Generalized Quadrangles Derived from Groups and Having s = t + 2

Stanley E. Payne

Department of Mathematics University of Colorado at Denver Denver, CO. 80217

Abstract. The known generalized quadragles with parameters (s,t) where |s-t|=2 have been characterized in several ways by M. De Soete [D], M. De Soete and J. A. Thas [DT1], [DT2], [DT4], and the present author [P]. Certain of these results are interpreted for a coset geometry construction.

I. Introduction

Let G be a group of order s^3 , s > 1. Suppose $\mathcal{F}^+ = \{A_*, A_{\infty}, A_1, \dots, A_s\}$ is a family of s+2 subgroups of G, each of order s. Further, suppose $A_iA_j \cap A_k = \{e\}$ for distinct i, j, k in $I^+ = \{*, \infty, 1, \dots, s\}$. Then \mathcal{F}^+ is called a 4-gonal partition of G. Recall 10.2.1 of [PT].

I.1

Let \mathcal{F}^+ be a 4-gonal partition of G with notation as above.

- (i) A generalized quadrangle (GQ) $S^+ = S(\mathcal{G}, \mathcal{F}^+)$ of order (s-1, s+1) is constructed as follows: the points of S^+ are the elements of G; the lines of S are the right cosets of members of \mathcal{F}^+ ; incidence is containment.
- (ii) If $A_{\bullet} \triangleleft G$, then $\mathcal{F} = \mathcal{F}^+ \backslash \{A_{\bullet}\}$ is a 4-gonal family for G with $A_i^* = A_{\bullet}A_i$, $i \in I^{\infty} = \{\infty, 1, \dots, s\}$. So there is a $GQ S = S(G, \mathcal{F})$ of order s, and $S(G, \mathcal{F}^+)$ is the $GQ \mathcal{P}(S(G, \mathcal{F}), (\infty))$ obtained by expanding $S(G, \mathcal{F})$ about the regular point (∞) . (In this case the construction is well known, so we ask the reader to see [PT] for terminology, notation and construction. Expansion about a regular point is given in 3.1.4 of [PT].)
- (iii) If two members of \mathcal{F}^+ are normal in G, then G is elementary abelian and $s = 2^e$.

In case (iii) of 1.1, we can also construct a GQ, this time of order (s+1,s-1). However, here we want to give a construction of a GQ of order (s+1,s-1) that includes both the case $s=2^e$ and the case $s=p^e$, p an odd prime. So let G be elementary abelian of order $s^3>1$ with 4-gonal family $\mathcal{F}=\{A_\infty,A_1,\ldots,A_s\}$. This means that for each $i\in I^\infty$, A_i is a subgroup of G having order s, and $A_i\leq A_i^*$ where A_i^* is a subgroup (called the tangent space of \mathcal{F} at A_i) of order s^2 . Also the usual properties of S. M. Kantor (cf. [PT]) are satisfied:

K1.
$$A_i A_j \cap A_k = \{e\}$$
 for distinct $i, j, k \in I^{\infty}$.

K2.
$$A_i^* \cap A_j = \{e\}$$
 for distinct $i, j \in I^{\infty}$.

The corresponding GQ $S(G,\mathcal{F})$ is a translation GQ (TGQ) (see especially chapters 8 and 9 of [PT]). When $s=2^e$, there is a group A_* for which $\mathcal{F}^+=\mathcal{F}\cup\{A_*\}$ is a 4-gonal partition, and $A_i^*=A_*A_i$. For odd s there is no such A_* , but we can put $\mathcal{F}^-=\{A_1,\ldots,A_s\}$ and describe a GQ $S^-=S(G,\mathcal{F}^-)$ of order (s+1,s-1) in either case. The idea is that in $S(G,\mathcal{F})$, in the usual notation, we can expand about the regular line $[A_\infty]$. The resulting GQ is described as follows.

Lines of $S(G, \mathcal{F}^-)$ are the cosets $A_jg: g \in G$, $1 \le j \le s$. Points of $S(G, \mathcal{F}^-)$ are of three types: (i) elements $g \in G$; (ii) cosets $A_j^*g: g \in G$, $1 \le j \le s$ (here $A_j^*g = A_*A_jg$ if $s = 2^e$); (iii) cosets $A_{\infty}A_jg: g \in G$, $1 \le j \le s$. Incidence is containment.

An *ovoid* of $S^- = S(G, \mathcal{F}^-)$ is a set \mathcal{O} of s^2 points of S^- , no two collinear (i.e., each line of S is incident with a unique point of \mathcal{O}). Let \mathcal{O}_* be the set of all points of S^- of type (ii):

$$\mathcal{O}_{\star} = \{A_j^*g \colon g \in G, 1 \leq j \leq s\}.$$

We claim \mathcal{O}_* is an ovoid. Clearly $|\mathcal{O}_*| = s^2$. The line A_jg is incident with the point A_i^*h if and only if $A_jg \subseteq A_i^*h$ if and only if $A_j \subseteq A_i^*hg^{-1}$ if and only if j=i and $hg^{-1} \in A_i^*$. This says that the unique point of type (ii) on A_jg is the point A_j^*g , thus proving that \mathcal{O}_* is an ovoid.

Now let \mathcal{O}_{∞} be the set of all points of type (iii).

$$\mathcal{O}_{\infty} = \{A_{\infty}A_jg \colon g \in G, 1 \leq i \leq s\}.$$

Replacing A_j^*h in the preceding argument with $A_{\infty}A_jh$ we see also that \mathcal{O}_{∞} is an ovoid.

For each $g \in G$, consider the set A_{∞}^*g as a set of s^2 points of type (i). Suppose x and y are points of A_{∞}^*g collinear on some line A_jh . So $x = a_jh = a_{\infty}^*g$ and $y = b_jh = b_{\infty}^*g$, with $a_j, b_j \infty A_j$; $a_{\infty}^*, b_{\infty}^* \infty A_{\infty}^*$. Then $a_j^{-1}a_{\infty}^* = hg^{-1} = b_j^{-1}b_{\infty}^*$, implying $b_ja_j^{-1} = b_{\infty}^*(a_{\infty}^*)^{-1} \in A_j \cap A_{\infty}^* = \{e\}$. Hence x = y, implying that each coset of A_{∞}^* is an ovoid. Hence we have the following.

