows that the
answer to the first question is NO, since we cannot define 3 04 = 4 o 3 without
violating the cancellation law. Since a partial z2> = z, Ty = yz quasigroup cannot
necessarily be completed to an z2 = z, zy = yz quasigroup the problem of
embedding becomes paramount.

Example 2.2. The partial 2> = z, zy = yz quasigroup (P,o0) of order 4 in
Example 2.1 is embedded in the z* = z, Ty = yz quasigroup (Q,o) of order 9.

oj1234

1i1|4] |2

214121 |1

3 3

412]1] |4

(P,0)
olfl 2 3 45 6 7 8 9
1(1|4]7]12]9]|8|3|6]5
214(2|9]118]|7[6]5](3
3171913865142
41211|18|417|9(5|3]|6
51918|6|7|5]13(4(2]1
6|87 |519[3|6([2(1]4
7131611|5]1412|7(9]8
816|543 (2|1(9(|8]7
9|s|3|2]|6[1]4([8[7[9

(Q,0)

In 1974 Allan Cruse obtained the best possible bound for embedding partial

z? = z, zy = yz quasigroups.



Theorem 2.3 (Allan Cruse [3)). A partial * = z, zy = yx quasigroup of order
n can be embedded in an z* = z, Ty = yz quasigroup of order t for every ODD
t>2n+ 1. |

Cruse’s Theorem is the best possible result in that it is always possible to con-
struct a partial z2 = z, Ty = yz quasigroup of order n which cannot be embedded
inan 22 = z, Ty = yxz quasigroup of order < 2n+ 1, forevery n> 4.

The 6 n+ 3 Embedding. Let (X, P) be a partial triple system of order n and
define a partial z* = z, zy = yz groupoid (X, o) as follows: (i) z o z = z for all
z € X,and (ii)ifr # y,zoyandyozaredefinedandzoy = yoz = z ifand
only if {z,y,2} € P.

Example2.4. Let (X*, P*) be the partial triple system definedby X* = {1,2,3,
4,5,6} and P* = {{1,2,4},{1,5,6},{2,3,5},{3,4,6}} (Example 1.1).
Then (X*,0) is given by the accompanying table.

ofl 2 3 4 5 6
1]1]4 21615
21412)15]11}3
3 513161214
412116 (4 3
516132 511
6|5 4(3|1]6

Inspection shows that the partial groupoid in Example 2.4 is, in fact, a partial
quasigroup. Itis a trivial matter to see that this is ALWAYS the case. So the partial
groupoid ( X, o) defined from the partial triple system (X, P) is a partial z2 = z,
zy = yz quasigroup. Hence by Allan Cruse’s Theorem we can embed ( X, o) in
an z? = x, 2y = yz quasigroup (Q,o) of order2n+ 1. Let § = Q x {1,2,3}
and define a collcction of triples T" as follows:

M {(z,1,(z,2),(z,3)} €T, forallz € Q,

(2) if{z,y,z2} € P take exactly one of (2,y,2),(z,2,9), (v,%,2),(y,2,7),
(z,z,y),0r (z,y,x), say (z,y, 2), and define a collection of 9 triples as
follows: Let ({1,2,3}, ®) be the idempotent quasigroup given by

®[1 2 3
11132
2{3[2]1
312113

and for each ordered pair (4, 5) € {1,2,3} (i and j not necessarily distinct)
place the triple {(z,1),(y,7),(2z,i®j)}inT, and
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(3) ifz # yand {=z,y} doesn’t belong to a triple of P, place the three triples
{(z,1),(y,1),(z09,2)}.{(z,2),(y,2),(z0y,3) },and {(z,3),(y,3),
(zoy,N}inT.

As with the 6 n+ 3 Construction it is easy to see that (S, T') is a triple system
of order 6n+ 3.

Since the quasigroup ({1,2,3}, ®) isidempotent, if {z, y, z} € P, then{(z, 1),
(v,D,(2,181 = 1}, {(2,2),(y,2),(2,2 ® 2 = 2)}, and {(z,3),(y,3),
(2,3 ®3=3)} € T and so three disjoint copies of P belong to T".

