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Abstract. In this paper we obtain some necessary conditions for the existence of bal-
anced arrays (B-arrays) of strength 4 and with two levels, and we state the uscfulness
of these conditions in obtaining an upper bound on the number of constraints for these
B-arrays.

1. Introduction and Preliminaries

Balanced arrays (B-arrays) have been extensively used in the construction of
asymmetrical and symmetrical fractional factorial designs of different resolutions
which are also “optimal in some sense”. An array T" with m rows (constraints), N
columns (runs, treatment-combinations), and levels is merely a matrix T (m x N)
whose entries are from a set S with s elements (say; 0,1,2,...,s — 1). For the
sake of complcteness, we recall the definition of a B-array. The symbols A(a; T')
and P(ga) stand respectively for the frequency of the (m x 1) vector ¢ in T and
the vector obtained from o by permuting its clements.

Definition 1.1: An array T (m x N) is said to be a balanced array (B-array)
of strength ¢ if in every (¢ x N) submatrix T* of T, the following condition is
satisfied:

M T*) = MP(2): TY).

In this paper we restrict ourselves to B-arrays witht = 4,and s = 2 i.e, arrays
with two elements (say) O and 1. For this case, the above condition is reduced
to the following: In every submatrix T*(4 x N) of T, every vector o of weight
1(0 < i < 4; the weight of o, denoted by w(a) , is the number of 1’s in it) appears
with the same frequency p;. The vector p' = (uo, i1, 82, 13, p4) is called the
index set of the array T, and the array is sometimes denoted by (m,N,t =4,
s=2; y'). Itis quite obvious that N is known once we are given ', and we have

the following result
4
4
N= 2; (i)’“'
1=

If 41; is independent of { and = 4 (say), then B-array T is reduced to an orthog-
onal array (0-array) and in this case N = u2%, u being the index of the O-arrays.
Many other combinatorial structures arising in design of experiments are related to
B-arrays, e.g. the incidence matrix of a BIB design with parameters (b, k, r, v, \)
corresponds toa B-array (v, b,t = 2; p' = (po, p1,p2)) withpy = X, py = r=X,
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and po = b—2r+\. Thus the problems connected with the existence and construc-
tion of B-arrays, for a given ' are very important in combinatorics and statistical
design of experiments. Another equally important problem both in combinatorial
mathematics and statistical design of experiments is to construct B-arrays, for a
given y' with the maximum possible number of constraints m. Such a problem
for B-arrays and O-arrays has been studied, among others, by Rao (1947), Bose
and Bush (1952), Seiden and Zemach (1966), Rafter and Seiden (1974), Saha and
Mukerjec and Kageyama (1988), etc. etc. The necessary existence conditions ob-
tained in this paper should prove useful in both the problems mentioned above.
To gain further insight into B-arrays and their importance to combinatorics and
statistics, the interested reader may consult the list of references at the end, and
further references given therein.

2. Main Results and Applications

Next we mention some results which are easy to establish.
Lemma 2.1. A B-aray T with m =t =4 and index set y' always exists.

Remark: It is not difficult to see that the problem of the existence of B-arrays is
very much nontrivial for m > t.

Lemma 2.2. Consider a B-array T of strength 4 with index set p' = (po, p1,

B2,43,44). Then T is also of strength 4 — i (1 < 1 < 3) with index sets
{ul",' uii‘l;i = 0: 1)2)3}: {pl + 2#!"0-] + Ili+2;i = 0) 112}: and {”’i+ 3ui+1 +
3piv2 + pis3s i = 0,1} respectively.

Remark: Weuse my =m(m— 1D(m—=2)...(m -7+ 1).

Lemma 2.3. Let z; (0 < j < m) denote the number of columns, with exactly
J 1’sineach, ofa B-array T (m x N) with t = 4 and index sct y'. Then the
following conditions must be satisficd:

4
doz=N=3 (‘:)u = 4o (say) @1

i=0
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dogzi=my, G)Mm = A1 (s2y) 22)

i=0

2 3
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E]sz = m3 Z (1),_;,-4.3 +3ma E (i)unz
i=0

i=1

3
+m Y (3) pier = Ay (say) (2.4)

1=0

1 2
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sy (3);‘.-” = 4s (s2y) @5)
i=0

Next we state, without proofs, the Minkowski’s inequality and Holder inequal-
ity for later use.

Minkowski’s Inequality. For z;,y; > 0 p > 1, we have

reom) < (29) - (50)

The equality holds when either p = 1 or the sets {z} and {y} are proportional.
The above inequality can be easily extended.

i=1 i=1

Holder Inequality. If z;,y; > 0,p> 1 and %+ % = 1, then

= L L 11 L 1
Yz < Oz whior Yy ztyt <Oz .
i=1
Remark on Holder Inequality: The inequality is reversed if p < 1 (p # 0) (For
P < 0, assume that z;, y; > 0) In each case, the sign of equality holds if and only

if the sets {z} and {y} are proportional.

Theorem 2.1. Consider the B-array T (m, N,t = 4,s=2;a'). Then we have
A+ Ay + A3 < Ao Az + Ao Ay + \[Ar 44 (2.6)

Proof: In Minkowski’s Inequality, choose p = 2, z; = \/%;, yi = J\/T;,z =

2

J*{/Zj, then we have

(Saaeies?) < (Sa) + (Titn)'+ (Sr)’

Squaring both sides of the inequality, and simplifying leads us to the above
result.

19



Theorem 2.2, Let T be a B-aray of size (m x N) witht = 4,38 = 2, and
index sets y'. Then the following results hold:

(a) A} <AAL (2.72)
(b) A3 < AoA} (2.7b)

Proof: Here we use the Holder Inequality.
(@) Takep=3,thenq = 3. Choose z; = jz; and y; = j*y;, then we have

S GG < Y3 imif a2,
YR <Y e (Y A

(b) Here we take p = 4, and therefore ¢ = 3/4. Setz; = zj and y; = j%z; in
Holder inequality. The result follows after some simplification.

Next, we give an example to illustrate the applications of the above results.
Example: Consider a B-array with ' = (6,4,1,0,0), and thus N = 28. Itis
not difficult to check that such an array exists with m < 8, and can be obtained
by writing all the distinct (7 x 1) columns of weight 2 and weight 1. If we use
(2.7a) above with different values of m starting with m = 5, we observe that the
first value of m to contradict (2.7a) is m = 9, and consequently all m > 9. Itcan
be easily seen that the upper bound m = 8 can be achieved by placing a 1 under
every vector of weight 1, and a zero under each vector of weight 2.

To use the results in this paper, a computer program can be written for values
of E and m > 5. Foragiven p/, if one of the above conditions is contradicted for
(say) m = m* + 1, then an upper bound for m is m*. Since these are necessary
conditions, an array may exist for the given p’ and m = m* where m* > 5. Thus
the conditions given here check the existence of some B-arrays for a given u' and
m, and also provide an upper bound on m.
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