I.2

 $\mathcal{O}_{\infty} + \mathcal{O}_{*} + \{A_{\infty}^{*}g : g \in G\}$ partitions the pointset of $S^{-} = S(G, \mathcal{F}^{*})$ into ovoids. The fact that I.2 holds suggests that we should interpret the results of [P] and [D] in the present context to obtain conditions on \mathcal{F}^{-} (or on \mathcal{F}) that characterize the known constructions. In fact, this is the raison d'etre of this essay. So we next recall the known constructions.

Let $\pi = PG(2,q)$ be embedded as a hyperplane of PG(3,q), and let Ω^- be a q-arc of π . For q odd, there is a unique point a of π for which $\Omega = \Omega^- \cup \{a\}$ is an oval (indeed, a conic) of π . For q even, there are points a, b of π for which

 $\Omega^+ = \Omega^- \cup \{a,b\}$ is a hyperoval. For $q \ge 4$, Ω^+ is the unique extension of Ω^- to a hyperoval. In all cases we assume that a suitable point a is chosen so that $\Omega = \Omega^- \cup \{a\}$ is an oval. And when q is even, we assume that a suitable point b is chosen so that $\Omega^+ = \Omega \cup \{b\}$ is a hyperoval. (See J. A. Thas [T] for an excellent study of the extension of q-arcs to ovals.)

Now a GQ $S(\Omega^-) = (P^-, B^-, I^-)$ of order (q+1, q-1) is constructed as follows. The pointset P^- is the union $P^- = P \cup \mathcal{O}_\infty \cup \mathcal{O}_*$, where P is the set of points of $PG(3,q) \setminus \pi$, \mathcal{O}_∞ is the set of planes meeting π in a line secant to \mathcal{O} and containing the point a, and \mathcal{O}_* is the set of planes meeting π at a line tangent to Ω at a point of Ω^- . (When q is even, \mathcal{O}_∞ is the set of planes of PG(3,q) containing a but not a, and a is the set of planes of a containing a but not a.) a is the set of lines of a is the set of lines of a is the set of lines of a is the natural one induced by incidence in a is the set of a.

When q is odd, a famous result of B. Segre guarantees that Ω is a conic. And for q even or odd, if Ω is a conic, then $S(\Omega^-)$ is isomorphic to the GQ P(Q(4,q),L) obtained by expanding Q(4,q) about any (necessarily regular) line L of Q(4,q). If Ω is any oval (q) odd or even), the corresponding GQ of order (q,q) is denoted $T_2(\Omega)$. And with the notation used above, $S(\Omega^-) \cong P(T_2(\Omega),L)$. This makes sense, because the point a of Ω plays the role of a regular line in $T_2(\Omega)$. For more details, see [PT] and also [P].

The characterizations of $S(\Omega^-)$ given in [P] and [D] will be interpreted for $S(G, \mathcal{F}^-)$. These characterizations are recalled in Section II and are applied to $S(G, \mathcal{F}^-)$ in the following sections.

II. The Results of De Soete and of Payne

Let S=(P,B,I) be a GQ of order (q+1,q-1) having a normal ovoid \mathcal{O}_{∞} , i.e., \mathcal{O}_{∞} is an ovoid such that each pair (x,y) of distinct points of \mathcal{O}_{∞} is a regular pair and $\{x,y\}^{\perp\perp}\subseteq\mathcal{O}_{\infty}$. Then construct an affine plane \mathcal{A}_{∞} of order q as follows. Let P_{∞} be the set of points of \mathcal{O}_{∞} ; $B_{\infty}=\{\{x,y\}^{\perp\perp}:x,y\in\mathcal{O}_{\infty},x\neq y\}$; I_{∞} is the natural incidence relation. Then the structure $\mathcal{A}_{\infty}=(P_{\infty},B_{\infty},I_{\infty})$ is an affine plane of order q. Denote by $\mathcal O$ the union of the perps of elements of a fixed but arbitrary parallel class of lines of \mathcal{A}_{∞} . Clearly $\mathcal O$ is again an ovoid of $\mathcal S$.

Let $\mathcal{O}_0,\mathcal{O}_1,\ldots,\mathcal{O}_q$ be the ovoids obtained from \mathcal{O}_∞ in this way using the q+1 parallel classes of A_∞ . Then $\mathcal{M}=\{\mathcal{O}_\infty,\mathcal{O}_0,\mathcal{O}_1,\ldots,\mathcal{O}_q\}$ is a partition of P into a family \mathcal{M} of ovoids for which \mathcal{O}_∞ is pivotal, i.e., in addition to having \mathcal{O}_∞ normal, for each pair (x,y) of noncollinear points of \mathcal{O}_∞ , there is some i, $0\leq i\leq q$, for which $\{x,y\}^\perp\subseteq\mathcal{O}_i$. Because \mathcal{O}_∞ is pivotal for \mathcal{M} , a GQ $S_\infty=(P^\infty,B^\infty,I^\infty)$ of order (q,q) may be constructed as follows. $P^\infty=(P\setminus\mathcal{O}_\infty)\cup\{(\mathcal{O}_0,\mathcal{O}_1,\ldots,\mathcal{O}_q\};B^\infty=B\cup\{\{x,y\}^\perp:x,y\in\mathcal{O}_\infty,x\neq y\}\cup\{L_\infty\}$. Then I^∞ is defined in a rather natural way: $L_\infty I^\infty\mathcal{O}_i,0\leq i\leq q$. If $M=\{x,y\}^\perp,x,y\in\mathcal{O}_\infty,x\neq y,$ and if $z\in P^\infty$, then $zI^\infty M$ if and only if $z\in M$ or $M\subseteq z$. If $M\in B$ and $x\in P^\infty$, then $xI^\infty M$ if and only if xIM. It is easy to check that L_∞

is regular as a line of S_{∞} . Moreover, the point \mathcal{O}_i of S_{∞} , $0 \leq i \leq q$, is regular in S_{∞} if and only if \mathcal{O}_i is pivotal for \mathcal{M} .

Note that since S = (P, B, I) is a GQ of order (q + 1, q - 1) whose pointset P is partitioned into a family $\mathcal{M} = \{\mathcal{O}_{\infty}, \mathcal{O}_0, \mathcal{O}_1, \dots, \mathcal{O}_q\}$ of ovoids for which \mathcal{O}_{∞} is pivotal, the axioms A1 and A2 of [P] are automatically satisfied.