We have the following theorem.

Theorem 2.5. (C. C. Lindner [5]). A partial triple system of order n can always
be embedded in a triple sytem of order 6n+ 3. I

Remark 2.6. In view of Cruse’s Theorem we can embed a partial triple sytem of
order n in a triple system of order 3t for every odd t > 2n+ 1. However, we
are interested here in a small embedding and not a general result, so 6n+ 3 will
do quite nicely for our purposes.

3. Pentagon (= 5-cycle) systems.
In what follows we will denote the pentagon
a

d c

by any cyclic shift of (a,b,c,d,e) or(a,e,d, c,b).

Example 3.1.

(l) (Sltpl) Pl {(11 :3:415) (103)51 14)}

) (S2,R),P ={(1,3,9,5,4),(2,4,10,6,5),(3,5,11,7,6),(4,6,1,
8,7),(5,7,2,9,8),(6,8,3,10,9), (7,9,4,11,10), (8,10,5,1,11),

(9,11,6,2,1),(10,1,7,3,2),(11,2,8,4,3)}, and

(3) (S3,P3),P3={(1,3,10,5,4),(2,4,11,6 5)’(335nl9716)’(4:612o
8,7,(5,7,3,9,8),(6,8,4,10,9),(7,9,5,11,10), (8,10,6,1,11),
(9,11,7,2,1),(10,1,8,3,2),(11,2,9,4,3)}.

The two pentagon systems of order 11 will be used for illustrative purposes
later.

In [10] Alex Rosa showed that the spectrum for pentagon systems is preciscly
the setofalln=1or5 (mod 10). Of course if (S, P) is a pentagon system of
ordern, |P| = n(n— 1)/10.
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The obvious thing to do here is to try to generalize the 6 n+ 3 embedding of
triple systems to pentagon systems. A bit of reflection shows that the place to start
is witha 10n+ 5 Construction.

The 10n + 5 Construction. Let (Q,0) be a 2 = z, zy = yz quasigroup of
order2n+ 1,set S = Q x {1,2,3,4,5}, and define a collection of pentagons
(= 5-cycles) C as follows:

™M (z,1),(2,2),(z,3),(z,4),(2,5)) and ((z,1),(z,3),(=,5),(z,2),
(z,4)) € C forall z € Q (in other words, place a copy of the pentagon
system of order 5 (Example 3.1) on {z} x {1,2,3,4,5} foreachz € Q),
and

(2) ifz # y,((z,9,(v,9,(z,7),(z0y,k),(y,7)) € C,forall(s,i,j,k,j) €
I=1{(1,1,2,4,2),(2,2,3,5,3),(3,3,4,1,4),(4,4,5,2,5), (5,5,
1,3,1)}.

It is straightforward to sce that (S, C) is a pentagon system of order 10n+5. [

So far so good! But now the trouble begins. Given a (partial) pentagon sys-
tem (S, C) there are two reasonable ways to define a binary operation from the
pentagons belonging to C.

(1) aoa=a,foralle € Q,andifa # b,aob=candboa = e if and only if
(a,b,c,d,e) € C,0R

(2) aca=a,foralla € Q,andifa # b,aob = boa = dif and only if
(a,b,c,d,e) € C.

Example 3.2. Let (X, P) be the partial pentagon system givenby X = {1,2,3,
4,5,6,7,8}and P = {(1,2,3,4,5),(2,6,7,4,8)}. Let o, be the binary
operation defined by (1) and o, the binary opeartion defined by (2).

2
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0|l 2 3 4 5 6 7 8
1{1[4 3

2 215 4 7
3 5 1

4 11412 2|6
513 215

6 4 6|8
7 2 817
8 7 6 8

The above example shows that, unlike the case for (partial) triple systems, it
is not always possible to define a (partial) quasigroup from a (partial) pentagon
system. So a straightforward extrapolation of the 6n + 3 embedding for triple
systems applied to the 10n+ 5 Construction for pentagon systems won’t work.

