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Abstract. We consider square arrays of numbers {a(1, k) }, generalizing the binomial
coefficients: a(n, 0) = ¢, where the ¢, are non-negative real numbers; a(0, k) = ¢,
and if s,k > 0, then a(n,k) = a(n k—1) + a(n— 1,k). We give generating
functions and arithmetical relations for these numbers. We show that every row of such
an array is eventually log concave, and give a few sufficient conditions for columns
to be eventually log concave. We also give a necessary condition for a column to be
eventually log concave, and give examples to show that there exist such arrays in which
no column is eventually log concave.

Introduction

Pascal originally considered the binomial coefficients as arranged in a square (the
Pascal square), with the element in the n** row and k** column being the binomial
coefficient C(n+ k, k) (n, k > 0). For each integer r > 0, the »t» diagonal of
this square, {C(n+ k, k) | n+ k = r} is the r*» row of the usual Pascal triangle.
(For a historical discussion, see [2].)

Various generalizations of the Pascal square have appeared (e.g. (1], [3]). In
“this paper we consider a generalization which does not appear to have been much
studied: we generalize the initial conditions, and keep the same recurrence relation
as in the Pascal square,

Our original motivation came from the study of linear Diophantine equations.
Thus,letj > 1,c1,¢2,...,¢;, be fixed integers; for n,k > 0, define a(n, k) to
be the number of non-negative integral solutions of the equation

arnit+carnt---+crytytyrt-c+y=n

Then a(0, k) = 1, a(n, 0) is a non-negative integer, and {a(n, k) } satisfies the
recurrence of the Pascal square.

The square arrays we consider will have a(0, k) = cp > 0, and a(n,0) > 0.
For these arrays, generating functions and inductive relations, analogous to those
of the Pascal square, are found in a straightforward way. Most of this paper is
concerned with the more difficult question of the logarithmic concavity of the
rows or columns of such a square array.
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In Section 1, we discuss the straightforward properties of these arrays, and prove
some basic lemmas which are most useful in the study of log concavity. From
the generating functions, it is easy to prove that a necessary condition for some
column to be eventually log concave, is that the initial column should be bounded
by an exponential, and hence, to give examples of arrays in which no column is
eventually log concave.

In Section 2, we show that for each of these squares, A = {a(n, k) }, every row
of A is eventually log concave, and if any column of A is log concave, then so are
all the columns to the right of it.

The “duals” of these statements (switching rows and columns) are not true.
The behavior of log concavity in columns is more complicated than for rows; this
reflects the fact that the top row of A is constant (which makes log concavity
behave tamely), while the initial column is variable.

In Section 3, we give some sufficient conditions on a column which will en-
sure that some column to the right of it will be log concave. One such condition
is, that only finitely many of the initial values c; are non-zero (Theorem 3.2); an-
other requires that the column in question should be bounded above and below by
polynomials which are “close together” (Theorem 3.4).

In view of the fact that the ( k + 1)* column is formed from the k** column by
the finite-difference analogue of integration, we have the following conjecture:

If there exists a polynomial P(x) such that a(n,0) < P(n) for almost alln, then
some column of {a(n, k) } is log concave.

In our computer calculations, we have yet to find a square in which the initial
column is exponentially bounded, which does not have an eventually log concave
column.

1. Preliminaries

In this section, we define square arrays of integers, satisfying the binomial recur-
rence, and give some of their elementary properties. We also give some of the
basic definitions and properties for logarithmically concave sequences, which we
will use later.

Definition 1.1. Let {cp,c1,...} be a sequence of non-negative integers, with
co > 0. Define integers a(n, k) recursively by

a(n k) =c, forn>0
a(0,k)=¢cg fork>0
a(nk) =a(n—-1,k) +a(nk—-1) fornk>0.

Then we say that the set {a(n, k) | n,k = 0,1,...} is a BR-set, with initial
sequence {co,c1,...}. We consider this as a square array, with row index n and
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column index k. The top row is constant, and the left-most column is the initial
sequence.

Example: If the initial sequence is {1,0,0,0,...}, then a(n, k) is the binomial
coefficient C(n+ k — 1,k — 1). If the initial sequence is {1,1,1,...}, then
a(n, k) is the binomial coefficient C(n+ k, k).