By combining parts of IV.1 and IV.2 of [P], we have the following:

II.1

Let $\mathcal{M}' = \mathcal{M} \setminus \{\mathcal{O}_{\infty}\}$

- (i) Let $b, d \in \mathcal{O} \in \mathcal{M}', b \neq d$. If $\{b, d\}^{\perp} \cap \mathcal{O}_{\infty} \neq \emptyset$, then $\{b, d\}^{\perp} \subseteq \mathcal{O}_{\infty}$.
- (ii) Each \mathcal{O} in \mathcal{M}' is partitioned into spans of pairs of points whose perps partition \mathcal{O}_{∞} .
- (iii) $x \in \mathcal{O}_i$ and $y \in \mathcal{O}_j$, $0 \le i < j \le q$, $x \not\sim y$, then $|\{x,y\}^{\perp} \cap \mathcal{O}_{\infty}| = 1$.
- (iv) If $a \in \mathcal{O}_{\infty}$, $x \in \mathcal{O}_i$, $x \not\sim a$, and $0 \le i, j \le q, i \ne j$, then $|\{a, x\}^{\perp} \cap \mathcal{O}_j| = 1$.

Let \mathcal{O} be any fixed ovoid in \mathcal{M}' . For $a_1, a_2 \in \mathcal{O}_{\infty}$, put $a_1 \equiv a_2$ if and only if $a_1^{\perp} \cap \mathcal{O} = a_2^{\perp} \cap \mathcal{O}$. Clearly " \equiv " is an equivalence relation on \mathcal{O}_{∞} . For $a \in \mathcal{O}_{\infty}$, let [a] denote the equivalence class of a with respect to this relation. And note that $[a_1] = [a_2]$ if and only if $a_1^{\perp} \cap \mathcal{O} \cap a_2^{\perp} \neq \emptyset$.

Similarly, for $b \in \mathcal{O}$, put $[b] = \{b_1 \in \mathcal{O}: b^{\perp} \cap \mathcal{O}_{\infty} \cap b_1^{\perp} \neq \emptyset\}$. For $a \in \mathcal{O}_{\infty}$, let $[a]^{\perp} = [b]$. Then the q^2 lines joining points of [a] with points of [b] form a set of lines called a *quiver*. Two lines of a quiver are concurrent if and only if they meet at a point of $\mathcal{O}_{\infty} \cup \mathcal{O}$. Two lines meeting at a point of $\mathcal{O}_{\infty} \cup \mathcal{O}$ are in a unique quiver. Two nonconcurrent lines L and M are in the same quiver if and only if the point of \mathcal{O}_{∞} on L is collinear with the point of \mathcal{O} on M, and the point of \mathcal{O} on L is collinear with the point of \mathcal{O}_{∞} on L is collinear with the point of \mathcal{O}_{∞} (respectively, \mathcal{O}) determines a unique quiver. Hence there are q quivers, each containing q^2 lines, and each line not in a given quiver is concurrent with exactly q pairwise nonconcurrent lines of that quiver.

Let L and M be nonconcurrent lines. Let a_1, a_2 be the points of L in \mathcal{O}_{∞} , \mathcal{O} , respectively, and let b_1, b_2 be the points of M in \mathcal{O} , \mathcal{O}_{∞} , respectively. Suppose $a_1 \sim b_1$, and let a_3 be the point of L collinear with b_2 . Since $b_1 \in \{a_1, b_2\}^{\perp}$, $[a_1] = [b_2]$. And since $a_1 \in \{a_2, b_1\}^{\perp}$, $[a_2] = [b_1]$. Hence $a_2 \sim b_2$, i.e., $a_2 = a_3$. But this says that L and M are in the same quiver. This proves:

II.2

If L and M are nonconcurrent lines for which the point a_1 of L in \mathcal{O}_{∞} is collinear with the point b_1 of M in \mathcal{O} , then L and M are in the same quiver.

Keep in mind that the concept of quiver always depends on the ovoid \mathcal{O}_{∞} and all the quivers discussed above depend on the ovoid \mathcal{O} . But \mathcal{O} could be any member of $\mathcal{M}' = \mathcal{M} \setminus \{\mathcal{O}_{\infty}\}$. So the quivers discussed so far are called \mathcal{O} -quivers.

Fix $i \in \{0, 1, ..., q\}$. In [P] there appears the following "axiom":

A3(I). Let L_1 , M_1 be nonconcurrent lines of S meeting lines L_2 , M_2 at four distinct points belonging to members of $\mathcal{M}_i = \mathcal{M}' \setminus \{\mathcal{O}_i\}$. Let a_j be the point of \mathcal{O}_{∞} incident with L_j , j = 1, 2, and let b_j be the point on M_j collinear with a_j , j = 1, 2. Then $b_1 \in \mathcal{O}_i$ if and only if $b_2 \in \mathcal{O}_i$.

It was observed in Section V of [P] that A3(i) is equivalent to having \mathcal{O}_i be a coregular point of S_{∞} . And this was also observed to be equivalent to the following: If L, M are any nonconcurrent lines in some \mathcal{O}_i -quiver Q, then the lines of $\{L,M\}^{\perp}$ not in Q (i.e., not incident with any of the points of $\mathcal{O}_{\infty} \cup \mathcal{O}_i$ on L or M) are all in a common \mathcal{O}_i -quiver Q'. By II.2 this is equivalent to the following: If K and N are any distinct lines of $\{L,M\}^{\perp}$ not in \mathcal{O} , the point of \mathcal{O}_{∞} on K is collinear with the point of \mathcal{O}_i on N. Hence we may collect from [D] and [P] the following characterizations of $\mathcal{P}(Q(4,q),L)$.

II.3

Let S = (P, B, I) be a GQ of order $(q + 1, q - 1), q \ge 4$. Then S is isomorphic to $\mathcal{P}(Q(4, q), L)$ if and only if there is a partition $\mathcal{M} = \{(\mathcal{O}_{\infty}, \mathcal{O}_{0}, \mathcal{O}_{1}, \dots, \mathcal{O}_{q}\}$ of the pointset P into ovoids in such a way that \mathcal{O}_{∞} is pivotal for \mathcal{M} and any one of the following equivalent conditions holds:

- (i) let L_1 and M_1 be any nonconcurrent lines meeting nonconcurrent lines L_2 and M_2 in four points of $\mathcal{O}_0 \cup \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_q$. Let a_i be the point of \mathcal{O}_{∞} on L_i , i = 1, 2. If $a_i \sim b_i I M_i$, i = 1, 2, then b_1 and b_2 must belong to the same member of \mathcal{M}' .
- (ii) With the same notation as in (i), it must be that $\{b_1, b_2\}^{\perp} \cap \mathcal{O}_{\infty} = \emptyset$.
- (iii) For any pair (L, M) of nonconcurrent lines, let a be the point of \mathcal{O}_{∞} on L. Then $a \sim bIM$ determines the point b in some \mathcal{O}_i , $0 \leq i \leq q$. So L and M belong to some \mathcal{O} -quiver Q. Then for each pair (K, N) of distinct lines of $\{L, M\}^{\perp}$ not in Q, the point of \mathcal{O}_{∞} on K must be collinear with the point of \mathcal{O}_i on N.

