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Abstract. We definc an extremal graph on v vertices 1o be a graph that has the max-
imum number of edges on v venices, and that contains ncither 3-cycles nor 4-cycles.
We establish that every vertex of degree at least 3, in an extremal graph of at least 7
vertices is in a S-cycle; we cnumerate all of the extremal graphs on 21 or fewer vertices;
and we determine the size of extremal graphs of orders 25, 26, and 27.

1. Introduction

In 1975, P. Erd6s mentioned the problem of determining the values of f(v), the

maximum number of edges in a graph of order v and girth at least 5 ([3]). We
will begin with some basic definitions, and then describe what is known about
this problem.

For simple graph G with vertex set V(G) and edge set E(G), |[V(G)| = vis
the order of G, and |E(G)| = e is the size of G. For any z in V(G), d(z) is the
degree of vertex = and di(G) is the number of vertices of degree £ in G. §(G)
and A (G) are the minimum and maximum degrees respectively of vertices in G.
N (z) (the neighborhood of z) is the set of verlices in V(@) that are adjacent to
z;if § C V(G), then N(S) = U;esN(z). We denote the induced subgraph on
S C V(G) by (S). 9(G), the girth of graph G, is the number of vertices in the
shortest cycle in G. C, is the cycle on n vertices, which we call an n-cycle. P,
is the path on = vertices. For sets S and T', we use S/T to denole the elements in
S that are not in T'. As we use the above notations in the paper, we will leave out
the argument G when doing so does not lead to ambiguities.

We define f(v) to be the maximum number of edges in a graph of order v and
girth at least 5. Note that any graph with girth at least 5 does not have a triangle or
quadrilateral (C; or Cy). We say that a graph of girth at least 5 is {Cs, Ca }-free.
A {C3,C4}-free graph G is extremal if e = f(v). G, is the sct of all extremal
graphs of order v, and F(v) = |G,|.

The authors of [4] provided the following bounds on f(v):

Theorem 1.1. f(v), the size of any extremal graph with order v, has the follow-
ing bound:
flv) 1
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As well, they determined the following values of f(v) and F(v):
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Theorem 1.2.

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f(v) 0 1 2 3 5 6 8 10 12 15 16 18 21 23 26
F(v) 1 112121 1 1 1

v 16 17 18 19 20 21 22 23 24 50
f(v) 28 31 34 38 41 44 47 50 54 175
F(v) 1 1 1

The values of f(50) and F(50) are derived from the existence of the Moore grap,
on 50 vertices (known as the Hoffman-Singlcton graph [6]), the unique extrema,
graph of order 50.

In Section 2, we provide some results pertaining o the connectivity and girth
of extremal graphs, and in Section 3 we enumerate all extremal graphs for the
orders up to 21. Scction 3 also describes a graph invariant that is easy and fast
lo compute, and, for extremal graphs, appears to be highly effective; we have
yet to find non-isomorphic extremal graphs that are indistinguishable under the
invariant. In Section 4 we dctermine the values of f(v) for 25 < v < 27. The
concluding section provides some questions for further research.

2. Results on the structure of extremal graphs

We present some theorctical results concerning the structure of extremal graphs,
First we cite the following result from [4]:

Proposition 2.1. For all extremal graphs G :

1. The diameter of G is at most 3, and therefore G is connecled.
2. If z € V(QG) has degree 1, then G — x has diameter at most 2.

The authors of [4] also determined that for any {C;, C, }-free graph G with
v>1,6 >e— f(v—1). We generalize this result to a lower bound on the
number of edges that can be incident on any set of k vertices in a {Cs, Cs }-free
graph.

Proposition 2.2. For any k vertices z1,z32,...,z¢ in {Cs,Cs}-frec G with
v>1,

k
Zd(:z:;) — |E({zy,%2,...,3))| > e — f(v—k).
i=1
Proof: Let N be the induced subgraph on the k vertices zy,2,,..., zx. Since
summing the degrees of the & vertices will include each edge that extends from
H 1o G — H, and will include twice cach of the edges in E(H), then ¢ =
E:;l d(z;) — |E( )| is thc number of edges in G that are incident on vertices
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in V(H). If we assume that e’ < e — f(v — k), then the {C3, C, }-free graph
G — H will have v — k vertices, but more than f(v — k) edges. Since this is a
contradiction, then e’ > e — f(v — k). |

The result from (4] is a special case of Proposition 2.2 where £ = 1, and
d(z,) = 8. We will use Proposition 2.2 in two ways: to determinc the lower bound
on §, and to show the non-existence of certain subgraphs in extremal graphs. We
will also make use of the fact that the average degree in a graph is greater than or
equal to the minimum degree, and less than or equal to the maximum degree. We
state this in the following proposition.

Proposition 2.3. Forall graphs G, 8§ < 2efv < A,

The authors of [4] noted the presence of (m, n) -stars in extremal graphs, where
the (m, n)-star Sy, » is a tree where the root has degree m, and each of the m
neighbors of the root have n additional independent neighbors. If 7 is the root
vertex of an (m, n) -star, S, then a branch i of S consists of a parent, labeled b;,
in N(r), and the n children in N(b;) — r. The pendent vertices in S are also
called leaves. We will label the lcaves of Sy a8 by, 1 <i<m,1 < j<n
where such alabel denotes leaf ; in branch 7. Sometimes we will augment a branch
by adding leaves to it. Thus we can refer to an (m, n) -star which has a k-branch
containing k > nvertices. We will refer to a leaf of degree k as a k-leaf. Figure 1a
shows Sy 2, where the fourth branch has been augmented with a leaf. Thus it has
three 3-branches, and onc 4-branch. Figure 1b shows the same star with a typical
labeling of the Icaves; to reduce clutter in depictions of complex graphs, often we
will leave out the root and its neighbors.

a) b) @@ @@

o

Figure 1: An augmented (4,2)-star and a labeling of the leaves

The authors of [4] noted the following facts and proposition with respect to
(m, n)-stars in extremal graphs.
1. [V(Sms)| =1+ m+ mnand |E(Sma)| = m+ mn
2. Every {Cs, C4 }-free graph G with at least 5 vertices contains Sa 1.
3. Forany nonadjacent vertices ¢ and u in Sy, 5 that are not both Icaves, Sp,  +
tu contains a Cs or Cy.
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4. In any {Cs, Cys }-free graph G containing an (m, n)-star S, no vertex in
G — § can be adjacent to two siblings in S. In other words, every set of
siblings has a unique common ncighbor, namely, their parent.

The following proposition is derived from the number of vertices in § which must
be contained in every {Cs , C4 }-free graph with minimum degree § and maximum
degrec A.

Proposition 2.4. Forall {Cs, Cy}-frce graphs G,v > 1+ A8 > 1+ §2.

A special case of this proposition is when 8 = A; that is, the graph is r-regular.
In this case v > 72 + 1, which provides a lower bound on the order of a (r,5)-
cage, an r-regular graph with girth 5 and of minimal order (sce [1), [8]). Cages
will play a role in our proof of the theorem in Section 3. General results on cages
are surveyed in [9].

If G is an extremal graph, then the definition provides that g(G) > 5; we
will prove that, if v > 7, then g(G) = 5. First, we will prove a stronger result
concerning the order of the smallest cycle containing any vertex in V(G). To
do so, we derive some basic facts about the existence and lengths of cycles in
extremal graphs.

