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Abstract. The known generalized quadragles with parameters (s,t) where[s—1]| = 2

have been characterized in several ways by M. De Soete [D], M. De Soete and J. A.
Thas [DT1), [DT2}, [DT4), and the present author [P]. Cenain of these results are
interpreted for a coset geometry construction.

L. Introduction

Let G be a group of order 8, s > 1. Suppose F* = {A., A, AL, ..., A} isa
family of s+ 2 subgroups of G, cach of order s. Further, suppose A; A iNAg = {e}
for distinct 4,7,k in I" = {x,00,1,...,s}. Then F* is called a 4-gonal partition
of G. Recall 10.2.1 of [PT).

L1
Let F* be a4-gonal partition of G with notation as above.

(i) A generalized quadrangle (GQ) S* = S(G,F*) of order (s — 1,s+ 1) is
constructed as follows: the points of S* are the elements of G; the lines of
S are the right cosets of members of F*; incidence is containment.

(i) IfA,<G,then F = F*\{A,} is a4-gonal family for G with A} = A,4;,
1 € I® = {o00,1,...,s}. SothereisaGQ S = S(G, F) of order s, and
S(G,F?) is the GQ P(S(G, F),(00)) obtained by expanding S(G, F)
about the regular point (oo). (In this case the construction is well known,
so we ask the rcader to sce [PT] for terminology, notation and construction.
Expansion about a regular point is given in 3.1.4 of [PT).)

(iii) If two members of F* are normal in G, then G is clementary abelian and
s=12°,

In case (iii) of 1.1, we can also construct a GQ, this time of order (s + 1 ,8—1).
However, here we want to give a construction of a GQ of order (s+ 1, s— 1) that
ncludes both the case s = 2¢ and the case s = p°, p an odd prime. So let G be
zlementary abelian of order s > 1with 4-gonal family F = {Ax, A1, ..., A}
This means that for each i € I*, A; is a subgroup of G having order s, and
4; < A} where A} is a subgroup (called the tangent space of F at A;) of order
2. Also the usual propertics of W. M. Kantor (cf. [PT]) are satisfied:

K1. A,‘A,’ NA; = {e} for distinct ¢, 7, k € I*.
K2. A;n Aj = {e} for distincti,j € I*.
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The corresponding GQ S(G, F) is a translation GQ (TGQ) (see especially
chapters 8 and 9 of [PT]) . When s = 2°¢, there is a group A, for which F* =
F U {A,} is a 4-gonal partition, and A} = A,A;. For odd s there is no such A,,
but we can put F~ = {4,,...,A,} and describe a GQ S~ = S(G, F~) of order
(s + 1,s — 1) in either case. The idea is that in S(G, F), in the usual notation,
we can expand about the regular line [ Ag). The resulting GQ is described as
follows.

Lines of S(@, F~) are the cosets Ajg: g € G,1 < j < s. Points of S(G, F~)
are of three types: (i) clements g € G; (ii) cosets Ajg:g € G, 1 < j < s (here
Ajg = A.A;g if s = 2°); (iii) cosets AwAjgig € G, 1 £ j < s. Incidence is
containment.

An ovoid of S— = S(G,F-) is a set O of s points of S~, no two collinear
(i.e., each line of S is incident with a unique point of O). Let O, be the sct of all
points of S~ of type (ii):

0.={Ajg:g€G,1<j<s)

We claim O, is an ovoid. Clearly |0,] = s . The line A4;g is incident with the
point A3k if and only if Ajg C Ath if and only if A; C Athg™' if and only if
j=4dand hg™' € A?. This says that the unique point of type (ii) on A;g is the
point Ajg, thus proving that O, is an ovoid.

Now let O, be the set of all points of type (iii).

O = {AxAjg:g € G,1 <1< s}

Replacing A}h in the preceding argument with A, Ajh we sce also that O is an
ovoid.
For each g € G, consider the set A3 g as a set of % points of type (i). Supposc
z and y are points of A} g collincar on some line A;h. So T = a,h = a2,g and
= bjh = bl,g, with a;,bj00A;; a3y, b3,00A%, Then aj'ag, = hg™! b-‘b;,,,
xmplymg bjaj' = b (as)™! € A;N AL = {e}. Hence z = y, implying that
each coset of A%, is an ovoid. chce we havc the following.