Generating functions, and a closed-form formula, are found in a routine way.

Theorem 1.2. Let A = {a(n, k)} be a BR-set, with initial sequence {c;}. Put
Si(z) =Y a(nk)z™  F(z,y) Y Si(z)e*.
n=0 k=0

Then F(z,y) = (1 — 2)So(z) /(1 — z — y), and a closed-form formula for the
cocfficients is

n
a(nk) =Y C(n+ k—j—1,k—1)q,. 1.3)
j=0

Definition 1.4. Let {z; |i=0,1,2,...} beasequence of positive real numbers.
If 22 > ;134 for i = 1,2,... (or, equivalently, the sequence {z;1/x;} is
non-increasing) then we say that {z;} is logarithmically concave (LC). If {z; |
i=N,N+1,...}isLC forsome N > 0, then we say that {x;} is eventually LC,
or ELC. If a single member of the sequence, say =;, satisfies the inequality z? >
T;-1T;e1, then we say that the element x; is locally LC (LLC) in the sequence
{z:}, or just LLC if the sequence is understood.

Remark 1.5. Since the radius of convergence Ry of the series Sy(x) is given by

7 = im sup {a(n+ 1,6)/a(n, D)}

it is clear that if any column {a(n,k) | n = 0,1,...} is ELC, then 1/R; is
the upper limit of a non-increasing positive sequence, and hence not zero. On the
other hand, from the recurrence, S(z) = (1 — %) Sk+1(z), and hence if any S,
has radius of convergence Ry = 0, then they all do. Thus, if Ry = 0, then none
of the columns of {a(n,k)} is ELC.

Example: If ¢, = m!, then no column of {a(n, k) } is ELC.

2. Basic properties of BR-sets

It is not surprising that BR-sets have many of the familiar properties of the bi-

nomial coefficients. As far as logarithmic concavity is concemed, we will be

interested mainly in the rows {a(n,k) | £ = 0,1,2,...} and the columns

{a(n,k) |[n=0,1,2,...}. (tiseasy tosee thatif k > 1, then a(n, k) > 0.)
We begin with some additive properties, which are easily proved by induction.

25



Lemma 2.1. Let A = {a(n, k)} be a BR-set, with initial sequence {c;}. Then

n

@o(n k) = Yo k-1  (nk=1,2,...);

j=o

k
®)a(n,k) = a(n,0) + Z}a(n— L)  (nk=12,..);
)ﬂ

n+ kmr
@ ¥ (-De(nk) =, — ¢y
nt k=r
The next result concerns the LLC property. If one element a(n, k) has the LLC
property in the row (or column, or diagonal) in which it occurs, then some of its
neighbors must also have the LLC property in either the row or column or diagonal
in which they occur.

Theorem 2.2. Let A= {a(n, k)} beaBR-set, and let n, k > 0 be fixed. Define

©F a(nk) =+ 3 279-1g;;
Jj=0

bj=a(n=1+4,k—-1+j7) (i=1,2,3,4, j=1,2,3)

so that {b;;} isa 4 x 3 block in A.
(a) (The Triangle Lemma)

(b2s)? — biabss = (bx2)? — bisbay = (b32)? — basbas.
@) () (bx2)? — bizbyy = byabay — barbiz;
(D) (b2)? — ba1bgs = bpabiz — braba;
(i) (b22)? — biabar = b3 by — bazbis.

©) Ifk > 0, and if (by3)? > biabas and (b32)% > by baz, then (b33)? >
b3 ba3. ;

Proof: (a) Consider the 2 x 2 matrices

bxn b3 bp bi3 bz by
X = Y = , 4= .
(bas bz ) ' ( bn bx ) ( by b3 )
Each of these can be transformed into either of the others by row/column opera-

tions of the type: replace a row (column) with the sum or difference of the rows
(columns). Thus they all have the same determinant, and (a) follows.