Lemma 2.5. For all extremal graphs G with v > 5, if z € V(G) and d(z) >
2, then x isinacycle in G.

Proof: By inspection of Gs, this is true for v = 5. For v > 5, we first establish
that for every vertex x in any cxtremal graph G, if d(z) > 2, then N ( z) contains
at least two vertices of degree at least 2. Assume that z has at most one neighbor
of degree at least 2. Let s be a degree 1 vertex in N(z),and let H = G — s; since
clearly f(v) > f(v—1), H is extremal. Further, by Proposition 2.1, the diameter
of H is at most 2. Note that H contains a degree 1 vertex, t; if d(z) in G is 2, then
lett = z otherwisc let ¢ be a degree one vertex in N(z) — s. Since no verlex in
H is further than distance 2 from pendent vertex ¢, and H is {Cs, C4 }-free then
H is a ree with two levels, rooted at the neighbor of ¢. Thus, |[E(H)| < [V (H)).
But since any cycle of at least five vertices is |{Cs, C4 }-free, and has equal order
and size, then H is not extremal. By contradiction, z has at least two neighbors
of degree at least 2.

We have established that for every z € V(G), d(z) > 2, thercexists y, z €
N(=z) such that d(y) > 2 and d(z) > 2. Thus, N(y) — z and N(z2) — z are
both non-empty and, since g(GQ) > 5 disjoint. If z is not in a cycle in G, then
¥ € N(y) — z is distance 4 from 2/ € N(z) — z in G. This contradicts our
assumption that G is extremal. Thus, for all z in extremal graphs G withv > 5,
z isin a cycle. [ |

Lemma 2.6. For all extremal graphs G, with v > 5, if z € V(G) and d(z) >
2, then x is in a cycle of length less than 8.
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Proof: For 5 < v < 7, this follows directly from Lemma 2.5. Now let G be
an extremal graph on at least 8 vertices, and let C = (zy,z2,...,%¢,Z1) be a
smallest cycle containing « = z;. If we assume that £ > 7, then x; is distance 4
from zs in C. Further, z; is distance 4 from zs in G; otherwise we contradict our
assumption that C is a smallest cyclc containing ;. By Proposition 2.1, the exis-
tence of a distance 4 pair of vertices contradicts our assumption that G is extremal;
the smallest cycle containing z; must have length less than 8. |

Theorem 2.7. For all extremal graphs G, where v > 5, and forall z € V(G):

1. Ifd(x) =2, then G has a 5 -cycle or 6 -cycle that contains z;
2. Ifd(z) > 3, then G has a 5 -cycle that contains z.

Proof: For v < 8, this is true by inspection of Gs,Gs, and G7. Now we assume
thatv > 8.

a)

Figure 2: Subgraph containing z where d(z) = 2

1. Ifd(z) = 2,thenzisinaS-cycleor6-cycle. By Lemma 2.6, z is in acycle
of length 5, 6, or 7. We assume that z is not in a 5-cycle or 6 -cycle. This
implies that G contains the subgraph pictured in Figure 2a which depicts
a smallest cycle containing x. Further, G cannot contain additional edges
incident only on vertices in the subgraph, for such edges would complete
a triangle, or a quatrilateral. We define G’ such that V(G') = V(G) and
E(G") = E(® U {(n1,v2),(z,13)}/{(z,¥2)}. Thus, G’ is the result
of replacing in G the subgraph in Figurc 2a with the subgraph in Figure 2b.
Note that G’ does not contain Cs or Cy since the presence of such subgraphs
would imply that z was in a 5-cycle or a 6-cycle in G. Since |V(G")| =
[V(G)| + 1, then G is not extremal, thus contradicting our assumption.
Therefore, for all  in extremal graph G on at least S vertices, where d(z) =
2, G contains a 5-cycle or 6 -cycle that includes z.

2. If d(z) > 3, then z is in a S-cycle. By Lemma 2.6, z is in a cycle of
length 5, 6, or 7. Let us assume that z is not in a 5-cycle. This implies that
G contains the subgraph in Figure 3a which depicts some smallest cycle
containing z; the cycle has length 6 or 7. Further, G cannot contain addi-
tional cdges incident only on vertices in the subgraph, for any such edge
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would complete either a 5-cycle involving z, a triangle, or a quadrilateral.
We define G’ such that V(G') = V(G) and E(G") = E(G) U{(w1,¥2),
(y1,93), (z,94) }/{(z,91),(z,y3) }. Thus, we form G’ by replacing the
subgraph in Figure 3a with the subgraph in Figure 3b; the dashed lines
indicate new edges. Note that G' does not contain Cs or Cs, since the
presence of such a cycle would imply that z was in a 5-cycle in G. Since
[V(G")| = |[V(G)| + 1, then G is not extremal, thus contradicting our as-
sumption. Therefore, for all z in extremal graph G on at least 5 vertices,
where d(z) > 3, G contains a 5-cycle that includes z. [ |

(")

2)

Figure 3: Subgraph containing z where d(z) > 3

In the extremal graphs we have constructed, almost every vertex of degree 2 is
in a 5-cycle; an exception is the degree 2 vertex in Gyy,. It is interesting to note
thatinall of the {C3, C4 }-free graphs generated by [4] for their constructive lower
bounds on f(v), every vertex of degree at least 3 is in a 5-cycle.

It is now quite straightforward to show that the girth of an extremal graph is 5.

Corollary 2.8. For all extremal graphs G with v > 7,9(G) = 5.

Proof: For v > 7, itis trivial to construct a {Cs, Cs }-free graph with v vertices
and v+ 1 edges, thus showing that f(v) > v. Intum, this implies that all extremal
graphs with at Ieast 7 vertices have average degree greater than 2, and thus have
at least one vertex z of degree at least 3. By Thecorem 2.7, zisina5-cycle. 11

3. Enumeration of extremal graphs

All of the extremal graphs, for v < 10, were enumecrated in [4). They are shown
in Figure 4. We enumecrate all of the extremal graphs for 11 < » < 21.

Theorem 3.1. For 11 < v < 21, F(v) has the values in the following table:

v | 1 12 13 14 15 16 17 18 19 20 2I
F(vw [ 3 7 1 4 1 22 14 15 1 1 3
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Proof: Generally we construct the clements of G, using two techniques. The first
is to prove that if G € G, has a particular degree sequence, then it must contain
S = Sy, for some m and n. Then we determine the edges amongst the leaves of
S and, if [V(8S)| < [V(G)), the vertices in G that are external to S.

(o] o—0 o0—0—0 0~-0—0—0 Q @
G4b GS GG:I

Gl 62 03 G4a

xR i

Figure 4: All extremal graphs forv < 10

The second technique involves building some elements of G, from clcments
of G,—1. To show how this is done, we first define the notion of a cold set. For
extremal graph G of order v, T C V(G) is cold iff |T| = f(v+ 1) — f(v), and
foralldistinctz,y € T, (z,y) ¢ E(G) and N(z) NN (y) = 0. By extension, an
extremal graph G is cold if it contains a cold set; if G is not cold, then it is hot. Note
thatif G € G, with cold set T', then all G, such that V(G") = V(G) + uy+1 and
E(G") = BE(G)U{(t,uys1 |t € T},areinGy+1. Thus, by finding all such graphs
G', we cover the set of all graphs in G+ with minimum degree f(v+ 1} — f(v).
This technique is similar to one used by Clapham, Flockhart, and Shechan in [2].

