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Abstract, In this paper, we illustrate the relationship between profiles of Hadamard
atrices and weight distributions of codes, give a new and efficient method to determine
the minimum weight d of doubly even self-dual [ 2n, n, d] codes constructed by using
Hadamard matrices of order n = 8¢ + 4 with ¢ > 1, and present a new proof that the
[2n,n,d] codes have d > 8 for all types of Hadamard matrices of order n = 8¢ + 4
with ¢ > 1. Finally we discuss doubly even self-dual [ 72,36, d] codes withd = 8 or
d = 12 constructed by using all currenly known FHadamard matrices of order n = 36.

I. Introduction

In his recent expository survey [16], van Lint comments: *“We do not know if
the construction of the extremal code using a Hadamard design has been tried in
a systematic way.” He also mentions that it seems that the existence of a doubly
even self-dual (72, 36, 16] code is still open. In this paper we shall illustrate the
relationship between the profiles of a Hadamard matrix and the weight distribution
of adoubly even self-dual [2 n, n, d] code constructed from a Hadamard matrix of
ordern= 8t+4 witht > 1 and then give a new and efficient method to determine
the minimum weight d of the code, based on the profiles of the Hadamard matrix.
The computation time of our method is a quarter of the computation time of the
best previous method in the literature (see [12]). We present a different proof that
doubly even self-dual [2n, n,d] codes constructed by using Hadamard matrices
of order n = 8¢+ 4 witht > 1 have d > 8 for all types of Hadamard matrices
of order n = 8¢t + 4 witht > 1. The proof is different than that of [14] and
[15). Finally, we use our method to discuss doubly even self-dual [72, 36, d]
codes withd = 8 or d = 12 constructed by using all currently known Hadamard
matrices of order n= 36.

For completeness and convenience, we now give some necessary notations.

A binary linear [ n, m] code C is an m-dimensional subspace of the n-dimensional
vector space V,, over GF(2). The elements of the code are called codewords. The
addition of codewords is componentwise, and for each component of two code-
words addition in defined as follows

0+0=0, O0+1=1, 1+0=1, 1+1=0. a1
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The Hamming weight (or weight) of codeword v is the number of digits 1 oc-
curing in v. A code is called even if all weights of the codewords are even. A
code is called doubly even if all weights of the codewords are divisible by 4. A
binary lincar [#n, m, d] code is an [n, m] code in which the minimum weight of
all nonzero codewords is d.

A matrix G is called a generator matrix of the binary code C if the linear span
of its rows is C.

Given an [n, m] code C, the [n,n— m] code C* = {z € V,:yTz = 0 for
each y € C} is called the orthogonal or dual code of C. The generator matrices
of the dual code C* are called parity check matrices of C. If C C C*, then C is
called self-orthogonal; if C = C*, then C is called sclf-dual.

Given a (0, 1)-matrix G, we definec a (—1, 1)-matrix

G=J-2G [0)
where J has all entries +1. In other words, we change (1, 0)-entrics in G to
(-1, 1)-cntrics in G, respectively. We call G the (-1, 1) -matrix corresponding
o G.

We define the Hadamard product of two vectors z;, 2, as follows

21 ® 22 = (zn221,212222, -+ +, 21n225) 3
i.e. the Hadamard product is componentwise. In particular, forany (-1, 1) -vector
z,wehavez® z= J.
It is clear that (1) corresponds to the Hadamard product
1-1=1,1.(-1)=-=1,(-1)-1=—1, (-1 . (-1 =1. @)
Thus by (1) and (2), the sum of any two binary lincar codewords vy, v, is equiva-

lent to the Hadamard product of their corresponding (—1, 1) -vectors ¥;, U5 . There-
fore,

b=gi +gi + - +gi (&)
is equivalent to

b=7, ®7,® - ®F, ©)
where gi,, gi; - . -, 9i, arerows of G and g;,, G, - ., Gy, are rows of G.

For a (—1, 1) -matrix G, we define the generalized inner product Pi,.i,, and
the k-Profile mi(m) as follows.

n
Piiy.iy = Z?i.j?i,; oo Giyj @
j=1
where g;. 1, Tiyj1 - - - G arc the entrics of rows 11,42, ..., ix and column j of G
and = is the length of g;.
mp(m) = number of sets{4;,43,...,4} such that |P; 5, ;| = m. 8)

By (1)-(7), the minimum weight of a binary lincar [n, m, d] code is equal to
the least value of %(n— P j,..4,) forall k(1 < k < m) and alldy,42,...,14.
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I1. Codes from Hadamard Matrices

A Hadamard matrix H of order nis an n by n matrix with all entries in the set of
{—1,1}, such that
HHT =nl. ©)

It is known that if there is a Hadamard matrix of order n. thenn= 1,0orn= 2,
or n is a multiple of 4.