(b) We prove (i); the others are similar. By the recurrence, byz = by + b3; and
by = bz + by. Then

(b22)% — bazb12 = baa(b1z + bar) — (baz + b31) 12 = baabay — barba.
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(¢) It is well known that if a, b, c, d are positive real numbers, then a/b < c/d if
andonly ifa/b < (a+ ¢) /(b + d) < c/d. Since we assumed & > 0, then all the
numbers b;; are positive, and (by part (b)) the assumptions imply that

b2 _ ba by b
—>— and — > =,
b = by bis = bia
Then
bay < butbn b  bn
by “bu+bn b —bn
by pgchd: by +byn _ ba < b
b “bp+bs by = by
From this, bs /b32 < b33 /bxs, and from part (b), (b33)2 > b bas. |

Corollary 2.3. Suppose that A is a BR-set such that for some fixed k, and some

N > 1, the set {a(n,k) | n= N,N + 1,...} is LC. Suppose that for some
J2>2N-—-1wehavea(J, k+1)2 >a(J —1,k+ Da(J + 1,k+ 1). Then the
set {a(n k) [n=J,J+1,...} isLC.

Proof: This follows by induction, using Theorem 2.2(c). ]

Theorem 2.4. Suppose that A is a BR-set with initial sequence {c;}, such that
for some fixed k the column {a(n,k) | n=0,1,2,...} is LC. Then for every
j > k, the column {a(n,j) |[n=0,1,2,...} isLC.

Proof: Put z, = a(n,k) and y, = a(n,k+ 1). Thenz9 = yo = co which is
positive by assumption. For all {, we have (£,)% > z;_; ;1. When i=0,we
have

$1+$o=z1+yo=y_12$_12:1;_2'
Zo vo Yo To I
By Theorem 2.3(b), this implies that (y1)2 > 2 /yo, and the result follows by
induction, using Corollary 2.4. |

We now consider the behavior of the rows of a BR-set. The next Theorem shows
that all but finitely many elements of a row will have the LLC property in the
column in which they occur.

Theorem 2.5. Suppose that A = {a(n,k)} is a BR-set with initial sequence
{ci}. Let n > 1 be fixed. There exists an integer K such that if k > K, then
a(n, k)2 > a(n+ 1,k)a(n—1,k).

Proof: We use the formula (1.3) for the numbers a(n, k). Consider the binomial
coefficient C(n+ k — 1 — j, k — 1) as a polynomial in k. It has degree n— j and

27



leading coefficient 1/(n — 7)! and so, considering the numbers a(n, k) also as
polynomials in k, we have

P(k) = a(n k)2 —a(n—1,k)a(n+ 1,k)

2
= {Ec(n+k—j—1,k-1)c,-}

j=0
- {EC(rH k—j—2,k—- l)c,-} {EC(ﬂ+ k—j, k- l)cj}
j=0 j=0

In a(n, k), the term coC(n+ k — 1,k — 1) has degree nin k, and all the other
terms have lower degree; it follows that the coefficient of k;,, in P(k) is

% {&)2 - ((n—ll)!) ((n:lﬂ )}

which is positive. Since the leading coefficient of P(k) is positive, then for all
sufficiently large k, the values P( k) will be positive. [ |

Corollary 2.6. If A= {a(n,k)} is a BR-set, then every row of A is ELC.

Proof: The set {a(0,k)} is a constant (positive) sequence, and therefore ELC.
From the definition, a(1,k) = ¢; + kco, and (for k > 1) it is easy to compute
thata(1,k)2 — a(1,k — 1)a(1,k+ 1) = c3. If n > 2, then from Theorem 2.5,
for all suitably large k, we have

a(n—1,k+ 12 >a(nk+a(n—2,k+1)

and from this, by the Triangle Lemma, a(n, k)2 > a(n,k — a(n k+1). §

Unfortunately, this kind of argument does not apply to the columns of A, since
every binomial coefficient appearing in Formula 1.3 has the same degree (k — 1)
when regarded as a polynomial in n. This lack of duality reflects the fact that the
top row of A is constant, while the initial column of A is variable.