We now provide a case by case proof of Theorem 3.1 based on the values of v.

F(11)=3
Since f(11) = 16, thenforallG € Gi;,1 < 6§ € 2 and A > 3 by Propo-
sitions 2.2 and 2.3. Letus assumc that A > 5. If z € V(@) and d(z) = 1,
then G — x € Gio. But that is not possible since A (G — z) > 4, and the unique
graph in Gy is 3-regular. Thus, if A > 5, then G contains no pendent vertices;
therefore, G contains S & Ss ;. Since [V(S)| = 11 and | E(S)| = 10, then the
induced subgraph in G on the 5 leaves of S contains 6 edges. But since f(5) < 6,
our assumption that A > § is false.

Since any graph with 11 vertices and (§,A) = (1,3) has at most 15 edges, and
15 < f(11), we conclude that (6,A) € {(1,4),(2,3),(2,4)}. We consider
each of these degree ranges in turn.

Case: (6,A) =(1,4)
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If z € V(G) such that d(z) = 1, then G — z is a cold graph in Gyo. Since the
Petersen graph is the unique graph in Gjo, and the vertices in the Petersen graph
are indistinguishable, then Gy, in Figure 5 is the only member of Gy; for which
§=1.

11a G1 1b

Figure 5: The extremal graphs of order 11

Case: (6,A) =(2,3)
We next determine tbe number of vertices of each degree. In general we do
this by solving the following simultaneous equations for d;, 6 < ¢+ < A where

di=|{z:z€V(G),d(z) =i}|

Yidi=2e Y di=v 3.1}

Sincev=11,e=16,8§ = 2,and A = 3,thend; = 1 andd; = 10. Letz
be the degree 2 vertex. Since |[N(z) U N(N(zx))| = 7, G contains a degree 3
vertex, r that is distance 3 from z. Thus, r is the root of S & S3 3 in G, and since
|[V(S)| = 10, the degree 2 vertex, z is the sole vertex external to star S. Further
N (z) contains only leaves of the star. As we described earlier, we label the leaves
of S b;j,1 < 1,7 < 3 where b;; is leaf j in branch 1.

Since d(x) = 2, the leaves of one branch, say b;, arc not adjacent to z. There
fore, by 1 and b; 2 are each adjacent to 2 other leaves. Since they cannot have ¢
common neighbor, and no leaf is adjacent to more than one leaf in another branch
we may assume that by 1, b3 € N(b1,1) and bz 2, b32 € N(b12). Since z i
adjacent to one leaf in cach of branches b, and b3, and the neighbors of z canno
be distance 2 apart, N(z) = {b2,1,b32}. The only possible remaining edge i
(b22,b3,1). The resulting graph, G115, is shown in Figure 5 where r and N(r)
have been left out for clarity.

Case: (6,A) =(2,4)

If G contains edge ( z, y) such that d(z) = d(y) = 4, thenif G' = (N(z) L
N(y)),then|V(G")| = 8;since N(z)NN(y) = @,then |E(G")| = 7. Since eacl
of the 3 vertices in V(G) /V(G’) can have at most 2 neighbors in G, and ther
are at most f(3) = 2 edges in (V(G)/V(G")), then |B(G)| < 15 < f(11)
Therefore, G does not contain adjacent vertices of degree 4. Since no 2 vertices ir
an extremal graph have more than 1 common neighbor, any extremal graph witl
at least 3 degree 4 vertices that are mutually non-adjacent must have at least 17
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vertices. Therefore, G has at most 2 degree 4 vertices. By this fact, together with
Equation 3.1, (d,d3,ds) € {(2,8,1),(3,6,2)}.

Since G does not contain adjacent vertices of degree 4, and a (4,7 > 1)-star
with more than two 3-branches has more than 11 vertices, G must contain a degree
4 vertex with two neighbors having degree 2, and two neighbors having degree
3. Thus, G contains star § with two 3-branches and two 2-branches; it is easy
to show that if G contains a star with three 2-branches, one 3-branch, and one
external vertex adjacent only to leaves in the star, then it is not possible to have 16
edges without creating a triangle or quadrilateral. The leaves can be labeled b 1,
b2,1,b03,0,b32,b4,1,ba2.

Since there is at most one 2-1eaf and one 4-1eaf, we may assume that d(b3 1) =
3 and d(bs 2) > 3. Since assuming d(b32) = 4 leads to the presence of Cs or
C, in G, d(b32) = 3. Since leaves in the same branch have a unique common
neighbor (their parent), then N(b3,;1) D {ba,1,b1,1},and N(b32) D {ba2,b2.1}.
Since no remaining lcaf can have degree 4, then by the permissible degree se-
quences d(bl'l) = d(bz.l) = d(b4'1) = d(b4,2) = 3. Therefore, b4_1 € N(bz,l),
and bs € N(b1). This completes Gy which is shown in Figure S without the
root of the star and its ncighbors.

F(12)=7

Since f(12) = 18, thenforall G € Gz, 2 < § < 3 by Propositions 2.2 and
2.3. If there exists z € V(G), d(z) = 2, then N(<z) is a cold sct in a cold graph
in G11. Considering all G built from the cold graphs in Gy, there are five cases
based on the degree sequence of G, and on the connectivity amongst the degree
2 and degree 4 vertices in G. We will show that there is a unique graph for ecach
case. The notation (d(p1),d(p2), ..., d(px)) refers to the degrees of the vertices
ina P, P =(p1,p2,--.,pc) thatexists in G, that is, G contains P = P; where
the k vertices in P have the specificd degrees.

case (d2,d3,da) (d(p1),d(p2),...,d(pk))
a (2,8,2) (4,2,2,4)
b (2,8,2 (4,2,4,2)
c (2,8,2) (2,4,3,4,2),p1 and ps non-adjacent
d (1,10,1)
e (3,6,3)

We will construct the unique graph for each of these cases. Additionally, there are

two graphs for which § = 3.

Casea: (dz,ds,ds) =(2,8,2) and (d(p1),d(p2),d(p3),d(ps)) = (4,2,2,4)
Since the two degree 2 vertices are adjacent, then if z € V(G), d(z) = 2

then (G — z) = 1, which implics that G — £ ¥ G);,. Thus N(z) is a cold

set in Gh4. All of the cold sets in Gy, are indistinguishable; cach consists of the
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G G
12 12f 12g
Figure 6: The extremal graphs of order 12

pendent vertex and any vertex that is distance 3 from the pendent vertex. Thus,
there is a single graph for Case a, which is G,, in Figure 6.

Caseb: (dz,d3,ds) =(2,8,2) and(d(p1),d(p2),d(p3),d(ps)) = (4,2,4,2

Let us consider the (4, n)-star S in G that has as its root p) , the degree 4 vertex
that has only one degree 2 neighbor. Thus, in S, d(b)) = 2 and d(b;) = d(b3) =
d(bs) = 3; the star contains all 12 vertices in G. By the existence of the path with
vertices having degrees (4,2,4,2),d(b1,1) = 4, and we may assume that b; ; is
the other degree 2 neighbor of b1 ,1. b1,1 has 2 other leaves in S as neighbors: b3
and b4 1. by 2 cannot be adjacent to 2 vertices in N(b; ), thus we conclude that
b3z € N(b22). Since bs > has a ncighbor that is a leaf in branch 2, and b, , is
full, we conclude that b2 € N(bs2). The lastiwo edges must be (b3 1, bs 2) and
(b3 2,b4,1). The graph is G2, in Figure 6; the root of the star and its neighbors
have been omitted.