A Hadamard matrix H is called normalized if all the entries of its first row and
first column are +1. For convenience, we denote by H° rows 2 through n of the
normalized Hadamard matrix /.

We now describe two ways of constructing codes from Hadamard matrices.

Type 1: If A is a normalized Hadamard matrix of order n = 8t+4, lct B be the
matrix.by deleting the first row and first column of H and b= £(J + B). Thenthe
codewords are all lincar combinations over GF(2) of rows of ( I, B). This code is
self-dual (see [1] and [15]).

Type 2: Writc

0o J
4[5 3]
where J = (1,1,...,1) and B is defined as in Type 1. Then the codewords are
the linear span over GF(2) of rows of (I, A). This is also self-dual (see [1] and
[15]).

Profiles of Hadamard matrices have been used in the investigation of egiva-
lence of Hadamard matrices (sce [4],{10],[17],(18] and [19]) because equivalent
Hadamard matrices have the same profiles. In the following, we illustrate a rela-
tionship between the profiles of a Hadamard matrix and the weight distribution of
a code constructed from the Hadamard matrix of order 8¢t +4 witht > 1, and then
use this relationship to give a new and efficient method to determine the minimum
wight d of the code.

Theorem 1 ((18, p427)). If H is an Hadamard matrix of order n(n > 4), and
k is even, then P;;, ; (H) and hence |P;;, i, ( H)| are congruent to n modulo
8 when 4 divides k, and are congruent to 0 modulo 8 when k is congruent to 2
modulo 4.

Theorem 2. If H is a normalized Hadamard matrix of order n(n > 4) and
k > 4, then for H°

Py i (H°)=n(mod 8 ifk=0 or3 (mod 4)
Pys,.i,(H°) =0 (mod 8) ifk=1o0r2 (mod 4).

Proof: If k = 0 (mod 4) or k = 2 (mod 4), then the results follow directly
from Theorem 1. If k =3 (mod 4) ork=1 (mod 4), then

P, (H®) = Pyyiy.i,(H)
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since all the entries of row 1 of a normalized Hadamard matrix are +1’s. Now
apply Theorem 1, the result follows.

Theorem 3. If H is a normalized Hadamard matrix of order (n > 4) and
k>4, then

H:iz...ig( Ho) = }Djljz...j,._l_g(Ho) .
where {iy,12,...,1%} U {J1,/2,...,Jn-1-k } i$ @ partition of {2,3,...,n}.

Proof: Since H is a normalized Hadamard matrix, except for column 1 every
column has exactly # of —1’s, we have

Piriyisirjrgnrx (H®) = Pz _a(H®) = n.

So the Hadamard product of rows 11, 12,. .., i is equal to the Hadamard product
of rows j1,72,..,Jn-1-k, thus

I)iliz...ig( Ho) = P’ju'z ...j._|-g(H°) .

Theorem 4. If H is a normalized Hadamard matrix of order n(n > 4) and
k > 4, then P, .;, (H®) when k is even is equivalent (o P, .,( H®) when k
is odd,

Proof: The result follows from Theorem 3.

Theorem S. If H is a normalized Hadamard matrix of order n(n > 4) and
k > 4, then Py, ;,(H) for 2 < k < % is cquivalent lo Py, ; (H®) for
1<k<n-1.

Proof: The result follows from Theorem 2 and 4.

Theorem 6. If H is a normalized Hadamard of order n, then the weights of the
code of Type 2 are :

[1+(-DF]

) ,
[1+(-D*1]
—

1
k+ o (n—|Piiz..is (D) +
k+ % ("l+ “Dl.n'zu.it(]!)l) +

where k isevenand 2 < k< 3.

Proof: By Theorems 2 and 4, the weights of the code of Type 2 which do not
involve row 1 of the generator matrix are

[1 + (_l)k+l]

1 °
k+ 0 (n=|Piyiy.i (HO)) + 2 !



the weights which involve row 1 are

[1 + (—l)k”]

k+1+ (n— ]) - % ('n—' Ipz'n';...l'g(llo) I) + 2

ie.
1 . 1+ (—1)k!
k+ -y (n+ II)I'n'z...l'g(H )l) + [_—]-
2 2
Then the result follows from Thecorem 5.

Theorem 7. If H is a normalized Hadamard matrix of order n, then the minimum
weight d of the code of Type 2 is

[1 + (_l)kﬂ]
2 )

[1 + (_l)lu-l]
2 )

d=min{k+ % (n—|Puiz.as (D) +
k+ % (n+ |Paiy..i (HD]) +

where k isevenand 2 < k < .

Note that the computation time of our method is a quarter the time of the best
previously known method (sce [12]).

Theorem 8 ([4], [10]). If H is a normalized Hadamard matrix of order n =
8t+ 4, then IP,'I,'I,',,’4(H)| 74 n.