12

Qoo+ O, + {A% g: g € G} partitions the pointset of S~ = S(G, F*) into ovoids.

The fact that 1.2 holds suggests that we should interpret the results of [P] and
[D] in the present context to obtain conditions on F~ (or on F) that characierize
the known constructions. In fact, this is the raison d’etre of this essay. So we next
recall the known constructions.

Let # = PG(2, q) be embedded as a hyperplane of PG(3, ¢), and let Q~ be
a g-arc of 7. For ¢ odd, there is a unique point a of m for which Q = Q~ U {a}
is an oval (indeed, a conic) of «. For g even, there are points a, b of 7 for which
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Q% = Q7 U {a,b} is a hyperoval. Forg > 4, Q" is the unique extension of
Q~ 1o a hyperoval. In all cases we assume that a suitable point a is chosen so
that Q = Q~ U {a} is an oval. And when g is even, we assume that a suitable
point b is chosen so that Q* = Q U {b} is a hyperoval. (See J. A. Thas [T] for an
excellent study of the extension of g-arcs to ovals.)

Nowa GQ S(Q2~) = (P~,B~,I7) oforder (g + 1,q — 1) is constructed as
follows. The pointset P~ is the union P~ = P U O, U O,, where P is the set
of points of PG(3, g)\m, O is the sct of planes meeting  in a line secant to O
and containing the point a, and O, is the set of plancs meeting # at a line tangent
to Q at a point of Q~. (When g is even, O is the sct of planes of PG(3,q)
containing a but not b, and O, is the sct of planes of PG(3,q) containing b but
nota.) B~ is the set of lines of PG(3, ¢) not in « but meeting = at a pointof Q.
The incidence relation I is the natural one induced by incidence in PG(3, q).

When ¢ is odd, a famous result of B. Scgre guarantees that Q is a conic. And for
g evenorodd, if Q is aconic, then S(2 ~) is isomorphic to the GQ P(Q(4,q), L)
obtained by expanding Q(4 , g) about any (necessarily regular) line L of Q(4,q).
IfQ is any oval (¢ odd or even), the corresponding GQ of order (g, ) is denoted
T>(£2). And with the notation used above, S(Q ™) & P(T3(Q), L). This makes
sense, because the point a of Q plays the role of aregular line in 73 (Q ) . For more
details, see [PT] and also [P].

The characterizations of S(£2~) given in [P] and [D] will be interpreted for
S(G, F~). These characterizations are recalled in Section II and are applied to
S(@G, F-) in the following sections.

IL. The Results of De Soete and of Payne

LetS = (P,B,I) beaGQ of order (g+ 1, g— 1) having a normal ovoid O, i.e.,
O is an ovoid such that each pair ( z, y) of distinct points of O, is a regular pair
and {z,y}** C Ou. Then construct an affine plane A, of order g as follows.
Let P, be the set of points of Oe; Boo = {{Z,y} 7,y € O,z # v} o
is the natural incidence rclation. Then the structure Ay, = ( Poo, Boo, feo) IS an
affine plane of order g. Denote by O the union of the perps of elements of a fixed
but arbitrary parallel class of lines of A.,. Clearly O is again an ovoid of S.

Let Op, Oy, ..., 0, be the ovoids obtained from O, in this way using the g+ 1
parallel classes of Ae. Then M = {O,00,0;,...,0,} is a partition of P
into a family M of ovoids for which O, is pivotal, i.e., in addition to having
O normal, for each pair (z, y) of noncollinear points of O, there is some 1,
0 < i < g, for which {z,y}* C ;. Because O, is pivotal for M, a GQ
Seo = (P%,B*, I*®) of order (g, q) may be constructed as follows. P® =
(P\Oo)U{(O0,0,...,0,}; B* = BU{{z,y}': 2,y € Oco, T # y}U{L oo}
Then I is defined in a rather natural way: Lo /°0;,0 < i < ¢. If M = {z,y}+,
T,y € O T # y,andif z € P, then 2/ M ifandonly ifz € M or M C 2. If
M € Bandz € P>, thenz[*™ M if and only if zI M. It is easy to check that Lo
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is regular as a line of S,,. Moreover, the point O; of S, 0 < 1 < ¢, is regular in
S if and only if Q; is pivotal for M.