3. Log concavity in columns.

The question of eventual log concavity in a column of a BR-set A, seems to be in
general quite difficult. In this section, we prove that if the initial column of A has
only finitely many non-zero elements, then all but finitely many columns of A are
LC, and all columns except possibly the initial column, are ELC (Theorem 3.2).
In Theorem 3.3 we give a sufficient condition, in terms of polynomial bounds, for
A to have an ELC column.
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Lemma 3.1. Let A = {a(n,k)} be a BR-set with initial sequence {ci}, and
define the quantities M (n, k), X;j(n, k), Bi;j(n, k), Asj(n, k) by:
M(nk) = a(n, k)2 — a(n+ 1,k)a(n—1,k) 1)
M(nk) =Y Xj(n ke (5,j=0,..,n+1) @
andfor0 <i,j<n+landk>1,
_ _ (n+k—i=2)(n+k—j—2)!
Bi(mk) = e Ik —Ditn—1+ Di(n—j + D! ®
Aij(nk) = (k= 1D{2n+2 —i—j—(i—j)?} @
+ {27 + 201 —i— ) +42 + ;2 —i—j}.
Then (@) Xum(m, k) = Xn-1,m1 (n, k) = 1 forall k;
@) Xij(n, k) = 0 unless (4,7) = (n,n) or (n—1,n+1);
1 ifj=n0<i<n,
@©) X;j(n,1) = { -1 ifj=n+1,0<i<n-1,
0 otherwise;

2 ifj=n0<i<n-1,

—-2(n—1) ifj=n+1,0<i<n~-1,
@Xij(n2) =41 if (4,7) = (n,m),

-1 if(i,7)=(n—1,n+1),

0 otherwise;

@) (1+8;5) X;(m k) = (k — 1) Bij(n, k) Aij(n k) if k >3,
where §;; is the Kronecker delta.

Proof: Substitute the expressions from Formula 1.3 into M (n, k); it has the form
(2). The values of X;;(n, k) are easily computed directly for £ = 0,1,2. For
k>3,and0 <1,7 >n+1,

(1+8§) Xij(n k) =2C(n+ k—j— 1, k—=1DC(n+ k—i-1,k—1)
—C(n+k—j,k—1DC(n+k—1—-2,k—-1)
—C(n+k—1,k—1DNC(n+ k—j7—-2,k-1).

Rewriting the binomial coefficients as quotients of factorials and factoring out

Bi;i(n, k), we get

(1+ &;;) Xi5(n, k)
Bij(n, k)

=2(n+k—j—1D(n+tk—t-1(n—i+)(n—j7+1)

—(n+k—j-—D(n+k-N(n—-D(n—-1+1)
—(n+k—i-1D(n+k—-)(n-J)(n—j+1)
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which reduces to (k — 1) A;j(n, k). This proves (e). 1

An obvious sufficient (but not necessary) condition for M(n, k) to be non-
negative, is that all the coefficients X;;(=, k) should be non-negative. We use this
observation to show that if only finitely many of the c; are non-zero, then every

column of A (except possibly the initial column), is ELC, and all but finitely many
columns are LC.

Theorem 3.2. Let A = {a(n, k)} be a BR-set, with initial sequence {c;}, and
suppose that forsome N > 0,cy > 0,and ¢c; =0 forall i > N.

(a) Forevery k > 1, there exists an integer J = J(k) such that the sequence
{a(n,k) | n=J,J+1,...} isLC.

(b) There exists an integer K such that for all k > K, the sequence {a(n, k) |
n=0,1,2,...}isLC.

Proof: In the expression (2) for M(n, k) we need only consider terms with 0 <
i,j < N. From Lemma 3.1 (c) and (d), it suffices to take J(1) = J(2) = N.
Now suppose that k£ > 3, and n is fixed. Since (k — 1) B;;(n, k) is positive, we
need only consider the factor A;j(n, k). Puttingr=n—4i+lands=n—j+1,

we have a simpler expression for A;;(n, k)

Aj(n k) =(k—D{r+s—(r-9*}+r? +s* —r—s.

Since r and s are integers, 7 + s> — r — s is non-negative. If r + s > (r — 3)2,
then A;;(n, k) is non-negative.

Sincer —s = j —i,and 0 < 1,7 < N, then we have (r — 5)2 < N2, and
i+ 7 > 2 N. Then, solving the inequality

r+s=2n—(i+/)+2>2n-2N+2

it follows that 7 + 3 > N2 > (r — s)? provided thatn > {(N + 1)2 = 3}/2=
J(k). For this value J(k), M(n, k) is a sum of non-negative terms, and this
proves (a).