The reason for the trouble in Example 3.2 is because the vertices 2 and 4 are
joined by a path of length 2 in two different pentagons of P. This forces such
thingsas 2 o; 3 =201 8 =4 and4 o, 5= 4 o, 7 = 2, which guarantees that
neither operation gives a quasigroup. A bit of reflection reveals, however, that if
(S, C) is a (partial) pentagon system with the additional property that each pair
of vertices are joined by (at most) exactly one path of length two belonging to a
pentagon of C then both o; and o, produce quasigroups. Such a (partial) pentagon
system is said to be 2-perfect. For example, in Example 3.1(Sy, P;) and (S, P»)
are 2-perfect, whereas (S3, P3) is NOT, since the vertices1 and 10 are joined by
a path of length 2 in the pentagons (1,3,10,5,4) and (8,10,6,1,11) belonging to Ps.

The march toward a small embedding for partial pentagon systems began in
1974 when R. M. Wilson [12] proved that all partial m-cycle systems, and not just
pentagon systems, can be finitely embedded. However the order of the containing
system is an exponential function of the order of the partial system. Since Wilson’s
result, the sequence of events is the following: (1) A partial 2-perfect pentagon
system of order n can be embedded in a not necessarily 2-perfect pentagon system
of order 10n+ 5, (2) A partial pentagon system of order n can be embedded in
a pentagon sytem of order < 157 — Sn+ 1, and finally (3) a partial pentagon
system of order n can be embedded in a pentagon system of order 10n+ 5 (the
best result to date).

We will present each of these results in sequence. (1) and (2) are closely related
and so will be presented together.

4. Embedding partial 2-perfect pentagon systems.

We begin this section with the following embedding for partial 2-perfect pentagon
systems.
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The 2-perfect 10 n+ 5 Embedding. Let (X, P) be a partial 2-perfect pentagon
system of order n and define a partial z2 = z, Ty = yz quasigroup (X, 0) as
follows: (i) zoz = z forall z € X, and (ii) if z # y, z o y and y o x are defined
andzoy = yox = zifandonlyif (z,y,u,z, w) € P. By Allan Cruse’s Theorem
we can embed (X, 0) inan z? = z, zy = yz quasigroup (Q, o) of order 2n+ 1.
Let S =Q x {1,2,3,4,5} and define a collection of pentagons C as follows:

1M «(=,1),(z,2),(z2,3),(z,4),(z,5) and ((z,1),(z,3),(z,5),(z,2),
(z,4)) eCforalzeQ,

(2) foreachpentagonc € P take afixed representation (), z3, 3, 4, T5) Of c
and define a collection of 25 pentagons as follows: Let({1,2,3,4,5},®)
be the idempotent quasigroup given by

®|1 2 3 4 5
111(3]5]2]4
2|1512(4]1]3
314 |11[3]5]2
4i3[5]2]4]1
5|12|14|1}3]5

(any idempotent quasigroup will do) and for each ordered pair (1,j) €

{1,2,3,4,5} (i and 5 not necessarily distinct) place the pentagon ({ z, 1),
(22,7),(%3,i®7),(24,7),(25,1® 7)) inC, and

(3) ifz # yand {z, y} doesn’t belong to a pentagon of P, place the 5 pentagons

(z,3), (y,9), (z,)), (z09,k), (y,7)) inC, forall (i,4,j,k,j) € I =

{(1,1,2,4,2),(2,2,3,5,3),(3,3,4,1,4),(4,4,5,2,5), (5,51,

3,D}.

It is straightforward to see that (S, C) is a not necessarily 2-perfect pentagon

system of order 10n+ 5 and since the quasigroup ({1,2,3,4,5},®) is idem-

potent, five disjoint copies of P are embedded in C. 1

Theorem 4.1 (C.C. Lindner, C.A. Rodger, D.R. Stinson [8]). A partial 2-perfect
pentagon system of order n can be embedded in a not necessarily 2-perfect pen-
tagon system of order 10n+ 5.

Of course, if the partial pentagon system is not 2-perfect we’re out of luck.
However, the following trick will help us remove the 2-perfect requirement if we
don’t mind enlarging the size of the containing system a bit.