Note that since S = (P, B, I) isaGQ of order (g+ 1, g — 1) whose pointset P
is partitioned into a family M = {O, 00, O1,...,0,} of ovoids for which O
is pivotal, the axioms A1 and A2 of [P] are automatically satisfied.

By combining parts of IV.1 and IV.2 of [P], we have the following:

i1
Let M' = M\{O}

(i) Leth,de O e M',b #d. If {b,d}* N Oy # 0, then {b, d}* C Oco.

(ii) Each O in M is partitioned into spans of pairs of points whose perps par-
tition Qo

(iii) € O;andy€ 0;,0 <i<j<g,z2y, then|{z,y} NOL|=1.

(iv) Ifa € O,z € O;,7 # a,and0 < 4,7 < ¢, # j,then|{e,z}*N0O;| = 1.

Let O be any fixed ovoid in M'. For a;,a; € Oy, pute; = a; if and only if
ef N O = af NO. Clearly “=" is an cquivalence relation on Og,. For @ € O,
let [a] denote the equivalence class of a with respect to this relation. And note
that [a;] = [az] ifand only if o} NO N a7 # 0.

Similarly, for b € O, put [b] = {b) € O:b1 N Oy N b # 8}. Fora € O,
let [e)L = [b]. Then the ¢* lincs joining points of [a] with points of [b] form
a sct of lines called a quiver. Two lines of a quiver are concurrent if and only if
they meet at a point of Oy, U 0. Two lines meeting at a point of O, U O are in
a unique quiver. Two nonconcurrent lines L and M are in the same quiver if and
only if the point of O, on L is collinear with the point of O on M, and the point of
O on L is collinear with the point of O, on M. Each point of O, (respectively,
0) determines a unique quiver. Hence there are g quivers, each containing g2
lines, and each line not in a given quiver is concurrent with exactly ¢ pairwise
nonconcurrent lines of that quiver.

Let L and M be nonconcurrent lines. Let ap, az be the points of L in O, O,
respectively, and let by, by be the points of M in O, O, respectively. Suppose
a; ~ by, and let a3 be the point of L collinear with b,. Since b; € {al,bz}l,
[a1] = [b2]. Andsince a; € {e2,b1}t, [a2] = [b1]. Hence ey ~ by, ie.,
a3 = a3. But this says that L and M are in the same quiver. This proves:

2

If L and M are nonconcurrent lines for which the point a; of L in O is collinear
with the point b; of M in O, then L and M are in the same quiver.

Keep in mind that the concept of quiver always depends on the ovoid O, and all
the quivers discussed above depend on the ovoid O. But O could be any member
of M' = M\{Ow}. So the quivers discussed so far are called O-quivers.

Fixi € {0,1,...,g}. In [P] there appcars the following “axiom™:
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A3(I). Let L, M, be nonconcurrent lines of S meeting lines L,, M> at four
distinct points belonging to members of M; = M'\{O;}. Let a; be the point of
O incident with L;, j = 1,2, and let b; be the point on M; collinear with a;,
j=1,2. Thenb; € O;ifandonly if b, € O;.

It was observed in Section V of [P] that A3(i) is equivalent to having O; be a
coregular point of So.. And this was also observed to be equivalent to the follow-
ing: If L, M are any nonconcurrent lines in some O;-quiver Q, then the lines of
{L, M}* notin Q (i.e., not incident with any of the points of O, U O; on L or
M) are all in a common O;-quiver Q’'. By II.2 this is equivalent to the following;
If K and N are any distinct lines of {L, M }* not in (9, the point of O, on K is
collinear with the point of O; on N. Hence we may collect from [D] and [P] the
following characterizations of P(Q(4,q),L).