From now on we suppose that S satisfies A3(0), and all quivers to be mentioned are \mathcal{O}_0 -quivers. Then we quote the result V.1 of [P].

II.4.

Let L and M be nonconcurrent lines of some quiver Q. Then the following hold:

- (i) The lines of $\{L, M\}^{\perp}$ not in Q (i.e., not incident with the points of $\mathcal{O}_{\infty} \cup \mathcal{O}_{0}$ on L and M) are all in a common quiver Q'.
- (ii) L and M belong to a $q \times q$ grid Γ having q lines (of $\{L, M\}^{\perp}$ in Q' and q lines in Q. The points of Γ are precisely those points on lines of $\{L, M\}^{\perp}$ not in $\mathcal{O}_{\infty} \cup \mathcal{O}_{0}$.
- (iii) If (L, M, K) is a triad of lines in Q, then K belongs to the $q \times q$ grid containing L and M if and only if (L, M, K) is centric.

Axiom A4 of [P] was included to force q to be even. Here we omit A4 since we want to allow both q odd and q even. Nevertheless, the two cases are treated separately.

For $q = 2^e$, we give axioms A5 and A6 of [P].

A5. Let (L_1, L_2, L_3) be a centric triad of lines for which the points of \mathcal{O}_{∞} on L_1, L_2, L_3 are each collinear with the points of \mathcal{O}_0 on L_1, L_2, L_3 . If for some $(a, b) \in \mathcal{O}_{\infty} \times \mathcal{O}_0$, $a \not\sim b$, both L_1 and L_2 are incident with points of $\{a, b\}^{\perp}$, then L_3 is also incident with a point of $\{a, b\}^{\perp}$.

A6. Let X_1, X_2, X_3 be distinct points of some \mathcal{O}_j , $1 \leq j \leq q$. Let (L_1, L_2, L_3) and (M_1, M_2, M_3) be two triads of lines such that L_i meets M_i at X_i , i = 1, 2, 3. Suppose the three points of \mathcal{O}_{∞} on L_1, L_2, L_3 (respectively, M_1, M_2, M_3) are each collinear with the three points of \mathcal{O}_0 on L_1, L_2, L_3 (respectively, M_1, M_2, M_3). Then (L_1, L_2, L_3) is centric if and only if (M_1, M_2, M_3) is centric.

In [P] there was one additional axiom A7, which we no longer need. (The proof in [P] depended in a very direct way on the main proof in [DT2]. This meant that A7 was required in order to satisfy a specific last property in [DT2], which property was shown in [DT4] to be superfluous.) Finally, the main result of [P] may be stated as follows:

II.5.

Let S be a GQ of order (q+1,q-1), q even, whose pointset P is partitioned into a family $\mathcal{M}=\{\mathcal{O}_{\infty},\mathcal{O}_0,\mathcal{O}_1,\ldots,\mathcal{O}_q\}$ of ovoids for which \mathcal{O}_{∞} is pivotal. Suppose S satisfies A3(0), A5 and A6. Then there must be some q-arc Ω^- of $\pi=PG(2,q)$ for which $S\cong S(\Omega^-)$. Since q is even, there is a hyperoval $\Omega^+=\Omega^-\cup\{a,b\}$ containing Ω^- . Let $\Omega=\Omega^-\cup\{a\}$. Then the point a plays the role of a regular line in $T_2(\Omega)$, and $S(\Omega^-)\cong \mathcal{P}(T_2(\Omega),a)$.

Now let $q = p^e$, p an odd prime. The axiom $A_{\mathcal{O}_0}(1)$ of [D] is our axiom A3(0). But M. De Soete [D] restated A5 and A6 in a way that still depends on the pivotal ovoid \mathcal{O}_{∞} and on the choice of $\mathcal{O}_0 \in \mathcal{M}' = \mathcal{M} \setminus \{\mathcal{O}_{\infty}\}$ but for which q is assumed to be odd.

 $A_{\mathcal{O}_0}(2)$. Let (x, y, z) be a triad of points of S such that $|\{x, y, z\}^{\perp} \cap \mathcal{O}_{\infty}| = 1$. If L_1, L_2, L_3 (respectively, M_1, M_2, M_3) are nonconcurrent lines of some quiver Q (respectively, Q') such that $L_1 Ix M_1, L_2 Iy IM_2, L_3 Iz IM_3$, then (L_1, L_2, L_3) is centric if and only if (M_1, M_2, M_3) is centric.

 $A_{\mathcal{O}_0}(3)$. Let (L_1, L_2, L_3) be a centric triad of lines in some quiver Q. If for some $a, b \in \mathcal{O}_0$, $a \neq b$, both L_1 and L_2 are incident with points of $\{a, b\}^{\perp}$, then L_3 is also incident with a point of $\{a, b\}^{\perp}$.

The result of [D] may now be formulated as follows.

II.6

Let S be a GQ of order (q + 1, q - 1), q odd, $q \ge 3$, whose pointset P is partitioned into a family $\mathcal{M} = \{\mathcal{O}_{\infty}, \mathcal{O}_{0}, \mathcal{O}_{1}, \dots, \mathcal{O}_{q}\}$ of ovoids for which \mathcal{O}_{∞} is

pivotal. Suppose S satisfies A3(0), $A_{\mathcal{O}_0}(2)$, $A_{\mathcal{O}_0}(3)$ Then there must be some q-arc Ω^- of $\pi = PG(2,q)$ for which $S \cong S(\Omega^-)$. Since q is odd, Ω^- is contained in a unique conic Ω and $S(\Omega^-) \cong \mathcal{P}(T_2(\Omega), L)$ for any line L. (Of course, $T_2(\Omega) \cong Q(4,q)$.)