Two partial pentagon systems (X, P;) and (X, P,) are said to be mutually
balanced provided the pentagons in P; and P, contain precisely the same edges.

Exampled.2. Let X = {1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15, 16,17,
18,19,20}, A = {(1,2,3,4,5),(7,8,2,9,10),(10,11,3,12,13),(13, 14,
4,15,16), (16,17,5,18,19), (19,20,1,6,7)}, and P, = {(1,2,8,7,6),
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(2,3,11,10,9), (3,4,14,13,12), (4,5,17,16,15), (5,1,20,19,18),
(7,10,13,16,19)}. Then (X,P,) and (X,P,) are mutually balanced. For
example, {7,8} € (7,8,2,9,10) € P, while {7,8} € (1,2,8,7,6) € P,.

Pentagon systems have the so-called “replacement property”.

The replacement property. Let (S, C) be apentagonsystem and { Py, P, Ps,
..., Pt} acollection of pairwise edge disjoint partial pentagon systems such that
P; C C.If{P}?,P3,..., P} is any co]lection of partial pentagon systems such
that P; and P} are mutually balanced, then (S, (C\(UL, P))) U (UL, P?)) isa
pentagon system.

The 157> — 5n+ 1 Embedding. Let (X, P) be a partial pentagon sytem
of order n. For each pentagon p = (a,b,c,d,e) € P let X(p) be a set of size
15 such that X N X (p) = @ and X(p1) N X(p2) = @ forp; # p2 € P. For
each p = (a,b,c,d,e) let P)(p) and P,(p) be the pair of mutually balanced
partial pentagon systems of order 20 based on {a,b,c,d,e} U X(p) given by
Example 4.2 with p = (a,d,c,d,e) € Pi(p). Let S = X U (UpepX(p)) and
P(p) = UpepP2(p). Then (S, P(p)) is not only a partial pentagon system but
a partial 2-perfect pentagon system as well. Hence by Theorem 4.1, (S, P(p))
can be embedded in a pentagon system of order 10|S| + 5, say (S*,C). By
the replacement property (S*, (C\(Upep P2(p)) ) U(Upep P1(p))) is a pentagon
system, and of course contains a copy of (X, P). In fact, five disjoint copies,
since Theorem 4.1 guarantees five disjoint copies of (S, P(p)) are contained in
(8*,C). Since (X, P) is a partial pentagon system of order n, |[P| < n(n —
1)/10,|S| < n+ 3n(n— 1)/2, and finally |S*| < 15%* — Sn+ 5.

Corollary 4.3. (C.C. Lindner, C.A. Rodger, D.R. Stinson [8]). A partial pen-
tagon system of order n can be embedded in a pentagon system of order < 15 —
5n+5, |

While the bound of < 15%% — Sn+ 5 is not particularly small, it is certainly
a lot better than exponential! Finally, after a lot of struggling, the problem of
twisting a partial pentagon system into a partial 2-perfect pentagon system (and
thereby enlarging the size) was overcome. The key was a generalization of Cruse’s
Theorem. We now address this generalization and the accompanying embedding
in the next section.

5. Embedding partial pentagon systems.
A partial groupoid (X, o) with the following properties will be called a partial
embedding groupoid:
(1) zoz= gz, forall z € X (idempotent),
(2) =z oy is defined if and only if y o z is defined (but x o y and y o z are not
neccessarily equal),
(3) (X,0)isROWlatin=(aoxz=aoyimpliesz = y),and
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(4) each z € X occurs as a product an ODD number of times.

Example 5.1. A partial embedding groupoid of order 8.
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The following generalization of Cruse’s Theorem is proved in [6].

Theorem 5.2. (C.C. Lindner and C.A. Rodger [6]). A partial embedding group-
oid of order m can allays be embedded in an idempotent groupoid of order 2 n+ 1

which is row latin and such that the partial groupoid consisting of the main diago-
nal plus all products not defined by the embedding groupoid is a partial idempotent

commutative quasigroup (of order 2n + 1).