L3

LetS=(P,B,I) beaGQoforder(g+1,¢g—1),qg > 4. Then S is isomorphic
0 P(Q(4,q), L) if and only if there is a partition M = {(O, 0o, O1,...,04}
of the pointset P into ovoids in such a way that O, is pivotal for M and any one
of the following equivalent conditions holds:

(i) let L; and M, be any nonconcurrent lines mecting nonconcurrent lines Lo
and M in four points of Op U Oy U --- U O,. Let q; be the point of O,
onL;,i=1,2.1fa; ~ b;IM;,i= 1,2, then b; and b, must belong to the
same member of M,

(i) With the same notation as in (i), it must be that {b;, b2 }* N O = 0.

(iii) For any pair (L, M) of nonconcurrent lines, let a be the point of O, 0n L.
Then a ~ bI M determines the point bin some 0;,0 < 1 < q. SoL and M
belong to some O-quiver Q. Then for each pair ( K, N) of distinct lines of
{L, M}* not in Q, the point of O, on K must be collinear with the point
of O;on N.

From now on we suppose that S satisfies A3(0), and all quivers to be mentioned
are Op-quivers. Then we quote the result V.1 of {P].

174,
Let L and M be nonconcurrent lines of some quiver Q. Then the following hold:
(i) Thelinesof {L, M }* notin Q (i.e., notincident with the points of O, UGy
on L and M) are all in a common quiver Q'.

(ii) L and M belongtoag x ¢ grid I' having ¢ lines (of {L, M} in Q' and ¢
lines in Q. The points of I are preciscly those points on lines of {L, M }*
notin Qs U Op.

(iii) If (L, M, K) is a triad of lincs in Q, then K belongs to the ¢ x ¢ grid
containing L and M if and only if (L, M, K) is centric.,
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Axiom A4 of [P] was included to force g to be even. Here we omit A4 since
we want to allow both ¢q odd and g even. Nevertheless, the two cases are treated
separately.

For g = 2¢, we give axioms AS and A6 of [P).

AS. Let (L1, Ly, L3) be a centric triad of lines for which the points of O, on
Ly, Ly, L3 are each collincar with the points of Qg on Ly, L2, L3. If for some
(e,b) € O X O, a # b, both Ly and L, are incident with points of {a, b},
then L3 is also incident with a point of {a, b}*.

A6. Let X, X2, X3 bedistinct pointsof some O;, 1 < j < ¢. Let(Ly, L2, L3)
and ( M1, M2, M3) be two triads of lines such that L; meets M; at X;,1=1,2,3.
Suppose the three points of Oo, On L1, L2, L3 (respectively, M), M2, M3) are
each collinear with the three points of Op on L, L3, L3 (respectively, My, M,
M3;). Then (Ly, L2, L3) is centric if and only if (M1, M2, M3) is centric.

In [P] there was one additional axiom A7, which we no longer need. (The proof
in [P] depended in a very direct way on the main proof in [DT2]. This meant
that A7 was required in order to satisfy a specific last property in [DT2], which
property was shown in [DT4] to be superfluous.) Finally, the main result of [P]
may be stated as follows:

ILS.

Let S be a GQ of order (¢ + 1,9 — 1), g even, whose pointset P is partitioned
into a family M = {Ou, 00, 01,...,0,} of ovoids for which O, is pivotal.
Suppose S satisfies A3(0), A5 and A6. Then there must be some g-arc Q™ of
w = PG(2,q) for which S & S(Q~). Since g is even, there is a hyperoval
Q* = Q- U {a, b} containing Q~. Let Q = Q~ U {a}. Then the point a plays
the role of a regular line in 75 (Q), and S(Q ) & P(T2(2),0a).

Now let ¢ = p°, p an odd prime. The axiom Ag, (1) of [D] is our axiom A3(0).
But M. De Scete [D] restated A5 and A6 in a way that still depends on the pivotal
ovoid O and on the choice of Op € M' = M\{O} but for which g is assumed
to be odd.

Ao, (2). Let (z,y, z) be a triad of points of S such that |[{z,y, z}* NOc| = 1.
If Ly, L2, L3 (respectively, My, M2, M3) are nonconcurrent lines of some quiver
Q (respectively, Q") suchthat Ly Iz My, Loy Iyl Ma, L3 IzI M3, then (L, L2, L3)
is centric if and only if ( My, M2, M3) is centric.