It is helpful to note that for q even (respectively, odd), the axioms A5 and A6 (respectively, $A_{\mathcal{O}_0}(2)$ and $A_{\mathcal{O}_0}(3)$) are designed to guarantee exactly the following: If y, z are any noncollinear points of $\mathcal{P}\setminus(\mathcal{O}_\infty\cup\mathcal{O}_0)$ then there is a unique set yz of q points contained in any grid Γ which contains both y and z.

III. The $GQ S(G, \mathcal{F}^-)$

Let G be an elementary abelian group of order q^3 , q > 1, with 4-gonal family $\mathcal{F} = \{A_{\infty}, A_1, \ldots, A_q\}$. Put $\mathcal{F}^- = \mathcal{F} \setminus \{A_{\infty}\}$ and recall the construction of the GQ $S = S(G, \mathcal{F}^-)$ of order (q+1, q-1). Let $\mathcal{M} = \{\mathcal{O}_{\infty}, \mathcal{O}_*\} \cup \{A_{\infty}^*g : g \in G\}$ be the ovoids (cf. I.2) that partition the points of S. We want eventually to interpret for \mathcal{M} the hypotheses of II.3, II.5 and II.6.

III.1

Let $w_1 = A_{\infty}A_jg_1$ and $w_2 = A_{\infty}A_jg_2$, $1 \le j \le q$, be distinct points of type (iii). Then $\{w_1, w_2\}^{\perp} = \{A_j^*h: h \in G\}$, and $\{w_1, w_2\}^{\perp \perp} = \{A_{\infty}A_jg: g \in G\}$.

Proof: We know $A_j^* \cap A_\infty A_j = A_j$. If $x, y \in A_j^*g \cap A_\infty A_j$, $g \in G$, then $xy^{-1} \in A_j^* \cap A_\infty A_j = A_j$. Hence if $x \in A_j^*g \cap A_\infty A_j$, then $A_jx = A_j^*g \cap A_\infty A_j$. So $|A_j^*g \cap A_\infty A_j| = 0$ or q. But there are only q distinct cosets of A_j^* and $|A_\infty A_j| = q^2$, so each coset of A_j^* meets $A_\infty A_j$ in exactly q elements. To finish the proof it will suffice to show that each point of the form A_j^*h , $h \in G$, is collinear with each point of the form $A_\infty A_j g$, $g \in G$. So choose $x \in A_j^*hg^{-1} \cap A_\infty A_j$, and put b = xg. Then $A_jb = A_jxg \subseteq A_j^*h \cap A_\infty A_jg$. Hence A_jb is the line joining A_j^*h and $A_\infty A_jg$.

III.2

Consider points $w_1 = A_{\infty}A_ig_1$, $w_2 = A_{\infty}A_jg_2$, $1 \le i, j \le q, g_1, g_2 \in G$. Write $g_2g_1^{-1} = a_{\infty}a_ia_j^{-1}$ (uniquely!), where $a_k \in A_k$ for any appropriate index k. Put $b = a_{\infty}a_ig_1 = a_jg_2$. Then $\{w_1, w_2\}^{\perp} = A_{\infty}b$ and $\{w_1, w_2\}^{\perp \perp} = \{A_{\infty}A_kb: 1 \le k \le q\}$.

Proof: Let $c_{\infty}b$ be a typical element of $A_{\infty}b$. Then $c_{\infty}b = c_{\infty}a_{\infty}a_{i}g_{1} \in A_{i}c_{\infty}a_{\infty}g_{1}$ $\subseteq A_{\infty}A_{i}g_{1}$. So $A_{i}c_{\infty}a_{\infty}g_{1}$ is the line joining $c_{\infty}b$ and $A_{\infty}A_{i}g_{1}$. Similarly, $c_{\infty}b = c_{\infty}a_{j}g_{2} \in A_{j}c_{\infty}g_{2} \subseteq A_{\infty}A_{j}g_{2}$, so $A_{j}c_{\infty}g_{2}$ is the line joining $c_{\infty}b$ and $A_{\infty}A_{j}g_{2}$. Hence $\{w_{1}, w_{2}\}^{\perp} = A_{\infty}b$. For $c_{\infty}b \in A_{\infty}b$, $c_{\infty}b \in A_{k}c_{\infty}b \subseteq A_{\infty}A_{k}b$, so $\{w_{1}, w_{2}\}^{\perp \perp} = (A_{\infty}b)^{\perp} = \{A_{\infty}A_{k}b : 1 \leq k \leq b\}$.

Combining III.1 and III.2 we have the following immediate corollary.

III.3 For distinct points $w_1, w_2 \in \mathcal{O}_{\infty}$, the pair (w_1, w_2) is regular with $\{w_1, w_2\}^{\perp \perp} \subseteq \mathcal{O}_{\infty}$. Moreover, there is a single ovoid $\mathcal{O} \in \mathcal{M}' = \mathcal{M} \setminus \{\mathcal{O}_{\infty}\}$ for which $\{w_1, w_2\}^{\perp} \subseteq \mathcal{O}$. This says \mathcal{O}_{∞} is a normal ovoid which is pivotal for \mathcal{M} .

There is a companion result giving $\{u, u'\}^{\perp}$ for distinct $u, u' \in \mathcal{O}_*$.

III.4.

- (i) If $u = A_j^* g_1$, $u' = A_j^* g_2$, $g_1 g_2^{-1} \in A_j^*$, then $\{u, u'\}^{\perp} = \{A_{\infty} A_j h : h \in G\}$. And $\{u, u'\}^{\perp \perp} = \{A_j^* g : g \in G\}$.
- (ii) If $u=A_i^*g_1$, $u'=A_j^*g_2$, $i\neq j$, write $g_2g_1^{-1}=a_i^*a_j^{-1}$ (uniquely.) with $a_i^*\in A_i^*$, $a_j\in A_j$. Then $b=a_i^*g_1=a_jg_2\in A_i^*g_1\cap A_j^*g_2$. Then $\{u,u'\}^{\perp}=A_i^*g_1\cap A_j^*g_2=b(A_i^*\cap A_j^*)$. But $\{u,u'\}^{\perp\perp}$ might have fewer than g elements.

Since \mathcal{O}_{∞} is pivotal for \mathcal{M} , clearly II.1 holds. We may adapt the discussion following II.1 to the present situation and see that II.2 holds. Now we choose the ovoid \mathcal{O}_{\bullet} to play the role of \mathcal{O}_{i} in the discussion following II.2, and to play the role of \mathcal{O}_{0} in II.4 and what follows II.4. Put $\mathcal{M}'' = \mathcal{M}' \setminus \{\mathcal{O}_{\bullet}\} = \{A_{\infty}^{*}g: g \in G\}$. And all quivers to be mentioned in III.5 and its proof are \mathcal{O}_{\bullet} -quivers.

