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Abstract. Chvétal conjectured that if G is a k-tough graph and k| V' (G)| is even, then
G has a k-factor. In [5] it was proved that Chvital’s conjecture is true. Katerinis [2]
presented a toughness condition for a graph to have an [a, b] -factor. In this paper we
prove a stronger result: every (a — 1 + a/b)-tough graph satisfying trivial necessary
conditions has an [ a, b]-factor containing any given edge and another [ a, b]-factor ex-
cluding it. We also discuss some special cases of the above result.

1. Introduction

By a graph we mean a finite connected graph which has no multiple edges or loops.

Let G be a graph with vertex set V(G) and edge set E(G). For a subset S of
V(G), we write G[ S] for the induced subgraph of G by §,G—8 = GLV(G)\S]
and Ng(8) = {v:uv € E(G) and u € S}. For a vertex z of G, the degree of
z in G is denoted by dg(x). The minimum degree of vertices of G is denoted by
6(@). Let e and b be integers such that 0 < a < b. An [a, b]-factor of G is a
spanning subgraph H of G satisfyinga < dy(z) < bforevery vertexz € V(G).
A [k, k]-factor is called a k-factor.

A subset S of V(G) is an independent set of G if no two elements of S are
adjacent in G and a subset C of V(G) is a covering set if every edge of G has at
least one end-vertex in C. The number of connected components of G is denoted
by w(G). Let G be a non-complete graph and let ¢ be a real number. If for every
subset S of V(G) with w(G — S) > 1,tw(G — S) < ||, then we say that G
is t-tough. The largest t such that G is t-tough is called the toughness of G and
is denoted by t(G). If G = K, is a complete graph with n vertices, we define
t(G) = n—2,and G is said to be t-tough if and only if n—2 > ¢t. Other graphical
terminology in this paper can be found in [7].

In 1973 Chvital (4] conjectured that if G is a graph and & is a positive integer
such that t(G) > k and k|V(G)] is even, then G has a k-factor.

This conjecture was proved by Enomoto et al. [5). Liu [8] proved that if G is a
k-tough graph and k|V G)] is even, then G has a k-factor that contains any given
edge of G. Moreover, Chen [1] obtained the following result.
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Theorem 1.1[1]). Let G be a graph and integer k > 2 such that t(G) > k and
k|V(G)| is even. Then for every edge of G there is a k-factor conlaining it and
, another k-factor excluding it.

Recently Katerinis showed the following theorem,

Theorem 1.2, [7). Let G be a graph and a,b be two positive integers such that
b>a. Ift(G) > a— 1+ afband a|V(G)| is even when a = b, then G has an
[ a, b) -factor.

In addition to Theorem 1.1 and Theorem 1.2 we have the following result.

Theorem 1.3. [[2),[8], [11]]. Let G be a graph of even order and t(G) > 1.
Then G has a 1 -factor containing any given edge.

Chen [2] discussed the binding number and toughness conditions for a graph to
have a [ 1, b)-factor and a [ 2, b]-factor which contains a give edge, respectively.

The main purpose of this paper is to present some toughness conditions for a
graph to have an [ a, b]-factor containing any given edge and another [ a, b]-factor
excluding it, extending and improving the above theorems.

2. Preliminary results

In order to prove the main result we shall need some lemmas. In [[3], [9]] Chen
and Liu gave a necessary and sufficient condition for a graph to have a (g, f)-
factor containing a given edge. In {10] Liu presented a simple existence criterion
for an [ a, b}-factor that contains a given edge. Let p;(G) denote the number of
vertices of degree j in graph G.

Lemma 2.1. [4]. Ifa graph is not complete, then t(G) < §(G) /2.
Lemma 2.2. [10]. Let G be agraphand let b > a > 1 be integers.

Then for every edge of G there is an [ a, b]-factor containing it if and only if for
alS C V(G)

a-1
S (a=pi(G - 8) < BIS| - «(S) @.1)
j=0
where €(s) = 2 if S is not independent; ¢(S) = 1 if S is independent and there
isanedge zy suchthatz € S,y € V(G)\S and dg_s(y) > a; e(S) = 0
otherwise.
Heinrich et al. [6] proved the following result.