Now put J = max(N, {(N + 1)2 —3}/2). Then for all k > 1, the sequence
{a(n,k) | n= J,J +1,...} is LC. By Corollary 2.6, each of the first J rows
is ELC, and so there exists an integer L such that if 0 < n < J, the sequence
{a(n,k) | k = L,L + 1,...} is LC. Then, by Theorem 2.2(a), and part (a)
above, the column {a(n,L) | » = 0,1,2,...} is LC. Then (b) follows from
Theorem 2.4. |

The next result shows that suitable polynomial bounds for one column imply
that the adjacent column on the right is ELC.

Theorem 3.3. Let A = {a(n,k)} be a BR-set, and for some fixed k, put
z; = a(i, k) and y; = a(i,k + 1)(i = 0,1,...). Suppose there exist poly-
nomials P(xz) and Q(zx) of the same degree d, with respective positive leading
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coefficients p and g, such that for all but finitely many i we have

P@G) <z -z <QG) (i>0). *
If (d+ 2)p* > (d+ 1)¢?, then the column {y;} is ELC.
Proof: From (x), it follows that forall n > 0,

n
Za > 20+ 3 P(j)
j=1

TaTo + 3, Q(J)

j=1
that is, z, — zo is an upper sum for fo P(z), and is a lower sum for [ ml Q(z).

From the recurrence, Tprl — Ty = a(n+ 1,k — 1), and then by Theorem 2.3
(a), we have(yn) —Yn-1Yn+1 = (2,,) — Yn-1(Zne1 — Zn). From (%),

n 2
(z4)? Z{zo+/ P(z)} ,

and the high-order term (in the variable ) on the right is
P22
(d+ 1)2°
The term y,,_; (Zne1 — zn) is more complicated. Put Q () =[5 Q(z); then

fori > 1,z; < 20 + Q*(%). Since Yn-1 = To + T4+ zn.n , then we also
have

o < 720+ 53 Q°() < o + [(@.

=1
and then

Yn-1(Znr1 —2m) < Q(n+ 1) {n'so + fon Q‘(z)} .

After integrating, the high-order term on the right is

27‘24+2

(d+1)

The quantity (£,)2 — y,_1(Za1 — T,) €xceeds the difference of these two

estimates, and for sufficiently large n, this difference will depend entirely on the
high-order terms; it will be positive eventually, provided

d+2 2712d+2

g
@+ A< g

Simplifying this inequality gives the statement of the theorem. |
The next results have a similar flavor, and are useful in many special cases.

—(d+2).
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Theorem 3.4. Let P(z) = ¥ a;z and Q(z) = Y b;z* be two polynomials with
positive leading coefficients, and degrees > 3. Suppose that for all but finitely
many positive integers m,

P(m) <Q(w) and P(m? 2 Q(n+1Q(n-1). **
Then P(z) and Q(x) have the same degree d, and
ag=bd4, @641=0b4-1, and dby > 2(bs2 —ad—2).

Conversely, if P(z) and Q(z) satisfy these conditions on the degree and co-
efficients, then (**) is true for all but finitely many integers n.

Proof: Multiply out P(z)? and Q(z + 1) Q(z — 1) and compare coefficients. il

Theorem 3.5. Let P(x) and Q(z) be polynomials with positive leading coef-
ficients, and {x;} a positive sequence. If for all but finitely many n,

P(m) <z, <Q(m and P(n)?®>Q(n+1NQ(n-1),
then the sequence {z;} is ELC.
Proof: For sufficiently large n, we have

P(ﬂ) Iy Q(n)
Q=) Sz: S Pa-D)
P(n+ 1) Tosl Q(n+1)

am Sz ST P
QarD) __P()

P(n) =~ Q-1
Then (for sufficiently large n) T+ 1 /Ty < Tn/Tne1,and {z,} is ELC. ]

Corollary 3.6. If P(z) is a polynomial with positive leading coefficient, then
there is an integer N > O such that the sequence {P(n) | n=N,N+1,...} is
LC.

Proof: If P(x) has degree d > 3, this follows from Theorem 3.5, with Q(z) =
P(z).If d < 3, the statement is easily checked directly. |
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