Ag,(3). Let (L1, L2, L3) be a centric triad of lines in some quiver Q. If for
some a,b € Oy, a # b, both L; and L, are incident with points of {a, b}, then
Ls is also incident with a point of {a, b}*.

The result of [D] may now be formulated as follows.

1.6

Let S be a GQ of order (¢ + 1,9 — 1), g odd, ¢ > 3, whose pointset P is
partitioned into a family M = {Oc, 00,01, ..., O,} of ovoids for which O, is
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pivotal. Suppose S satisfics A3(0), Ao, (2), Ao, (3) Then there must be some g-arc
Q- of m = PG(2,q) for which S & S(Q7). Since g is odd, Q™ is contained
in a unique conic Q and S(Q ™) ¥ P(T2(Q), L) for any line L. (Of course,
T2(Q) = Q(4,9))

It is helpful to note that for g even (respectively, odd), the axioms A5 and A6
(respectively, Ag, (2) and Ag, (3)) are designed to guarantee exactly the following:
If y, z are any noncollinear points of P\ (O U Og) then there is a unique set yz
of ¢ points contained in any grid I which contains both y and z.

III. The GQ S(G,F~)

Let G be an elementary abelian group of order ¢, ¢ > 1, with 4-gonal family
F = {Ac, A1,..., A }. Put F~ = F\{A} and recall the construction of the
GQ S = S(G,F7) oforder (g+1,g—1). Let M = {0, 0. }U{A%9: g € G}
be the ovoids (cf. 1.2) that partition the points of S. We want eventually to interpret
for M the hypotheses of I1.3, I1.5 and IL.6.

i

Let wy = AxAjg1 and wy = AxAjg2, 1 < j < g, be distinct points of type
(iii). Then {w1, w2 }* = {A3h: h € G}, and {wy, w2 }* = {Ax4jg: g € G).

Proof: Weknow A5 N AeA;j = Aj. If 2,y € AjgN AnpAj, g € G, thenzy™ €
AN AxAj = Aj. Hence if z € Ajg N AwAj, then A;z = Ajg N AwA;. So
| 479 N AcoA;| = O or g. But there are only g distinct cosets of A} and |AwA;| =
g%, so each coset of A,'- meets AwA; in exactly g elements. To finish the proof
it will suffice to show that each point of the form Ajh, h € G, is collinear with
each point of the form A 4,g, g € G. So choose z € Ajhg™" N Age A, and put
b= xzg. Then Ajb = Ajzg C Ajh N AxAjg. Hence A;b is the line joining Ajh
and A“,Ajg. [ |

2

Consider points wy = A Aig1, w2 = AAjg2, 1 < 14,7 < ¢,91,92 € G. Write
gzg,‘l = ama;aj‘l (uniquely!), where a; € Ag for any appropriate index k. Put
b = 6u00ig1 = ajg2. Then {wy, wn}* = Accb and {wy, w2 }** = {AArb: 1 <
k< g}

Proof: Let c.bbe atypical element of Agb. Then coob = Cool008ig1 € AiCooloodi
C A Aig1. SO Ajcootnog: is the line joining coob and Ao A;g;. Similarly, ceob =
08792 € AjCog2 C AcoAjg2, S0 AjCooga is the line joining ceob and Ao Ajg2 .
Hence {w;, w2}t = Agb. FOr oob € Aoob, Coob € ArCod C AcoAib, 50
{wi, w2}t = (Acob) L = {AcArb: 1 < k < b}. ]

Combining III.1 and II1.2 we have the following immediate corollary.
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IIL3 For distinct points wy, w2 € O, the pair (w1, ws) is regular with {w;,

wy }+ € Og. Moreover, there is a single ovoid © € M' = M\ {0} for which
{w1,un }-L C O. This says O is a normal ovoid which is pivotal for M.

There is a companion result giving {u, u’'}* for distinct u, v’ € O,.

Im14.

() fus=Ajg,u' = Ajg, qg;' € Aj, then {u, v’} = {AxAjh: h € G}.
And {u, u'}'“' = {A '9:9 € G}.