Lemma 2.3. [6]. Let b > a > 1 be integers. Then the graph G has an [a, b] -
factor if and only if forall S C V(G)

a-1

S (a—)pi(G~8) < bS].
j=0
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Lemma 24.. Let G be agraphandlet b > a > 1 be integers. Then for every
edge of G there is an [ o, b) -factor excluding it if and only if §(G) > a+ 1 and
forall SCV(G)and S # @

a—1

Y (a=)pi(G-8) < S| - ex(S) 22)

j=0

where €,(S) = 2 if there is an edge e = uv in G — S such that dg_g(u) < a
and dg_s(v) < a;6(8S) =1if T = {t:1 < dg-g(t) < a} is independent and
there is an edge e = uv in G — S such that dg_g(u) < a and dg_g(v) > a;
€1(8S) = 0 otherwise.

Proof:, For any edge e of G, let G' = G — e be a subgraph of G obtained by
deleting edge e. Clearly G has an [ a, b]-factor excluding e if and only if G’ has
an [a, b)-factor, by Lemma 2.3, if and only if forall S C V(G')

a—1
> (a=7)pi(G = 8) <bIS|. @3)

j=0
Ife = uv in G — S such that dg_g(u) < a and dg_g(v) < a, then

a—-1 a-1
D (a—Npi(C —8) = (a—pi(G-8) +2.
j=0 j=0

Ife = uv in G — § such that dg_g(u) < a and dg_s(v) > a, then

a—1 a—1
Y @—NpG' =9 =) (a=-/p(G~5) +1.
j=0 j=0
Otherwise,
a-1 a-1
D (a=NpNG' —8) =Y (a—Hp(G-8).
j=0 j=0

It is easy to see that inequality (2.2) holds if and only if condition (2.3) holds. i
The next result follows immediately from Lemma 2.2 and Lemma 2.4,

Lemma 2.5. Let G beagraphandlet b > a > 1 be integers. If 6(G) > a+ 1
andforall SCV(G) and S # @

a—1

Y (a—pi(G—8) < HiS| -2,
7=0
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then for every edge of G there is an [ a, b} -factor containing it and another [ a, b] -
factor excluding it.

Lemma 2.6 [7]. Let H be agraphand dy(t) < j foreacht € Tj,1 < j <
a—1, where T\, T3,...,Tu- is a partition of V(H) (we allow T; = §). Then
there exists a covering set C of H and an independent set I such that

a=1 a-1
Y @-NICNT<(a=D Y (a—NHINT;|.
i=1 7=

3. Main results

Now we are ready to prove the main theorem.

Theorem 3.1. Let G be a graph and a,b be two integers such that 2 < a < b.
IftG) > a—1+a/banda |V(G)| is even when a = b, then for every edge of
G there is an [ a, b] -factor containing it and another [ a, b} -factor excluding it.

Proof: By Theorem 1.1, we may assume that b > a. By the definition of tough-
ness, when G is complete, we have §(G) = ¢(G)+1 > a—1+a/b+1=a+a/b.
Since §(G) is an integer, §(G) > a+ 1. By Lemma 2.1 when G is not complete
anda > 2,wehave§(G) > 2¢(G) > 2(a—1+a/b) > a+a/b,0r,8(G) > a+1.
In order to prove the theorem, by Lemma 2.5 it suffices to prove forall S C V(G)
andS # 0

a—1

Y (a-pi(G-8) <blSI-2. G

j=0

ForS#0and S CV(G),setT = {t:t € V(G)\Sand 1 < dg_s(t) <a—1}
and H = G[T). LetTj = {t € T:dg_s(t) = j},1 < j < a—1. Since
dy(t) < jforeacht € T;, by Lemma 2.6 we can find a covering set C and an
independent set I of H such that

a-1 a-1
Y a-e<a=1) (a— i (32
j=1 j=1

where ¢; = [CNTj|and ij = |[INTy| forall1 < j < a — 1. Clearly, we may
assume that I is a maximal independent set of H and C = V(H)\I. Thus by
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(3.2) we have

a-1 a-1
D (a—)pi(G-8) =apo(G—8) + Y (a—j)(cj+1iy)
j=0 j=1
a-1 -1
<apo(G—8) +(a—1)Y (a—1)ij+ Y (a—j)i; (3.3)
j=1 j=1
a—1
= apo(G—S) +a ) (a—j)i;

j=t
Let po.= po(G — S). We consider two cases.
Casel. I =0.

In thiscase T = §. Whenw(G — 8) > 1,|S| > {G)w(G-8) > (a—1+
a/b)po > (1+a/b)po. S0|S| > po+ 1. Whenw(G —8S) = 1, wehavepy = 0
or 1. Clearly |S| > po + 1. Thus b|S| —2 > b(po + 1) —2 = bpo + b— 2.
Therefore Y220 (a — /)p;(G— §) = apo < bpo +b—2 < b|S|—2. (3.1) holds.