Case c: (dz,d3,da) = (2,8,2) and (d(m),d(p2),d(ps),d(ps),d(ps)) =
(2,4,3,4,2)

Let us consider the star S in G that is rooted at p, , one of the degree 4 vertices.
Thus, in S, d(b,) = 2 and d(by) = d(b3) = d(bs) = 3; the star contains all 12
vertices in G. By the existence of P in G, d(b1,1) = 3, d(b2,1) = 4, and since
bz,1 must have a degree 2 neighbor, we may assume that it is b3 ;. The remaining
leaves in S all have degree 3. Thus, the three leaves in N(bz 1) are by 1,b3,,
and b4 ;. Since no leaf can be adjacent to two siblings, N(b; 2 ) contains b3 2 and
b4 2. The remaining neighbor of bs 1 can only be b3 ,, and the last neighbor of
b4 o must be b; 1. The connections amongst the leaves in the star are shown as
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G2 in Figure 6.
Case d: (dZvd3sd4) = (];10) 1)

If z € V(G), d(z) = 4, then N(z) includes at lcast three degree 3 vertices,
and, by Proposition 2.4, cannot have four degree 3 neighbors. Therefore, G con-
tains Sy 1, where branches 2, 3, and 4 are augmented with a sccond leaf; since
dy = 1,and d(b;) = 2, all of the leaves have degree 3. Since by is adjacent to
2 leaves in the star, we may assume that b, ; has no neighbor in branch 2. Thus,
N(b21) 2 {b3sn,bs1} and N(b22) D {b32,bs2}. Since the two leaves in
N(b;,1) cannot already be distance 2 apart, then N(b 1) D {b3,1,b42}. There-
maining edge must be (b3 2, bs,1). The leaves of the star in this graph are shown
as G124 in Figure 6.

Case e: (d21d3)d4) = (3;6»3)

The only case where this graph occurs is when a twelfth vertex, z is added to
G and connected to vertices by 1 and by 3 in Gyi.. This graph (excluding the
vertices inside the star) is shown as G\2., in Figure 6.

Case: 6§=3

We now consider the case where § = 3. By Proposition 2.4, A < 4; therefore
G is 3-regular. Thus, G contains $ & S35, as well zy, 23 € V(G)/V(S). Since
|E(S)| = 9, then the induced subgraph on L = {leaves of S} U {z1,z2} has 8
vertices and 9 edges. It is easy to construct the three {Cs, Cs }-free graphs with
v = 8 and e = 9 which we call 4, B, and C; these are shown in Figure 7. By
mapping these 3 graphs onto L in every way such that the two degree 3 vertices
map onto z; and z3, and such that G will not contain C3 or Cs, we generate the
sct of graphs in Gy, for which § = 3. Graph A can be mapped onto L in two
ways (shown as G125 and G\, in Figure 6). B maps onto L as shown in H; in
Figure 8, and C maps onto L as shown in H> in the same figure.

A B C

Figure 7: The 3 {Cs, Cs }-free graphs with 8 vertices and 9 edges

We use the following algorithm to determine that G5 s is isomorphic to Hj,
and G124 is isomorphic to /2. We also use this algorithm throughout the paper to
determine the isomorphism (or non-isomorphism) of extremal graphs of a given
order. We have included the actual vertex mappings in [5].

Algorithm ISO
input: Graphs G and &'
1. Partition V(G) intoclasses, Q(G) = {g0(G),q1(G), ..., q(3) (G) }, where
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Figure 8:
Mappings of A, B, and C onto the leaves of S and the external vertices 1 and 2

z € V(G) isingi(G) ifandonly if |{C : z € C C V(G),(C) ¥ Cs}| =
1. That s, z is in equivalence class ¢;(&) if and only if z is in 4 5-cycles in
G. Similarly create Q(G").

2. If there exists an 1 such that |¢;(G)| # |¢:(G')| then the graphs are not
isomorphic.

3. Ifforalls,|g;(G)| = |g;(G")| then show isomorphism (or non-isomorphism)
by attempting to map V(G) onto V(G'). Only attempt to map z € V(G)
ontoy € V(G') ifz € ¢;(G) and y € ¢:(G").

It is interesting to note that we do not get a fincr partition by considering as well
the degrees of the vertice. That is, for each graph that we have looked at in this
manner, if two vertices are in the same class, then they have the same degree. As
well, we have not yet found a pair of non-isomorphic extremal graphs G and G’
that were indistinguishable under the invariant based on the classes Q.

We can now determine the exact number of non-isomorphic extremal graphs of
order 12 with § = 3. Since ¢3(Gh24) = 3 and ¢3(G12y) = 8, G2y and G4 are
non-isomorphic. The vertex mappings in [5] show that /; is isomorphic to Gz,
and H> is isomorphic to Gh24. Therefore, there are 2 non-isomorphic graphs in
Gi2 where 6 = 3. Thus, F(12) = 7, and all the elements of Gj» are shown in
Figure 6.

F(13)=1

Since f(13) = 21, then for all G € Gi3, § = 3 by Propositions 2.2 and 2.3; it
follows from Propositions 2.3 and 2.4 that A = 4. Therefore, G contains S = Sy 5
which includes all 13 vertices in G; by Equation 3.1, d; = 10 and dy = 3.
Therefore, two leaves in S have degree 4, and the rest of the leaves have degree
3.

We may assume that d(b;;1) = 4 and N(b11) D {b21,b31,b4,1}. Since
d(bi2) > 3,then N(by2) D {b22,b32}. N(bs,) contains either by 2 or b3 2;
we may assume that b3 2 € N(bs,1). The only leaves in S that could be the third
degree 4 vertex are by 2,b22 or by ). Ifd(b23) = 4 ord(b3,) = 4,then by s is



adjacent to b3 1; but in this case, N (b4 2) includes by ; and b3 1, which completes
aC,. Thus,d(b2) = 4,and by € N(b;2). The only possibilitics for the re-
maining two edges are (by 1,b4 2) and (b2 2, 3,1). Thus, there is a unique graph
in G13; the connections amongst the leaves of the embedded (4, 2) -star are shown
as G3 in Figure 9.

013

. Figure 9:
The induced subgraph on the leaves of S4 2 embedded in the unique graph in Gy3

F(14) =4

Since f(14) = 23, thenforall G € Gia, 2 < § < 3 by Propositions 2.2 and
2.3. We will first consider the case where § = 2. Subscquently we will consider
several cases where § = 3.

Since f(14) = f(13) + 2, we cover the setof all G € G4, where 6(G) = 2,
using the pairs comprising the cold sets in G3. With respect to the symmetry of
G5 (as shown in Figure 9), the sct of cold pairs is T = {(bz,b32), (b2,b4,1),
(b3,b2.1), (b21,b32), (b22,ba1)}. Let Hy, 1 < 4 < 5 be the five graphs re-
sulting from attaching a vertex x; to the respective pair of vertices in T°; thus,
V(H;) = V(Gi3) + z; and, for example, E(H,) = E(Gi3) U {(z1,b2),
(z1,b32)}. We used algorithm ISO to determine that these five graphs are iso-
morphic to each other. As usual, the actual mappings are contained in [5]. We
show the unique graph in Gj4 with § = 2 as G4, in Figure 10; we use the vertex
labeling from Hs for the vertices in Gha,-

We now consider the cases where § = 3. If § = 3, then by Propositions 2.3 and
24,A = 4; by Equation 3.1, dy = 4. We consider indcpentently the cases based
on the number of edges in the induced subgraph on the four degree 4 vertices.
If E(G) contains (z,y) and (z, z), where z, y, and z are distinct and d(z) =
d(y) = d(z) = 4, then z is the root of an augmented (4, 2)-star with more
than 14 vertices. Thercfore, we only need consider the cascs where G conlains
no adjacent degree 4 vertices, onc pair of adjacent degree 4 vertices, and two
independent pairs of adjacent degree 4 vertices.
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Figure 10: The cxtremal graphs of order 14

Case: 8§ = 3 and @G contains no adjacent degree 4 vertices.