(i) Ifu= Afgi, v = Ajgs, i # j, write g297" = aja;' (uniquely.) with
af € Al,a; € A;. Thenb = ajg1 = ajga € Ag; N Ajg2. Then
{u u'}t = Algy N Ajg2 = b(A; N A;). But {u, u'}L might have fewer
than ¢ elements.

Since O is pivotal for M, clearly II.1 holds. We may adapt the discussion
following II.1 to the present situation and sce that I1.2 holds. Now we choose the
ovoid O, to play the role of O; in the discussion following 11.2, and to play the
role of O in IL.4 and what follows I1.4. Put M" = M'\{0O,} = {A%Lg:9 € G}.
And all quivers to be mentioned in II1.5 and its proof are O, -quivers.

IIL.S. Let L and M be nonconcurrent lines of some quiver Q. Then the lines
of {L, M}* not in Q (i.e., not incident with any of the points of O, U O, on L
or M) are all in a common quiver Q'. In other words, M satisfies A3(0) with O,
playing the role of Qg.

Proof: First we consider what quivers look like. For a typical point z = Alg €
O..[z] = {Alg:g € G} by IIL1. And [z]* = {AxAig: g € G}. So for a fixed
i,1 < i < ¢, the cosets of A; form a quiver Q; of ¢g? lines joining points Atg with
points A, A;h,9,h € G.

Suppose L = A;g and M = A;h are two lines of the quiver Q;, and consider
what it means for L and M to meet at some point, i.e., at some point of O, U O,.
A;g and A;h meet at some point of O, if and only if there is some b € G for which
Apb is on them both. But A;g C A?bif and only if A; C Atbg~! if and only if
bg~! € A!. And A;h C Ajbif and only if bh~! € Aj. So for given g, h € G,
there is a b € G such that A;g and A;h meet at the point Atb of O, if and only
if gh—! € A?. Similarly, replacing A7 with AL A;, the lines A;g and A;h meet
at a point of O, if and only if gh~! € AcoA;. SO to have the lines L = A;g and
M = A;h of the qulvcr Qi nonconcurrent means that gh~! ¢ A U AxA;, ie.,
gh™! = afae where o} € AN\ A; and 6, € Aco\{e}-

Recall (from [PT]) that

G = A} + (Aifoo\A) + (AiAINA) + -+ (AANA) + - + (AsA\AD)
partitions G. So if L, M (as above) are nonconcurrent, there is some j, 1 # 7,

1 < j < g, for which gh~! € A;A;\A;. We claim that the lines of {L, M }*
belong to the quiver O;. Say gh~! = b;b; = a}ace, Where b; € A;, e # b; € 4,
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al € AN\Aj, € # 6o € Aw. Putb = eazlg = alh. Then A;b C Ak N AwAig.
And with ¢ = Ah = (a})!g, Aic C AcAsh N A}g. For arbitrary a; € A;,
a;bih = a;b7'g C Ajag. So as a; varies over the elements of A;, the line Aja;g
is the line of {L, M}* = {A;g, A;h}* not in Q; joining the point a;g of L with
the point a;b;h = a.-b;'g of M. So, the lines of {L, M }* not in Q; all lie in Q;.
|
Note: The ¢ x ¢ grid determined by L and M in the preceding proof contains
the points of A;A;g = A;A;jh. One of the rulings consists of certain cosets of A;,
the other consists of certain coscts of A;.

IV. Result IL.3 Interpreted for S(G,F™)

We now consider O-quivers for O € M" = M\{0Ow,0,}. We may assume

that O = A% (if O = A%g, just translate everything by g~!). Fore € A
consider the panel (a, Aia, AwAie),1 < k < ¢. Then [a] = A, and [a]t =
{AxAk:1 < k < ¢}. The corresponding quiver consists of lines of the form
Arata € A, 1 < k< gq.

Let Ay, = {a1,...,8.} and let {g1,...,9,} be aset of distinct representatives
of A, in A,. Then also foreachm, 1 < m < g, the gy,..., g, are distinct
representatives for Ae A in G, and {a;g;: 1 < 1,7 < ¢} is a set of coset repre-
sentatives of A, in G.