III.5. Let L and M be nonconcurrent lines of some quiver Q. Then the lines of $\{L, M\}^{\perp}$ not in Q (i.e., not incident with any of the points of $\mathcal{O}_{\infty} \cup \mathcal{O}_{*}$ on L or M) are all in a common quiver Q'. In other words, M satisfies A3(0) with \mathcal{O}_{*} playing the role of \mathcal{O}_{0} .

Proof: First we consider what quivers look like. For a typical point $x = A_i^*g \in \mathcal{O}_*$, $[x] = \{A_i^*g : g \in G\}$ by III.1. And $[x]^{\perp} = \{A_{\infty}A_ig : g \in G\}$. So for a fixed $i, 1 \leq i \leq q$, the cosets of A_i form a quiver Q_i of q^2 lines joining points A_i^*g with points $A_{\infty}A_ih$, $g, h \in G$.

Suppose $L=A_ig$ and $M=A_ih$ are two lines of the quiver Q_i , and consider what it means for L and M to meet at some point, i.e., at some point of $\mathcal{O}_{\infty}\cup\mathcal{O}_{\bullet}$. A_ig and A_ih meet at some point of \mathcal{O}_{\bullet} if and only if there is some $b\in G$ for which A_i^*b is on them both. But $A_ig\subseteq A_i^*b$ if and only if $A_i\subseteq A_i^*bg^{-1}$ if and only if $bg^{-1}\in A_i^*$. And $A_ih\subseteq A_i^*b$ if and only if $bh^{-1}\in A_i^*$. So for given $g,h\in G$, there is a $b\in G$ such that A_ig and A_ih meet at the point A_i^*b of \mathcal{O}_{\bullet} if and only if $gh^{-1}\in A_i^*$. Similarly, replacing A_i^* with $A_{\infty}A_i$, the lines A_ig and A_ih meet at a point of \mathcal{O}_{∞} if and only if $gh^{-1}\in A_{\infty}A_i$. So to have the lines $L=A_ig$ and $M=A_ih$ of the quiver Q_i nonconcurrent means that $gh^{-1}\notin A_i^*\cup A_{\infty}A_i$, i.e., $gh^{-1}=a_i^*a_{\infty}$ where $a_i^*\in A_i^*\backslash A_i$ and $a_{\infty}\in A_{\infty}\backslash \{e\}$.

Recall (from [PT]) that

$$G = A_i^* + (A_i A_{\infty} \backslash A_i) + (A_i A_1 \backslash A_i) + \cdots + (A_i \widehat{A_i} \backslash A_i) + \cdots + (A_i A_g \backslash A_i)$$

partitions G. So if L, M (as above) are nonconcurrent, there is some j, $i \neq j$, $1 \leq j \leq q$, for which $gh^{-1} \in A_iA_j \setminus A_i$. We claim that the lines of $\{L, M\}^{\perp}$ belong to the quiver O_j . Say $gh^{-1} = b_ib_j = a_i^*a_{\infty}$, where $b_i \in A_i$, $e \neq b_j \in A_j$,

 $a_i^* \in A_i^* \backslash A_i$, $e \neq a_\infty \in A_\infty$. Put $b = ea_\infty^{-1}g = a_i^*h$. Then $A_ib \subseteq A_i^*h \cap A_\infty A_ig$. And with $c = A_\infty h = (a_i^*)^{-1}g$, $A_ic \subseteq A_\infty A_ih \cap A_i^*g$. For arbitrary $a_i \in A_i$, $a_ib_ih = a_ib_j^{-1}g \subseteq A_ja_ig$. So as a_i varies over the elements of A_i , the line A_ja_ig is the line of $\{L, M\}^\perp = \{A_ig, A_ih\}^\perp$ not in Q_i joining the point a_ig of L with the point $a_ib_ih = a_ib_j^{-1}g$ of M. So, the lines of $\{L, M\}^\perp$ not in Q_i all lie in Q_j .

Note: The $q \times q$ grid determined by L and M in the preceding proof contains the points of $A_i A_j g = A_i A_j h$. One of the rulings consists of certain cosets of A_i , the other consists of certain cosets of A_j .

IV. Result II.3 Interpreted for $S(G, \mathcal{F}^-)$

We now consider \mathcal{O} -quivers for $\mathcal{O} \in \mathcal{M}'' = \mathcal{M} \setminus \{\mathcal{O}_{\infty}, \mathcal{O}_{*}\}$. We may assume that $\mathcal{O} = A_{\infty}^{*}$ (if $\mathcal{O} = A_{\infty}^{*}g$, just translate everything by g^{-1}). For $a \in A_{\infty}$ consider the panel $(a, A_{k}a, A_{\infty}A_{k}a)$, $1 \leq k \leq q$. Then $[a] = A_{\infty}$ and $[a]^{\perp} = \{A_{\infty}A_{k}: 1 \leq k \leq q\}$. The corresponding quiver consists of lines of the form $A_{k}a: a \in A_{\infty}, 1 \leq k \leq q$.

Let $A_{\infty} = \{a_1, \ldots, a_q\}$ and let $\{g_1, \ldots, g_q\}$ be a set of distinct representatives of A_{∞} in A_{∞}^* . Then also for each m, $1 \leq m \leq q$, the g_1, \ldots, g_q are distinct representatives for $A_{\infty}A_m$ in G, and $\{a_ig_j: 1 \leq i, j \leq q\}$ is a set of coset representatives of A_m in G.

Translating the quiver above by an element of A_{∞}^* (to keep it an A_{∞}^* -quiver), we see that a typical A_{∞}^* -quiver consists of a set of lines of the form $\{A_k a_i g_j : 1 \le i, k \le q\}$ for a fixed $j, 1 \le j \le q$.