Example 5.3. The groupoid of order 17 given below conlains the partial embed-
ding groupoid of order 8 in Example 5.1 and has all of the properties stated in

Theorem 5.2,

ofl 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17
11 j2]15]10]5 16|11 |14 |3 |4 |17]7 |89 [13]12]6
2(1 12139 ]16]6 1418 |12]5 |7 |10 |]17]11]4 ]J15]13
3f1sp2{3]afj1 13912 |5]6 1|8 |J16]10]7 |17 |11
41109 |3 J4[5]17]7 |8 |6 |11]j2]1 J12]13]16]14 |15
S{1 16|14y 4S5 [11f12]|10 |7 |17]15[2 |6 |8 |3 |13 |9
6l16| 2 [13117]11j6 |79 |8 f14]4f15|10|3]1]4 |12
TMmfj1af 941276717 |15[13}5 |16 |3 ]1]10]2 |8
8|14 212141019178 |1 [I5]13[11|[5]16]6 |7 |3
931|567 [8[|15]1 [9]16]10|13 |2 J17[14]11 |4
10/4 5|6 |11]17]14]13[15 |16{10|13]|3 [9 |7 |28 |1
M7 rp2115{4]s5|13[10[12111{9 [14]6 |8 |3 |16
1207|1081 {2 (1s{16{11 |[13]3 |9 ]12[4]|5]17]6 |4
1318 [17]16[21|6 |10 3|5 [2[9]14]4 [13]15|n1]1 |7
14]9 |11 J10}13| 8 | 3 |1 [16|17]7 |6 ]S [15]14]12]4 |2
1513147116131 ]10[6 |14f{2 |8 |17 [11]12]15}9 |5
1612 (15]17|14]13| 527 [11|8[3]6 |1]|4]9]16]l10
1716 |13]11 |15} 9 |12 8|3 |4 |1 ]|16]4 [7 |2 |5 [10]17
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Theorem 5.2 is exactly what is needed to amend the 10n + 5 Construction to
obtain a 10n+ 5 embedding a la the 6 n+ 3 embedding for triple systems. Here
goes!

The 10n+ 5 Embedding. Let (X, P) be a partial pentagon system of order n
and define a partial groupoid (X, o) as follows: (i) zoz = z forall z € X, and (ii)
ifr # y,xoy = yand yo z = z if and only if {z, y} belongs to a pentagon of P.
It is straightforward to see that (X, o) is a partial embedding groupoid. (For ex-
ample, if X = {1,2,3,4,5,6,7,8},and P = {(1,2,3,4,5),(2,6,7,4,8)},
then (X, o) is the partial embedding groupoid given in Example 5.1.) By Theo-
rem 5.2 we can embed (X, o) in a groupoid (Q, o) of order 2n+ 1 having the
properties guaranteed by Theorem 5.2. Let S = Q x {1,2,3,4,5} and define
a collection of pentagons C EXACTLY as in the 2-perfect 10m + 5 Embedding.
It is IMPORTANT to note here that if {z, y} doesn’t belong to a pentagon of P,
thenz o y = y o z is computed in a partial idempotent commutative quasigroup.
As with the 2-perfect embedding, C contains 5 disjoint copies of P. It remains to
show that (S, C) is a pentagon system.

Claim: (S, C) is a pentagon system. The proof consists in showing that |C| <
(107n+5)(107+4) /10 and that each edge {(z, 1), (y, 7) } belongs to at lcast one
pentagon of the type described in the construction. A simple counting argument
shows that the number of type (1) pentagons = 2(2xn+ 1), type (2) pentagons =

25|P|, and type (3) pentagons = 5 ((2"2"') -5 |P|) . The sum of these numbers

is (10n+ 5)(10n+ 4) /10 > |C| taking care of the first part of the proof. Now
let {(z,1),(y, )} be any edge. There are several cases to consider.

(i) z=y. Then {(z,9),(z,/)} € {z} x {1,2,3,4,5} and so belongs o a
type (1) pentagon.

(i) z #yandi=j. If {z,y} belongs to a pentagon of P, say (z,y,a,b,c),
then ((z,1),(y,1),(e,1),(b,9),(c,9)) € C (since ({1,2,3,4,5},Q) is
idempotent). If {z,y} does not belong to a pentagon of P, then z o y =
y o z is computed in a partial idempotent commutative quasigroup and so
(=,9),(y,9,(z,)),(z0y,k),(y,7)) € C,where (4,4,7,k,j) € I.