Theorem 9. If H is a normalized Hadamard matrix of order n = 8t + 4 with
t > 1, the the corresponding codes of Type 1,2 have a minimum weights d > 7,8
respectively.

Proof: Here we only consider Type 2; the other case is similar. By Thcorem
8, |Piiyiis (H)| < (8 — 1)t + 4, so by Theorems 2 and 6, d; ;,;, > 8 and

and 6, dj,y1yi,is > 8 and d;, 4,45, > 8, Finally, by Theorems 2 and 6, it is obvious
that d, iy4yisisicinis = 8. The required result follows immediately.

Theorem 10. If H is a normalized Hadamard matrix of order n = 8t + 4 with
t > 1, then the code of Type 2 is a doubly even sclf-dual [2n,n,d) code with
minimum weight d > 8.

Proof: The self-duality of the code follows from Theorem 2.1 in [1]. By Theorems
2and 6, we have thatif k = 0 or3 (mod 4), then the weights are congruent to 0
(mod 4),ifk =10r2 (mod 4), then the weights arc congruentto0 (mod 4).
It follows from Theorem 9 thatd > 8.
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II1. Codes from Hadamard Matrices of Lower Orders

The profiles of Hadamard matrices of order 12 can be found in [19] and the
corresponding code is the well-known Golay code [24,12,8]. The profiles of
Hadamard matrices of order 20 can be found in [19] and the corresponding codes
are doubly even self-dual codes [40,20,8]. Many Hadamard matrices of order
28 have been constructed in {6],[7], [8] and [9]). Equivalence classes of extremal
doubly-even codes from Hadamard matrices of order 20 and 28 have been consid-
ered in [2] and [3]. We computed the 4-profiles of the 487 equivalence classes of
Hadamard matrices of order 28 listed in [6], [7],[8] and [9], and found that ecach
Hadamard matrix of order 28 has same 4-profiles as its transpose. We applied
Theorems 6 and 7 to these 4-profiles and found that all the codes from Hadamard
matrices of order 28 are doubly even sclf-dual codes [56, 28, 8). The 4-profiles
of Hadamard matrices of order 28 are available from the authors.

The question of the existence of a doubly even sclf-dual [72,36, 16] code has
been mentioned in, for example, [{13],{15] and [16]. It still appears to be open (see
(16)).

It is appealling to try to find a doubly even self-dual [ 72,36, 16] code by using
a Hadamard matrix of order 36. Since the method in [12] requires lengthy com-
putations, only some of the cuurcntly known equivalence classes of Hadamard
matrices of order 36 were tested in that paper, and only doubly even sclf-dual
[72,36,8] and [72, 36, 12] codes were found.

We applied Theorems 6 and 7 to the 4-profiles of the 110 equivalence classes of
Hadamard matrices of order 36 listed in [4]. Without further computation we saw
immediately that the majority of [ 72, 36] codes of Type 2 constructed from these
cquivalence classes are of minimum weight d = 8, and some of the remainder are
of minimum weight d = 8 or 12. By further computing 6-profiles, we found that
the codes of the remaining cases arc of minimum weightd = 8 or 12,

By applying our method to first four rows of the normalized Hadamard matrices
of order 36 constructed from [11], it is immediate that the code of Type 2 is of
minimum weight d = 8. We compuled the 4-profile of Hadamard matrix of order
36 in [S]; it is

m(4) = 52920, w(12) = 5040, w(20) =0, w(28) = 945, n(36) = 0.

Hence the code Type 2 is of minimum weight d = 8.

Thus we have notfounda[72, 36, 16] code from all currently known Hadamard
matrices of order 36. We tabulate the results of computations below. The first
eleven constructions are listed in [4], and follow the notation there. The twelveth
and thirtcenth constructions come from {11] and [5] respectively.
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(1) CONSTRUCTION 1 Codes 1 through79: d = 8,Code 80: d=8 or12.
(2) CONSTRUCTION2 CodesI through IX: Codes XI,XII,XV,XVIand XVII:
d= 8, Codes X, XIlTand XIV:d =8 or12.
(3) CONSTRUCTION 3 Code: d= 8.
(4) CONSTRUCTION4 Codes1,2,and4:d=8,Code3:d=8 or12.
(5) CONSTRUCTION S Code:d=8 or12.
(6) CONSTRUCTION 6 Code: d = 8.
(7) CONSTRUCTION7 Code:d=8 orl12.
(8) CONSTRUCTION 8 Code: d=8 or12.
(9) CONSTRUCTION9 Code:d=8orl12,
(10) CONSTRUCTION 10 Codes 1 through9: d = 8,Code 10: d = 8 or 12,
Codes 11,12 and 13: d = 8.
(11) CONSTRUCTION 11 Codes 1 through4: d = 8.
(12) CONSTRUCTION 12 Code: d = 8.
(13) CONSTRUCTION 13 Code: d = 8.
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