In this case, G contains § = S4 3, and a vertex z; that is external to S. We firs
show thatd(z;) = 3.

Let us assume that d(z;) = 4. Since x| cannot have two neighbors in a single
branch of S, N(z;) = {b1,,b2,1,b3,1,bs 1} and by our assumption for this casc
each neighbor of z; has degree 3. Therefore, we may assume that the two remain.
ing degree 4 vertices are by 2, and by 2. Since b; 2 must be adjacent to a leaf ir
each of branches 2, 3, and 4, then N (b, 2) contains {bz1,b32,bs2}. Similarly
b, 2 must be adjacent to a leaf in each of branches 1, 3, and 4. N(by2) mus|
contain by ; and b3 o; however, if by 5 is adjacent to either leaf in branch 4, ther
G will contain Cy. Therefore, d(z;) = 3.

Next we establish that of the three degree 4 vertices that are leaves in S, eact
is in a distinct branch of S. Let us assume that there is a pair of degree 4 siblings
bi,1 and by 2. Since |[N(b1,1) — bi| + |[N(b12) — b1| = 6, and one of the 6 lcaves
not in branch 1 has degree 4, then at least one of the Icaves in branch 1 is adjacen
to z;. Since both leaves in a branch cannot have a common neighbor other thar
their parent, then {by1,b3,1,Zz1} C N(byy1) and {b22,b32,b41} C N(b12)
Since G contains no adjacent degree 4 vertices, bs 2 must be the remaining degree
4 vertex; however, it is not possible to complete the neighborhood of bs 2 withoul
creating a Cs or Cs. Therefore, there does not exist a pair of degree 4 siblings ir
the star embedded in G.

Since the induced subgraph H on the leaves of S and x; has four verlices o
degree 3, and 5 vertices of degree 2, then there must be at Icast one adjacent pair of
degree 3 vertices in H'; this implies that, in G, x; is adjacent to at lcast one of the
degree 4 vertices that is a leaf of §. We now consider as scparate cases whether z;
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is adjacent to one, two, or three degree 4 vertices amongst the leaves of S. In all
three cases, we assume that the degree 4 vertices that are leaves in S are by 1, bz 1
and b3.1 .

1. =z, is adjacent to b, 1, but no other degree 4 vertex in G,
We may conclude that {b; 2,b32,b4,1} C N(bs1). Therefore, N(b3 1)
contains by 2, b2 2 and bs 2. by, must be adjacent to at Icast one degree 3
sibling of a degree 4 leaf; without loss of generality we may choose b; ;.
Thus, N(z,) = {61’1, bsz, b4'2}. The final edge must be (b1,1,b4,1). This
graph, G143, is shown in Figure 10.

2. =z isadjacentto by and by, but not by ;.
Since b3 ; must be adjacent to a degree 3 vertex in each of branches 1, 2,
and 4, we may conclude that {b,2,b2,bs,1} C N(b3,). Since one of
the elements of U = {b32,bsa2} is in N(b ), and the other clement in
U isin N(b2,1), and vertices by, and by, are indistinguishable with re-
spect to the vertices in U, then we may conclude that bs 2 € N(b;,;) and
bsp € N(b2,1). The final element of N(b;,1) can only be b3 2, N(z1)
must contain by,1, and by 5 isin N (b3 ;). The final edge is (b3 2,b4 2). By
Algorithm ISO, this graph is isomorphic t0 G46.

3. N(z1) ={b1,1,b2,,b3:}
Each of the degree 4 leaves must have two neighbors amongst the five de-
gree 3 leaves. By the pigeonhole principle, there must be a degree 3 leaf s
that is adjacent to two degree 4 leaves ¢ and u. Since vertices s, ¢, u, and z;
are the corners of a quatrilateral, our assumption that z, is adjacent only to
degree 4 vertices is false.

Case: § = 3 and G contains one pair of adjacent degree 4 vertices.

In this case G contains S4 2 where branch 1 is augmented with a third leaf. Since
G does not contain a Py of degree 4 vertices, the leaves of branch 1 all have degree
3. Since [N (b1 1) UN (b1 2) UN(by 3) — {b1}| = 6, then all leaves not in branch
1 are adjacent to leaves in branch 1. Thus, N(b1,1) D {b21,b3.1}, N(b12) D
{b22,bs,} and N(by3) D {b32,bs2}. We may assume that b, ; is one of the
two remaining degree 4 vertices, which implies that b3 2,541 € N(b2,1). Since
G contains only onc pair of adjacent degree 4 vertices, the final degree 4 vertex is
in {b22,b3,1,bs 2 }. We consider cach of these cases in turn:

1. d(by2) = 4: Thus, b3 1,bs2 € N(b22) and the non-adjacent degree 4
vertices are distance 2 apart. We designate this graph G4, and the induced
subgraph on the leaves of the star is shown in Figure 10.

2. d(b3,)) = 4: Thus, by 2,bs2 € N(b3,;1) and the non-adjacent degree 4
vertices are distance 2 apart. The resulting graph is isomorphic t0 Gi4..

3. d(bsp) = 4: Thus, br2,b3; € N(bsp) and the non-adjacent degree 4
vertices are distance 3 apart. This graph is depicted as G144 in Figure 10.
By the distance between the non-adjacent degree 4 vertices, Gl44q is not
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Figure 11:
The unique clement of G5 and the relabeling of its verlices

isomorphic to G4c.

Case: 6§ = 3 and G contains two independent pairs of adjacent degree 4 vertices.

As in the previous case, G contains Ss 2, where branch 1 is augmented with a
third leaf. Since G does notcontain a P3 of degree 4 vertices, the leaves of branch 1
all have degree 3. Since [N(b1,1) UN(b; 2)UN (b1 3) —{b1}| = 6, thenall lcaves
not in branch 1 are adjacent to leaves in branch 1. Thus, N(by 1) D {b2.1,b3,1},
N(bi2) D {b22,bs 1} and N(b13) D {b32,bs2}. We may assume that b,
is one of the two remaining degree 4 vertices, which implics that b3 2,bs,;1 €
N(bz,1) and d(b32) = 4 ord(bs,;) = 4. Since it is not possible to add an cdge
incident on b3 2 or bs,; without completing a triangle or quadrilateral, this case
does not yicld an element of Gy4.