Translating the quiver above by an element of A%, (lo keep it an A% -quiver),
we see that a typical A%, -quiver consists of a set of lines of the form {Agaigj: 1 <
i,k<g}forafixedj,1<j<q.

For the time being we suppose g; = e. Then A,a; and A,a; meet at a point
AxArg of O if and only if m = n = ¢t. Suppose m # n. Then Apa; and A,a;
meet at a point h € A%, if and only if a; = a; = h. So suppose a; # e = a;.
Then Ap,a; and A,, are nonconcurrent lines of an A3 -quiver. Define ¢ and d by:
{c} = A%aiN Ay {d} = Ama; N A} Then for b, € Ay, equal to any one of
the ¢ — 2 elements of A,, for which b,,a; € A} U A, A,. the accompanying
diagram indicates all lines of { Ama;, A, }*. For such a given by, there is a unique
v(v # m,n,o00) for which bpa; € AnA,. If bya; = byby, by € As, by € Ay then
by, = b;l bma; € Aybna;.

The third column of points contains the points of O, on those lines of { Ama;,
A, }* not in the quiver containing A,,e; and A,. And the fourth column of points
contains those of A%, on the same lines. Condition (jii) of IL.3 is that each point of
the third column be collinear with each point of the fourth. This is equivalent to
AoAvbn NAL = AAndN Al = AsAmc N A, Of course, if this holds, then
translating by any element of G gives a condition that is equivalent. This leads to
the following characterization.

IV.1. Let G be an elementay abelian group of order ¢, ¢ > 1 with 4-gonal fam-
ily F = {Aw, Al1,..., A} Put F! = y\{A}. Then the GQ S = S(G,F)
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Ama; An

bna; Aybna; b, Aoc.fvbm AN Aybna;
d And A3, Adnd A NA,d
Aja; Amc c .-1°°ilmc Al NAnce
AgoAn An e
a; Ana; Acoin
Diagram 1

of order (g+ 1, g — 1) is isomorphic to P(Q(4, q), L) if and only if the following
condition holds:

Foreachm,nwithl < m,n< q,m # n,and foreacha € A, a # e, define
the following elements:

{bm} = A% N Aga (b, = co, Where a = o] above);

{bs} = AnN A%a (b, = d,, where a = o] above).
Fori<j<gm#j#mn

{bj} = AmﬂA,.Aja.

Then K = AoAjbj N Ay, is independentof j,1 < 5 < g.

V. Result IL5 Interpreted for S(G,F~), g Even

Since g is even, there is a group A, for which F* = F U {A4,} is a 4-gonal
partition of G and for which A} = A;A,,i € {00, 1,...,¢}. First we interpret As
in this case. Let z,y belong to distinct members of M”, i.e., to distinct cosets of
A%, = AxA,,and suppose z 7 y. Then there is a unique pointe € O N{z, y}*
(respectively, b € O, N {z,y}*). Define the pseudoline zy through z and y to be
zy = {a,b}* (as in [P]). Then (see [P]) As is equivalent to the condition that any
grid (i.e., some coset A,A,9,1 < s <t < ¢, g € G) containing z and y must
contain all ¢ points of the pseudoline zy.
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So let z, y be noncollinear points in distinct cosets of A, A, but in the same
coset of A,4;, 1 < 8 <t < g. Without loss of generality (translate by z~! ) we
may assume T = e, S0y = ysyt € AsA\AcwcA.. There are unique 1,7, 1 < 1,
j< g suchthaty € AA; = aandy € A,Aj = b. Thenzy = {a,b}* =
AAiNA,A;. (Herei # j sincez o y.) Since {z,y} C A,A:, As says A,A¢ D
AcAi N AAj. So As is equivalent t0: y € (A,A¢ N AxAi N ALA\ A A,
implies 4,4; D A4 N A.Aj.

V.1 As is equivalent to: If |4, A: N AwAiNAA;| > 1,then A, A¢ D AAiN
A.A; (whenever 1, j, 8,1, 00, * are distinct).