(iii) z # yandi # jand{z,y} belongs to a pentagon of P. There are essentialy
five different ways the edge {z,y} can'sit inside of the representation of
this pentagon: (z,y,a,b,c), (¢,2,9,a,b), (b,c,z,y,8), (a,b,c,z,y), or
(y,0,b,c,7).

() If(z,y,a,d,c),then ((x,1),(y,/),(a,i®/),(b,/),(c,i®J)) € C.
(i) If (¢,z,y,0,b),let k® 1= j. Then ((c, k),(z,19),(y,5),(a,%),

(5,7))) eC.

(iii) If (b,c,z,y,0),let k ® j = i. Then ((b, k), (¢, ),(z,%),(y,7),
(a,9)) €C.

(iv) If (a,b,c,,y),let k ® i = j. Then ((a, k), (b,4), (¢, 7),(z,1),
(v.)N) eC.
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™) If(y,a,b,c,z),letj ® k = i. Then ((y, ), (a,k),(b,9),(c, k),
(z,1)) € C.

(iv) z #yandi # j and {z, y} does NOT belong to a pentagon of P. Itis ex-
tremely important to note here that the groupoid (Q, o) has the property that
if we delete all products corresponding to edges belonging to a pentagon of
P, the result is a partial idempotent commutative QUASIGROUP. Having
said this, one of two things is true: |[§— 7] = 1 or |[i— j| = 2. We will handle
each case in turn.

|¢ — 7] = 1 There is no loss in generality in assumming i = 1 and j = 2. Then
(z,1,(y,1),(2,2),(z0y,4),(y,2)) € C,where zoy = yo z is computed in
the partial 22 = z, zy = yz quasigroup part of (Q, o).

[i — j] = 2 Again we can take s = 2 and j = 4. Since (Q, o) is row latin
zoz = yforsome z € Q. Now z # z, since (Q, o) is idempotent. Further
{z, 2} does NOT belong to a pentagon of P, since zo0 z = z = y in the embedding
groupoid (X, o) implies that {z, y} belongs to a pentagon of P. Hence oz = zoz
is computed in the partial z? = z, Ty = yz quasigroup part of (Q, o) and so by
construction ((z, 1),(2,1),(z,2),(z02=y,4),(2,2)) € C.

Combining all of the above cases shows that (S, C) is a pentagon system. Part
(ii) shows that 5 disjoint copies of (X, P) are embedded in (S, C).

Theorm 5.4. (C.C. Lindner and C.A. Rodger [6]). A partial pentagon system
of order n can be embedded in a pentagon system of order 10n+ 5. |

6. Concluding remarks.

An obvious generalization of the 10 n+ 5 Embedding to partial odd-cycle systems
in general gives the following theorem.

Theorem 6.1 (C.C. Lindner and C.A. Rodger [6]). If m is ODD, a partial m-
cycle system of order n can be embedded in an m-cycle system of order m(2n+
1). 1

As mentioned in the introduction, we chose to illustrate the history and travails
of obtaining this general result with partial triple and pentagon systems. And why
not? This is a survey paper and the proof of Theorem 6.1 involves technicalities
which obscure the essence of the construction. An understanding of the pentagon
embedding will allow the interested reader to breeze through the general result.

It is worth mentioning that Theorem 6.1 gives a unified treatment of the embed-
ding problem for partial odd-cycle systems, in that it does not distinguish between
2-perfect and non 2-perfect partial m-cycle systems. So for example, Theorem 6.1
gives the same result for triple systems (which are always 2-perfect) as Theorem
25.

Finally, we would be remiss if we didn’t say something about embedding partial
even-cycle systems. All we can say here is that the technique for such embeddings
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are completely different from the embedding techniques for odd-cycle systems.
Since there is a limit to the length of this paper, the even-cycle case is best left for
another day. The interested reader is referred to the survey paper [7] by the author
" and C.A. Rodger for further reading on this subject.
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