F(15) =1

Since f(15) = 26, then by Propositions 2.2 and 2.3, forall @ € G5, 6 =
3. Thus, all elements of G5 contain a cold clement of G14. With respect to the
symmetry of the graphs, G4, contains cold set {b3, 2,1, z}, G145 contains cold
set {ba, b22,b32}, and G4, contain cold set {b13,b3,1, ba,1 }. Giaq is hot. Thus,
the following three graphs cover Gis:

H, where V( ”1) = V(GMQ) + x5 and

E(H)) = E(Gu4a) U{(z2,b3),(z2,b2.1),(z2,71) }
Hy where V(H3) = V(Gh4p) + 2 and

E(Hy) = E(Ghas) U{(z2,bs),(z2,b22),(z3,72) }
Hiy where V(H3) = V(GMc) + 1 and

E(H3) = E(Guac) U {(z1,013),(21,031),(z1,ba 1)}

These three graphs are isomorphic (o onc another; thus, there is a unique extremal
graph of order 15. Figure 11a shows G5, using the labeling from f13.
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F(16) = 22

We derive most of the graphs in Gi¢ by adding vertices and edges to elements
of Gi4 and G;5. To simplify this process, we relabel the vertices in the graphs in
g14 andgls. Wel'elabcl('r,b;,bz,...,bl.l,bl.z,...,52_1,52.2,...,371,3:2,...) a
(u1,u2,us,...). When adding a fifteenth (or sixteenth) vertex to a graph, it will
be labeled u;s (or u16). We leave out the u in tables of vertex sets when its absence
does not create an ambiguity. As an example, Figure 11b shows the relabeling of
the vertices in Figure 11a.

We now derive the elements of Gi6. Since f(16) = 28, then for all G in Gy,
2 < 8 < 3 by Propositions 2.2 and 2.3.

Case: § = 2.

Since f(16) = f(15) + 2, we cover the elements of G with a degree two
vertex by adding a vertex uje to the unique extremal graph on 15 vertices, and
adjoining it, in turn, to each cold sct in G5. We can partition the resulting graphs
into those for which A = 4 and those for which A = 5. With respect to the
symmetry of G5 the cold sets which yield a graph for which A = 4 are {3,15},
{4,7},{4,14}, and {6,14}. By Algorithm ISO, the first thrcc resulting graphs
are non-isomorphic. We label these graphs Gisq, Giss, and Gis. respectively.
The fourth graph is isomorphic to G-

With respect to the symmetry of G5, the cold sets which yicld a graph for which
A =5 are {1,15)}, {3,8}, {4,13}, and {9,14}. We label these four graphs
G164, H1,G16. and H, respectively. Since G164 contains four cold sets, and Gis.
contains two cold sets, Gis4 and Giee, are non-isomorphic. A, is isomorphic to
G164 and H is isomorphic to Gee.-

Next we consider the graphs G in Gy for which § = 3. First we note that by
Propositions 2.3 and 24,4 < A < 5. We consider separately the cases where
G does not contain adjacent vertices of degree 3, and where G does have such an
adjacent pair.

Case: § = 3 and there are no adjacent degree 3 vertices.

If there exists z € V(G), d(z) = 5, then by Equation 3.1 d3 > 9. Five of
the degree 3 vertices must be in N(z); otherwise the (5, n)-star, S, rooted at z
will have more than 16 vertices. Thus, since § % Ssp [V(S)] = 16, and the
four vertices of degree 3 that are not in N(x) are leaves of S. Thus G contains
adjacent degree 3 vertices; our assumption is contradicted. Thercfore, A = 4 and,
by Equation 3.1, d3 = ds = 8. Next we determine that every degrec 4 vertex in
G has exactly three neighbors of degree 3.

1. If there exists z € V(G), d(x) = 4 and N{z) contains no degree 3 ver-
tices, then z is the root of S4 3 which has more than 16 vertices.

2. Ifthereexists z € V(G), d(z) = 4 and N(z) contains one or two vertices
of degree 3, then since the 3-branches of star S rooted at z have leaves all
of degree 4, by the pigeonhole principle there must be a 4-branch, B, with
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three leaves of degree 3. The leaves of B have six independent neighbors
inL = V(G)/(N(z) UB + z); L is the set of leaves not in B and the
vertices in GG that are external to S. But since there are at most five vertices
of degree 4 in L, at least one of the degree 3 leaves in B must be adjacent
to one of the degree 3 vertices in L, thus contraticting our assumption.

3. If there exists z € V(G), d(z) = 4 and N(z) contains four vertices of
degree 3, then since the 3-branches of star S rooted at £ must each have two
leaves of degree 4 (to avoid a leaf-parent pair of degree 3 vertices), then S
contains nine vertices of degree 4. But this contradicts our calculation that
G contains eight degree 4 vertices.

We conclude thatif § = 3, and G contains no adjacent degree 3 vertices, then each
of the 8 degree 4 vertices is adjacent 1o exactly three vertices of degree 3. Next
we construct the unique graph in G, that meets these constraints.

We first note that the graph, G contains § = Sy 5, where branch 1 is augmented
with a third leaf. G also contains two vertices, z; and z thatareexternal to S. The
leaves in branches 2, 3, and 4 must all have degree 4 (to avoid a pair of adjacent
degree 3 vertices). Since this accounts for all degree 4 vertices, then z), z; and
the leaves in branch 1 must all have degree 3.

We now describe the edges amongst z;, z2, and the lecaves of S. The leaves in
branch 1 have a total of six independent degree 4 neighbors; therefore N(b; 1) D
{b21,b3.1}, N(b12) D {b22,ba,1}, and N(by3) D {b32,bs2}. N(x) con-
tains three 4-leaves that are not siblings, and do not have a common neighbor
amongst the leaves of branch 1; therefore, N(z1) = {b2,1,b32,ba1}. Since
each degree 4 vertex must have exactly three degree 3 neighbors, then N(z;) =
{b2,2,b3,1,bs2}. Finally, there are three remaining edges amongst the degree 4
leaves of S. The only cantidate for N(by,1) is bsa 2. Similarly, b32 € N(b22)
and by ) € N(bs,1). Welabel this graph G¢.

Case: § = 3 and there is a pair of adjacent degree 3 vertices.

In this case, for all G € Gy¢ with (z,y) € E(G) such thatd(z) = d(y) = 3,
it is the case that (V(G)/{z,y}) € Gua. this follows from the observation that
|[BUV(G) /{z,y})| = F(16) — 5 = f(14). Thus, we use an approach similar
to the use of cold sets. We cover the set of graphs in Gig with § = 3 and with
adjacent degree 3 vertices with the set A, where A is the set of all G where, for
H € Gia, and S and T independent distance 3 pairs of vertices in V( H') such
that (s,t) ¢ E(H) wheres € S,t € T, V(G) = V(H) U {uis5,u16} and
E(G) = E(H) U{(u1s,u16) } U {(u15,8)|s € S}U{(u6,t)|t € T}. We then
checked the graphs in A for isomorphism with Algorithm 1SO.