For the time being we suppose $g_j = e$. Then $A_m a_i$ and $A_n a_j$ meet at a point $A_{\infty} A_i g$ of \mathcal{O}_{∞} if and only if m = n = t. Suppose $m \neq n$. Then $A_m a_i$ and $A_n a_j$ meet at a point $h \in A_{\infty}^*$ if and only if $a_i = a_j = h$. So suppose $a_i \neq e = a_j$. Then $A_m a_i$ and A_n are nonconcurrent lines of an A_{∞}^* -quiver. Define c and d by: $\{c\} = A_m^* a_i \cap A_n$; $\{d\} = A_m a_i \cap A_n^*$ Then for $b_m \in A_m$ equal to any one of the q-2 elements of A_m for which $b_m a_i \notin A_n^* \cup A_{\infty} A_n$, the accompanying diagram indicates all lines of $\{A_m a_i, A_n\}^{\perp}$. For such a given b_m , there is a unique $v(v \neq m, n, \infty)$ for which $b_m a_i \in A_n A_v$. If $b_m a_i = b_n b_v$, $b_n \in A_n$, $b_v \in A_v$ then $b_n = b_v^{-1} b_m a_i \in A_v b_m a_i$.

The third column of points contains the points of \mathcal{O}_{∞} on those lines of $\{A_m a_i, A_n\}^{\perp}$ not in the quiver containing $A_m a_i$ and A_n . And the fourth column of points contains those of A_{∞}^* on the same lines. Condition (iii) of II.3 is that each point of the third column be collinear with each point of the fourth. This is equivalent to $A_{\infty}A_v b_m \cap A_{\infty}^* = A_{\infty}A_n d \cap A_{\infty}^* = A_{\infty}A_n c \cap A_{\infty}^*$. Of course, if this holds, then translating by any element of G gives a condition that is equivalent. This leads to the following characterization.

IV.1. Let G be an elementary abelian group of order q^3 , q > 1 with 4-gonal family $\mathcal{F} = \{A_{\infty}, A_1, \ldots, A_q\}$ Put $\mathcal{F}^{-1} = y \setminus \{A_{\infty}\}$. Then the GQ $S = S(G, \mathcal{F}^{-1})$

Diagram 1

of order (q+1, q-1) is isomorphic to $\mathcal{P}(Q(4, q), L)$ if and only if the following condition holds:

For each m, n with $1 \le m$, $n \le q$, $m \ne n$, and for each $a \in A_{\infty}$, $a \ne e$, define the following elements:

$$\{b_m\} = A_m^* \cap A_n a \ (b_m = c_a, \text{ where } a = a_i^{-1} \text{ above});$$

$$\{b_n\} = A_m \cap A_n^* a \ (b_n = d_a, \text{ where } a = a_i^{-1} \text{ above}).$$
For $1 \le j \le q, m \ne j \ne n$,
$$\{b_i\} = A_m \cap A_n A_i a.$$

Then $K = A_{\infty}A_jb_j \cap A_{\infty}^*$ is independent of $j, 1 \leq j \leq q$.

V. Result II.5 Interpreted for $S(G, \mathcal{F}^-)$, q Even

Since q is even, there is a group A_* for which $\mathcal{F}^* = \mathcal{F} \cup \{A_*\}$ is a 4-gonal partition of G and for which $A_i^* = A_i A_*$, $i \in \{\infty, 1, ..., q\}$. First we interpret A_5 in this case. Let x, y belong to distinct members of \mathcal{M}'' , i.e., to distinct cosets of $A_{\infty}^* = A_{\infty} A_*$, and suppose $x \not\sim y$. Then there is a unique point $a \in \mathcal{O}_{\infty} \cap \{x, y\}^{\perp}$ (respectively, $b \in \mathcal{O}_* \cap \{x, y\}^{\perp}$). Define the *pseudoline xy* through x and y to be $xy = \{a, b\}^{\perp}$ (as in [P]). Then (see [P]) A_5 is equivalent to the condition that any grid (i.e., some coset $A_s A_t g$, $1 \le s < t \le q$, $g \in G$) containing x and y must contain all q points of the pseudoline xy.

So let x, y be noncollinear points in distinct cosets of $A_{\infty}A_{\bullet}$ but in the same coset of $A_{\delta}A_{t}$, $1 \leq s < t \leq q$. Without loss of generality (translate by x^{-1}) we may assume x = e, so $y = y_{\delta}y_{t} \in A_{\delta}A_{t} \setminus A_{\infty}A_{\bullet}$. There are unique $i, j, 1 \leq i, j \leq q$, such that $y \in A_{\infty}A_{i} = a$ and $y \in A_{\bullet}A_{j} = b$. Then $xy = \{a, b\}^{\perp} = A_{\infty}A_{i} \cap A_{\bullet}A_{j}$. (Here $i \neq j$ since $x \not\sim y$.) Since $\{x, y\} \subseteq A_{\delta}A_{t}$, A_{δ} says $A_{\delta}A_{t} \supseteq A_{\infty}A_{i} \cap A_{\bullet}A_{j}$. So A_{δ} is equivalent to: $y \in (A_{\delta}A_{t} \cap A_{\infty}A_{i} \cap A_{\bullet}A_{j}) \setminus A_{\infty}A_{\bullet}$ implies $A_{\delta}A_{t} \supseteq A_{\infty}A_{i} \cap A_{\bullet}A_{j}$.

V.1 A_5 is equivalent to: If $|A_sA_t \cap A_{\infty}A_i \cap A_*A_j| > 1$, then $A_sA_t \supseteq A_{\infty}A_i \cap A_*A_j$ (whenever $i, j, s, t, \infty, *$ are distinct).

In [P] A_6 was also restated in terms of grids: Let Γ_i be a $q \times q$ grid with lines from quivers $Q_i, Q_i', i = 1, 2$. Suppose Γ_1 and Γ_2 both have lines incident with points x, y, where x, y are distinct members of the same ovoid in \mathcal{M}'' (i.e., x, y belong to the same coset $A_{\infty}A_*g$ of $A_{\infty}^* = A_{\infty}A_*$). Then the set of q points of $A_{\infty}A_*g$ incident with the lines of Γ_1 is the same as the set of q points of $A_{\infty}A_*g$ incident with Γ_2 . Translating by x^{-1} we may assume $x = e \neq y \in A_{\infty}A_*$. And there are grids $\Gamma_1 = A_sA_ug_1$, $\Gamma_2 = A_tA_vg_2$ both containing x = e and y. So we may assume $g_1 = g_2 = e$, and $e \neq y \in A_sA_u \cap A_tA_v \cap A_{\infty}A_*$. Then A_6 says $A_sA_u \cap A_{\infty}A_* = A_tA_v \cap A_{\infty}A_*$, i.e., $|A_{\infty}A_* \cap A_sA_u \cap A_tA_v| = q$. So A_5 and A_6 may be combined into one statement, and the result II.5 may be restated in the present context as:

V.2 There is some q-arc Ω^- of $\pi = PG(2,q)$ for which $S(G,\mathcal{F}^-) \cong S(\Omega^-)$ if and only if for any six distinct indices $i,j,k,\ell,m,n\in\{*,\infty,1,\ldots,q\}$ including ∞ and *, $|A_iA_j\cap A_kA_\ell\cap A_mA_n|=1$ or q.