In [P] As was also restated in terms of grids: Let I'; be a ¢ x g grid with lines
from quivers Q;,Q%, + = 1,2. Suppose I'1 and I'; both have lines incident with
points z,y, where 2,y are distinct members of the same ovoid in M” (i.e., z,y
belong to the same coset Ao A.g of A%, = AxA.). Then the set of ¢ points of
AxA.g incident with the lines of Iy is the same as the set of ¢ points of A A.g
incident with I',. Translating by z~! we may assume z = e # y € AcoA.. And
there are grids Iy = A,A.q1, I'2 = AiA,g2 both containing z = e and y. So we
may assume gy = g2 = e,ande # y € A;A, N AiA, N A A,. Then Ag says
A A NALA, = ALA, N AnA,, i, |[AwA. N AA, NAA,| = g. So As and
Ag may be combined into one statement, and the result I1.5 may be restated in the

present context as:
V.2 There is some g-arc @~ of w = PG(2, ¢) for which S(G,F~) = §(Q7)
if and only if for any six distinct indices ¢, 7, k, £, m,n € {*,00,1,...,q} includ-

ing oo and *, |A;A; N ArAgN AnAal=10rg.

VL. Result I1.6 Interpreted for S(G, F~), ¢ Odd

Letting O, play the role of Og in Section II, we first interpret Ao, (2) in S(G, F ),
g odd. Suppose AA;h is a point of O, collinear with three points z, y, z of the
grid ' = A,A:g. Translating by h~! we assume h = e. Then the three points
z,y, z are all on the line A;g if j = s ort. In this case AA; is a point on the
line A;g, and any grid containing two points of A;g must contain the points in the
set A;g. Ao, (2) really says that if I'; and I are two grids with z,y,2 € I'y and
z,y € [, thenz € Iy, provided |{z, y, 2}1*NOx| = 1. Whenz, y, 2 lieon aline,
we have just seen that this is the case. So suppose no two of z, y, z are collinear.
Then j ¢ {s,t}. Suppose z,y € AcA; N AsArg. Then zy™"' € Acdj N A A
If there is a second grid A, A,k with 7,y € A A h then zy~! € AAj N AuA,.
So Ap, (2) says that

{z=cyic € AA;jNA A} = {2=dy:d € AuA; NALA}
if |AcA; N A,A: N AyAy| > 2. We have essentially proved the following:

VIL1. Ag,(2) is equivalent to the following: If N = |A,A; N A, A NAA] >
1,then N = ¢, if j, s, ¢, u, v are distinct members of {1,2,...,¢}.
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Now consider Ag, (3), which says that if a grid contains two points of {u, u'}*,
for distinct u,u’ € O,, then it contains ¢ points of {u,u'}*. By IIL4 there are
two cases. In both cases if we start with an arbitrary grid A,A4,9, 1 < s,t < ¢,
s # t, g € G, we may translate by g~! and assume g = e. In the first case if
u,u' € O, satisfy {u,u'}* C O, then we may assume u = Alg, u' = Alg.
And {u,u'}t = {AxA,h:h € G}. But none of these points belongs to any
of the grids. So suppose u = Ajgi, v’ = Ajgz, 4 # j,1 < 4,7 < ¢. Then
{u,u'}* = b(A; N Aj) forany b € Afg1 N Ajgz. And Ag,(3) is equivalent to:
|5(A; N AN A A¢| > 1= [b(A; N A4j) nA sAt| = g. A} N A3, is a group of
order q. So A? NA;NA,A: > 1 (withi, j, s, distinct) 1mpl|es A' nA‘ C A A,
in which case any coset of A} N A}, is contained in A, A; or is dlSjOln[ from it. It
follows that Ap,(3) is charactenzed as follows:

V1.2, Ag,(3) holds in S(G, F~), ¢ odd, if and only if for any distinct 1, j, s, ¢
in{1,...,q},if [A] N A} N A;A:| > 1, then A} NAj C AsA:.

So interpreting IL.6 for S(G, F~), ¢ odd, we obtain the next result.

V13. Ifgisodd, S(G, F~) = P(Q(4,q), L) ifand only if the following two
conditions hold.

(i) Whenever j, s,t, u,v are distinct members of {1,...,¢}, |AAd; N A;A:N

AA|=1org.
(i) Forany distincts,j,s,t € {1,...,q},|[Af NA;N A, A =1o0rg.
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