The resulting graphs, G4 through G, are listed in the following table where
each entry specifies the element of G4 from which the graph is constructed, and
the set of two pairs of vertices which correspond to the two neighborhood pairs
ms = N(uis) —uie and mg = N(u16) — u15. We omit from the table all graphs
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which have a degree 2 vertex, as those were covered by a previous case.

graph | subgraph | n;5, ni¢ graph | subgraph s, M6
Gie, Gua | (3,11),(13,14) || Gi6o | Grac (3,8),(4,13)
Gie, Gy | (2,13),(9,11) Giep | Giaa (2,14),(4,8)
Gis; Gue | (3,8),(11,13) Gisg | Ghras (2,11),(3,13)
G, Giaa | (10,12),(11,13) || Gier | Graa (2,14),(8,11)
Gie, Guy |(2,11),(5,9 Gies | Grae (2,14),(3,11)
G, Gus  [(3,13),(4,12) Giet | G (3,13),(4,6)
Gis, Gise [ (6,14),(7,12) Gi6s | Graa (1,14),(8,11)
Gls, Gus | (2,13),(4,12) Giev | G | (1,14),(10,12)
F(17)=14

f(17) = 31 = f(16) + 3, and for all G € G17, 6 = 3 by Propositions 2.2 and
2.3. Thus, we cover Gy7 with the set of all G where, for H € Gi¢ and cold set
S CV(H),V(G) = V(H) + w7 and E(G) = E(H)U{(u17,5) | s € §}.
Again, we trim the set of resulting graphs with Algorithm 1SO. The table below
lists each element of G,7, the cold graph H € G from which it was constructed,
ant the cold set in H which forms N(u,7).

graph | subgraph | N(u;7) graph | subgraph N(u17)
G11a Gisa | (4,7,16) Gh1a Giss (1,15,16)
G17s Gisa | (4,14,16) |[ Gir: Gish (4,12,15)
Gue | Giss | (3,8,16) Gj [ (5,7,16)
Giia | Gisr |(5,6,16) || Girx | Gisk (3,13,15)
Gire | Gies | (6,14,16) || Giri | Giso (5,6,15)
Gus | Gies [(9,14,16) [ Giim | Giso (5,11,15)
Girg | Giea |(9,14,16) || Gi1n | Gisr | (10,13,15)
F(18)=15

This case is similar to the previous; since f(18) = 34 = f(17) + 3, and for all
G € Gis, § = 3, we construct the elements of G,z from the cold sets in elements

of Gy7. The elements of G5 are listed in the following table.

graph | subgraph | N(u;s) graph | subgraph N(ug)
Gisa | Gira | (5,6,16) Gisi Ghc (5,11,17)
Giss | Gna [(5,6,17) [ Gisj | Gia (9,14,16)
Gisc | Gira [ (5,12,16) || Gusk | Giiy (1,15,17)
Gisa | Gia | (6,14,17) || Gisi Gy | (10,12,16)
Gise | Gira | (9,14,17) | Gism | Guri (3,14,17)
Gisy | Gis [(5,12,16) || Gisn Gi (5,7,16)
Gigg Gire | (5,6,16) Giso Gk (4,12,17)
Guisw | Giie | (5,6,17)

51




F(19)=1

The authors of [4] described the unique graphs in Gi9 and Ga. Their uniqueness

derives from the observation that all G € G are 4-regular; this follows from
Propositions 2.2,2.3, and 2.4. The (4, 5) -cage, which was discovcred by Robert-
son [7], has 19 vertices. Thus, every element of Gyg is a (4, 5)-cage. Since the
Robertson graph is the unique (4, 5)-cage, F(19) = 1. The Robertson graph is
shown as G'j9 in Figure 12,

F(20)=1

For all G € G2, 3 < & < 4 by Propositions 2.2 and 2.3. Since A > 5
by Proposition 2.3, then by Proposition 2.4, § < 4; therefore, § = 3. Since
J(20) = f(19) + 3, G\ is cold, and its unique cold set is the set of three vertices
in it outer ring. Thus, G5 in Figure 12 is the unique element of G .

Figure 12: The unique extremal graphs of orders 19 and 20.

F21)=3

Since f(21) = 44, then for all G € G2, 3 < § < 4 by Propositions 2.2 and 2.3.
We consider the two cases based on the value of 6.

Case: §=3

Since for all z € V(G) where d(z) = 3,1E(G — z)| = f(20),then G — z
is G0, and N(z) contains the vertex in G that is extenal to the Robertson
graph, and two non-adjacent vertices in the innermost ring of four vertices in the
Robertson graph. This graph, G4, is the unique graph in G,; for which § = 3.
Case: 6=4

By Propositions 2.3 and 2.4, A = 5. Thus, by Equation 3.1, ds = 17 and
ds = 4. We note that G does not contain an adjacent pair of degree 5 vertices,
for then G would contain an augmented Ss 3 with more than 21 vertices. We also
note that, by the pigeonhole principle, for all G € G with § = 4 that there is at
least one degree 4 vertex with at lcast two degree 5 neighbors. We now consider
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the cases based on the maximum number of vertices of degree 5 that are adjacent
to any vertex of degree 4.

1. There exists z € V(G), d(z) = 4 such that z has four neighbors of degree
5.
Let z be the root of S % Sy 4; note that [V (S)| = 21. S has four branches,
each with four leaves, and cach leaf in S is adjacent to three other lcaves.
Thus, each leaf in branch 4 is adjacent to one leaf in each of the branches
other than {. Without loss of generality, we may assume that N(b1 1) D
{b2,1,b3,0,0a1}, N(b1,2) D {b22,b32,ba 2}, N(b13) D {b23,b33,bs3},
N(b14) D {b2,4,b3,4,ba4}, and N(b21) D {b32,bs3}. This leads to
the following sequence of deductions: b3 4 € N(baj3), b2 € N(b3a),
bay € N(b22), bsa € N(b32), b33 € N(bsy), b2a € N(bs3),
bs2 € N(b2,4),b3,0 € N(bs2),and N(b23) D {b3,1,bs 4 }. The graph s
G-

2. Thereexists z € V(G), d(z) = 4 such that z has three neighbors of degree
5, and no vertex has more than three degree five ncighbors.
We let z be vertex b in § = Ss 3 rooted at one of the degree 5 vertices in
N(z). Thus, S has lcaves b;;,1 <1< 5,1 <7 <3 whered(b,) =
d(b12) = 5; we may assume that d(b3 3) = 5. All other leaves in S have
degree 4 in G. Since G does not contain adjacent degree 5 vertices, we may
assume without loss of generality that N(b1,1) D {b2,1,b3,1,b4,1,b5:1},
N(bi2) D {b22,b32,ba2,b52},and N(b23) D {b13,b33}. Therefore,
N(b13) D {bsa3,bs3}. Again without loss of generality we may assume
that N(bz 3) D {ba 1, bs2}. This leads to the following sequence of deduc-
tions: b3 € N(bs, 1), bs3 € N(b32),b3,, € N(bs2),b21 € N(bs3),
baz € N(b3,1),b22 € N(baj3),bs2 € N(b2,1),bs1 € N(b22), and
N(b33) D {ba2,bs,}. This graph is Ga..

3. Every degree 4 vertex has at most two degree 5 neighbors.
We first note that G contains S = Ss 3 where the three leaves of degree 5 are
in distinct branches; we assume the degree 5 leaves are by 1, b, 1, and b3 ;.
We also note that since cach degree 5 vertex is the center of an Ss 3 with
three degree 5 lcaves, then the degree 5 vertices in G are mutually distance
2 apart.

We may assume that N(b1,,) D {b22,b32,ba,1,bs5,1} and N(bz21) D
{b12,b42}. Since the degree 5 leaves are mutually distance 2 apart, by, is
adjacent to either b3 5 or bs ;.