VI. Result II.6 Interpreted for $S(G, \mathcal{F}^-)$, q Odd

Letting \mathcal{O}_* play the role of \mathcal{O}_0 in Section II, we first interpret $A_{\mathcal{O}_*}(2)$ in $S(G,\mathcal{F}^-)$, q odd. Suppose $A_{\infty}A_jh$ is a point of \mathcal{O}_{∞} collinear with three points x,y,z of the grid $\Gamma = A_sA_tg$. Translating by h^{-1} we assume h = e. Then the three points x,y,z are all on the line A_jg if j=s or t. In this case $A_{\infty}A_j$ is a point on the line A_jg , and any grid containing two points of A_ig must contain the points in the set A_jg . $A_{\mathcal{O}_*}(2)$ really says that if Γ_1 and Γ_2 are two grids with $x,y,z \in \Gamma_1$ and $x,y \in \Gamma_2$, then $z \in \Gamma_2$, provided $|\{x,y,z\}^{\perp} \cap \mathcal{O}_{\infty}| = 1$. When x,y,z lie on a line, we have just seen that this is the case. So suppose no two of x,y,z are collinear. Then $j \notin \{s,t\}$. Suppose $x,y \in A_{\infty}A_j \cap A_sA_tg$. Then $xy^{-1} \in A_{\infty}A_j \cap A_sA_t$. If there is a second grid A_uA_vh with $x,y \in A_uA_vh$ then $xy^{-1} \in A_{\infty}A_j \cap A_uA_v$. So $A_{\mathcal{O}_*}(2)$ says that

$$\{z=cy\colon c\in A_{\infty}A_j\cap A_sA_t\}=\{z=dy\colon d\in A_{\infty}A_j\cap A_uA_v\}$$

if $|A_{\infty}A_j \cap A_sA_t \cap A_uA_v| \ge 2$. We have essentially proved the following: VI.1. A_{0} . (2) is equivalent to the following: If $N = |A_{\infty}A_j \cap A_sA_t \cap A_uA_v| > 1$, then N = q, if j, s, t, u, v are distinct members of $\{1, 2, \ldots, q\}$.

Now consider $A_{\mathcal{O}_*}(3)$, which says that if a grid contains two points of $\{u, u'\}^{\perp}$ for distinct $u, u' \in \mathcal{O}_*$, then it contains q points of $\{u, u'\}^{\perp}$. By III.4 there are two cases. In both cases if we start with an arbitrary grid A_sA_tg , $1 \leq s, t \leq q$, $s \neq t, g \in G$, we may translate by g^{-1} and assume g = e. In the first case if $u, u' \in \mathcal{O}_*$ satisfy $\{u, u'\}^{\perp} \subseteq \mathcal{O}_{\infty}$, then we may assume $u = A_s^*g_1, u' = A_s^*g_2$. And $\{u, u'\}^{\perp} = \{A_{\infty}A_sh: h \in G\}$. But none of these points belongs to any of the grids. So suppose $u = A_i^*g_1, u' = A_j^*g_2, i \neq j, 1 \leq i, j \leq q$. Then $\{u, u'\}^{\perp} = b(A_i^* \cap A_j^*)$ for any $b \in A_i^*g_1 \cap A_j^*g_2$. And $A_{\mathcal{O}_*}(3)$ is equivalent to: $|b(A_i^* \cap A_j^*) \cap A_sA_t| > 1$ (with i, j, s, t distinct) implies $A_i^* \cap A_j^* \subseteq A_sA_t$, in which case any coset of $A_i^* \cap A_j^*$, is contained in A_sA_t or is disjoint from it. It follows that $A_{\mathcal{O}_*}(3)$ is characterized as follows:

VI.2. $A_{\mathcal{O}_{\bullet}}(3)$ holds in $\mathcal{S}(G, \mathcal{F}^-)$, q odd, if and only if for any distinct i, j, s, t in $\{1, \ldots, q\}$, if $|A_i^* \cap A_j^* \cap A_s A_t| > 1$, then $A_i^* \cap A_j^* \subseteq A_s A_t$.

So interpreting II.6 for $S(G, \mathcal{F}^-)$, q odd, we obtain the next result.

- **VI.3.** If q is odd, $S(G, \mathcal{F}^-) \cong \mathcal{P}(Q(4, q), L)$ if and only if the following two conditions hold.
 - (i) Whenever j, s, t, u, v are distinct members of $\{1, \ldots, q\}, |A_{\infty}A_j \cap A_sA_t \cap A_uA_v| = 1$ or q.
 - (ii) For any distinct $i, j, s, t \in \{1, ..., q\}, |A_i^* \cap A_j^* \cap A_s A_t| = 1 \text{ or } q$.

References

- D M. De Soete, Characterizations of $\mathcal{P}(Q(4,q),L)$, J. Geom. 29 (1987), 50-60
- DT1 M. De Soete and J.A. Thas, R-regularity and characterizations of the generalized quadrangle $\mathcal{P}(W(s), (\infty))$, Ann. Dicrete Math. 30 (1986), 171–184.
- DT2 M. De Soete and J.A. Thas, A characterization theorem for the generalized quadrangle $T_2^*(0)$ of order (s, s + 2), Ars. Comb. 17 (1984), 225–242.
- DT3 M. De Soete and J.A. Thas, A characterization of the generalized quadrangle Q(4, q), q odd, J. Geom. 28 (1987), 57-79.
- DT4 M. De Soete and J.A. Thas, Characterizations of the generalized quadrangles $T_2^*(0)$ and $T_2(0)$, Ars. Comb. 22 (1986), 171–186.
 - P S.E. Payne, *Hyperovals and generalized quadrangles*, in "Finite Geometries", (eds. L. Batten and C. Baker), Marcel Dekker Inc., 1985, pp. 251–270.
 - PT S.E. Payne and J.A. Thas, Generalized quadrangles, Research Notes in Math #110. Pitman Pub. Inc., 1984.
 - T J.A. Thas, Complete arcs and algebraic curves in PG(2,q), Jour. Alg. 106 (1987), 451-464.