Case2. I #0.
If|I] = 1 or No_g(z) N Ng_s(y) = @foranyz,y € Tandz # y,let X =

S U (Ng_s(I)\{z}) where z € Ng_s(I). Otherwise, let X = SU Ng_g(I).

Then we have
a—1

X1 <181+ ) jij— 1 (34)
j=1
and
a—-1
w(G—-X) 2 ij+p. (3.5)

j=1

By the definition of toughness, we have
[X] > UG w(G - X) >(a-1+a/b)w(G - X) 3.6)

ifw(G—-X) > 1. Moreover, forevery elementz € T | X| > dg_s(z)+|S|-1 >
de(z)—1 > 8(G)—1 > t(G). Soby Lemma 2.1 and the definition of toughness,
(3.6) still holds when w(G — X) = 1. Thus by (3.4), (3.5) and (3.6) we obtain
that

a~-1 a-1

IS1+ Y jiy— 12> (a—1+a/B)(D i+ po).

Jj=1 j=1

219



Thus

a-1
bIS| > Y (ab—b+a — bj)ij+ (ab—b+a)po + b.
j=l

By (3.3 ) to prove (3.1) it suffices to prove

a=-1 a1
apo+ay (a—j)ij <Y (ab—b+a—bj)ij+ (ab—b+a)po+b~2,
Jal j=1

namely,

a-1
S (ab—b+a—bj—a? +aj)ij >2 —b—bla— Dpo. 3.7
J=l

Since, foralll < j < a—1,ab—b+a—bj—a?+aj=(b—0a)(a—1—4) >0
and2 — b-—b(a —1)po <2 - b<0,(3.7) holds. |

Note that Theorem 3.1 is not true for e = 1. Forexample,let Gy = K, +(2b~
1DK; where b > 1 and let G, be defined as follows: V(G2) =
{v1,v2,...,v2q,4,v}, n > 2, where G2[{v1,...,v22}] = K2, and B(G?) =
E(K3z,) U {uv1, uv2,vv2,-1,vv2,}. Then Gy has no [1, b]-factor containing
the edge of K, and G has no 1-factor containing the edge e = v1v; either. But
H(G1) =2/(2b—1) > 1/band t(G2) = 1. In fact when @ = 1, we have the
following results which are best possible by the above examples.

Theorem 3.2. Let G be a graph of even order. Ift(G) > 1, then for every edge
of G there is a 1-factor containing it and another 1-factor excluding it.

Proof: By Theorem 1.3 for every edge e of G there is a 1-factor containing it. We
shall prove that G' = G — e has a 1-factor. Since t(G) > 1, by Lemma 2.1 and
the definition of toughness, 8(G) > tG) + 1 > 2. Let ¢ be an edge adjacent to
e. G has a 1-factor F containing e'. Obviously F excludes e. |

Theorem 3.3, LetG beagraphandb > 1. If§(G) > 2 andt(G) > 2/(2b-1),
then for every edge of G there is a1, b) -factor containing it and another[1, b] -
factor excluding it.

Proof: Let SC V(G) and § # Pandletpp = po(G— 8). fw(G - S) > 1,
thenpy < w(G — 8) < |S|/t(G) < b|S| — |S|/2. When |S] > 2, we have
po < b|S| — 2. When |S| = 1, we have po < b|S| — 1/2, thus, po < B|S| — 1.
If there is an edge e = uv in G — S such that dg_s(u) = dg-s(v) = 1, then we
have po < w(G—S) -1 < |S|/#(G) -1 < b|S|-|S]/2 -1, 01,po < b|S|-2.
Ifw(G—-8) =1, wehavepy = 0 or 1. Clearly pp < b|S| -2 orpy < b|S| -1
according to pp = 0 or 1. When S = @, clearly, po < b|S| by the hypothesis
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6(G) > 2. Thus by Lemma 2.2 and Lemma 2.4 we have known that for every
edge of G there is a [ 1, b] -factor containing it and another [ 1, b] -factor excluding
it. ]

Theorem 3.1, in the case when a = b = k, is best possible. This can be seen from
the graph given in [5], which has no k-factor and whose toughness is arbitrarily
close to k. Unfortunately, we do not know if Theorem 3.1 is best possible when
a>2andb > a.

Although we only consider simple graphs in this paper, the theorems in section
3 hold also for the graphs with multiple edges, since a graph with multiple edges
has the same toughness as its underlying graph.
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