First, we assume that b, y, is adjacent to bs 2. Thus, bs  is adjacent to
b2 1, and without loss of generality b4 3 is adjacentto b; 5. Eitherb; 3 orb; 3
is adjacent to b3 ;. If by 2 were adjacent to by, then b4 ), bs 3 € N(b3,1);
however, then it would not be possible to complete the neighborhood of
b3 » without complcting a triangle or quatrilateral. But if by 3 were adjacent
0 b3y, then bsy € N(b32), b33 € N(h2),bas € N(b22), b3 €
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N(b22),and bs3 € N(bs3); however, then it would not be possible to
complete the neighborhood of bs 1. Thus, b, 1 is not adjacent to b3 3.
Since b1 is adjacent to bs,1,b33 € N(b2,1). Since no degree 4 vertex
is adjacent to three vertices of degree 5, bs 2 € N(bs3,1). Therefore, bs 3 €
N(bs,1). Since by 2 cannot have a neighbor in branch 4, it must have one
neighbor in each of branches 3 and 5. Thus, b3 € N(b;2), and it follows
that bs3 € N(b;2). Similarly, by » cannot have a neighbor in branch 4,
and so by » must have one neighbor in each of branchcs 3 and 5; however,
no such pair of vertices can be added to N (b2 2) without creating a triangle
or quatrilateral in G. Thus, there is no graph in G, satisfying this case. |

This completes Theorem 3.1. We have found three elements of G;;: two using
cold graph in G2, and one using the hill-tracking algorithm described in [4]. Sim-
ilarly, we have found five elements of G23 using cold graphs, and one additional
element using hill-tracking. Thus, F'(22) > 3 and F'(23) > 6. It is straight-
forward to show that there is a unique degree sequence for the elements of G4,
and we have only found a single extremal graph with that degree sequence. We
conjecture that F(24) = 1.

4. Values of f(v) for v from 25 to 27

Using the elements in G3; we arc able to determine the value of f(25). This
allows us to derive f(26), which in turn allows us to derive £(27).

Theorem 4.1. f(25) = 57, f(26) = 61, and f(27) = 65.

Proof: We proceed case by case based on the values of v. For each case we find
a {Cs, Cs }-free graph with v vertices and e = f(v) edges, and show by contra-
diction that there cannot exist a {C3, C4 }-free graph with v vertices and e + 1
edges.

f(25) =57

The elements of Gps listed in [5] show that f(25) > 57. We now assume that
there exists {Cs, Cs }-free G where v = 25 and e = 58. Propositions 2.2 and 2.3
imply that § = 4. Propositions 2.3 and 2.4 imply that5 < A < 6.

By Proposition 2.2, G cannot contain an adjacent pair of degree 4 vertices. If
there exists z € V(G) such that d(x) = 6, then all neighbors of z have degree
4; otherwise G contains a star with more than 25 vertices. Thus, the presence of
z, d(z) = 6 implies that G contains S & S¢3. Sincev = 25, e = 58, and
(8,A) = (4,6), then Equation 3.1 implies that ds > 10; thus, at least four of
the leaves of § must also be of degree 4 in G. But then G will contain adjacent
vertices of degree 4, which contradicts our above statecment. Therefore G contains
no vertices of degree 6, and A = 5. By Equation 3.1,d4 = 9 and ds = 16.

We now show that every vertex of degree 5 must have cither 3 or 4 neighbors of
degree 5. If there exists € V(G) such that d(z) = 5 and all vertices in N(z)
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have degree 5, then z is the root of Ss 4. But since [V(Ss4)] = 26, then every
degree S vertex in G has at least one degree 4 neighbor. Now let us assume that
there is z € V(G) where d(z) = 5 and y1,y2,y3 € N(z) such that d(y;) =
d(y2) =d(y3) =4.1f H = (V(G) /{z,51,v2,y3}), then H € Gy and each y;,
1 < 1 < 3 isadjacent to an independent set of three mutually distance 3 vertices in
H. However, no element of G contains 3 independent sets of mutually distance
3 vertices. Therefore, no degree 5 vertex in G has three degree four neighbors.
Therefore, every vertex of degree 5 has either 3 or 4 neighbors of degree 5.
Thus, since 5ds = 80,4 d4 = 36, and because there are no adjacent vertices of
degree 4, then there are (80 — 36) /2 = 22 edges in the induced subgraph on the
set of vertices of degree 5. If s is the number of degree 5 vertices with 3 degree
5 neighbors, and ¢ is the number of degree 5 vertices with 4 degree 5 neighbors,
thens+t = 16 and 3s + 4t = 44 . The solution to these equations requires that
ds = 20, which contradicts our earlier calculation of ds = 16. Thus, there is no
{Cs,C4}-free graph G with v = 25 and e = 58. Therefore, f(25) = 57.

£(26) = 61

By construction, f(26) > 61 (sce [5]). Assume that there exists {Cs, Cy }-free
G withv = 26 and e = 62. By Propositions 2.2and 2.3,6 > 5 and A > 5. With
Proposition 2.4 this implies that G is 5-regular. Butif G is 5-regular, then e = 65,
which contradicts our assumption that e = 62. Therefore, f(26) = 61.

f(27) = 65

Graph G37 in [5] shows that f(27) > 65. If we assume there exists {Cs, Cs }-

free G withv = 27 and e = 66, then by Propositions 2.2 and 2.3 § > 5 and

A > 6. But by Proposition 2.4, this implies that v > 27, which is a contradiction.

Therefore, f(27) = 65. [ |
Using cold sets and the hill-tracking algorithm from [4], we have found four

elements of G5, two elements of Gy¢, and one element of G57.

5. Concluding remarks
We summarize in the following theorem the principal result in this paper concern-
ing the girth of extremal graphs.
Theorem 5.1. For all extremal graphs G of order v:
1. If v> 5 thenif x € V(QG) such that d(z) = 2, then z is ina 5-cycle or
6-cyclein G;
2, Ifv>5 thenif x € V(G) such that d(z) > 3, then z is ina 5 -cycle in
G;
3. Ifv>17,then g(@) =5.
We now combine the results from this paper, concerning the known values of
F(v) and F(v), with those from [4].
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Theorem 5.2. f(v) and F(v) have the following values (where the underlined

"

values are lower bounds):

1 2 3 4 5 6 7-8 9 10 11 12 13 14 15
f(v) 0 1 2 3 S 6 8 10 12 15 16 18 21 23 26
F(v) 1 112 12 1 1 1 1 3 7 1 4 1
v 16 17 18 19 20 21 22 23 24 25 26 27 SO
JF(v) 28 31 34 38 41 44 47 50 54 57 61 65 175
F(v) 2 14 15 1.1 3 3 6 1 4 2 1 1

Several questions arose while generating the elements of the sets G,. We pose
these questions here to stimulate further research into the nature of extremal graphs.

1.

1.
2,

3.

4.

5.

6.

7.

8.
9.

We note that for several values of v, F(v) = 1; we ask if there are infinite
values of v for which this is true. More generally, what are the conditions
under which F(v) = 1?

For 1 < v < 27, there cxists an extremal graph G on v vertices such that
there is a vertex z with degree f(v) — f(v — 1); thus, G — z is an extremal
graph on v — 1 vertices. This leads us to ask if for all v > 1 there exists
extremal graph G where 6(G) = f(v) — f(v - 1).

Also, we note that for all extremal graphs on 1 < v < 21 vertices (as well
as all that we have generated in G,, 22 < v < 27) the minimum degree is
f(v) = f(v=1) or f(v) — f(v—1) + 1. Is this true forall v > 1?

We showed that if G is extremal with v > 7, then the girth of G is 5. This
leads us to ask whether for all {C3,Cs,. .., Cy}-free G with maximal size
and v > cn, for some constant c, it is the case that g(GQ) = n+ 1.
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