On the diameter of nth order degree regular trees

Michael A. Henning

University of Natal Pietermaritzburg, 3200 South Africa

Abstract. For n a positive integer and v a vertex of a graph G, the nth order degree of v in G, denoted by $\deg_n v$, is the number of vertices at distance n from v. The graph G is said to be nth order regular of degree k if, for every vertex v of G, $\deg_n v = k$. For $n \in \{7, 8, ..., 11\}$, a characterization of nth order regular trees of degree 2 is obtained. It is shown that, for $n \ge 2$ and $k \in \{3, 4, 5\}$, if G is an nth order regular tree of degree k, then G has diameter 2n-1.

1. Introduction

We denote the vertex set and edge set of a graph G by V(G) and E(G), respectively. If $v \in V(G)$, the degree of v in G is written as $\deg v$ and the minimum degree of G is given by $\delta(G) = \min\{\deg v \colon v \in V(G)\}$, whereas the maximum degree of G is $\Delta(G) = \max\{\deg v \colon v \in V(G)\}$. For a connected graph G, the distance d(u,v) between two vertices u and v is the length of a shortest u-v path. The eccentricity $e_G(v)$ of a vertex v of G is defined as $\max_{u \in V(G)} d(u,v)$. The diameter diam G of G is $\max_{v \in V(G)} e(v)$. For other graph theory terminology we follow [4].

Observe that the degree of a vertex v in a graph G is the number of vertices at distance 1 from v. This observation suggests a generalization of degree. In [1], for n a positive integer and v a vertex of a graph G, the nth order degree of v in G, denoted by $\deg_n v$, is defined as the number of vertices at distance n from v. Hence $\deg_1 v = \deg_v v$. Further, in [1], the graph G is defined to be nth order regular of degree k if, for every vertex v of G, $\deg_n v = k$.

Concepts related to the nth order degree of a vertex were introduced by Bloom, Kennedy and Quintas ([2], [3]). In [2] the distance degree sequence of G based at a vertex v is defined as the sequence $\deg_1 v, \deg_2 v, \ldots, \deg_{\text{diam } G} v$, and distance degree regular graphs, namely those graphs G in which all the vertices have the same distance degree sequence, were investigated. Randic [8] has examined the role that distance degree sequences of graphs play in chemical applications. Related work was also performed by Hilano and Nomura [7] and by Taylor and Levingston [9].

For $n \in \{7, 8, ..., 11\}$, we obtain a characterization of *n*th order regular trees of degree 2. Further, it is shown that, for $n \ge 2$ and $k \in \{3, 4, 5\}$, if G is an *n*th order regular tree of degree k, then G has diameter 2n - 1.

2. Known results

In this section we list a few known results which will prove useful to us. The following result was proposed as a conjecture in [1] and proven in [5].

Theorem A. For $n \ge 2$, if G is a connected nth order regular graph of degree 1, then G is either a path of length 2n-1 or G has diameter n.

The next result [6] establishes a lower bound on the diameter of nth order degree regular trees.

Theorem B. For $n \ge 2$ and $k \ge 1$, if G is a tree which is nth order regular of degree k, then diam $G \ge 2n - 1$.

Theorems A and B yield the following characterization of nth order regular trees of degree 1.

Corollary A. For $n \ge 2$, G is an nth order regular tree of degree 1 if and only if G is a path of length 2n-1.

The following result [6] will prove to be useful.

Lemma A. For $n \ge 2$ and $k \ge 1$, the maximum degree $\triangle(G)$ of a tree G that is nth order regular of degree k is at most k + 1.

A necessary condition for a tree to be nth order regular of degree 2 is established in [6].

Theorem C. For $n \ge 2$, if G is a tree which is nth order regular of degree 2, then the diameter of G is 2n-1.

Before proceeding further, we recall the definition of a double star. The double star S(m,n) is obtained from the (disjoint) union of two stars K(1,n) and K(1,m) where $n,m \in \mathbb{Z}^+$, by joining a vertex of maximum degree in K(1,n) to a vertex of maximum degree in K(1,m).

The graph H_k is defined in [6] as follows. For $k, \ell \in \mathbb{Z}^+$ let $H_{\ell,k}$ be the graph obtained from K(1,k) by subdividing each edge ℓ times. Now let F_1 and F_2 be two disjoint copies of $H_{2,k}$ and let v_1 and v_2 be vertices of degree k in F_1 and F_2 , respectively. The graph H_k is obtained from $F_1 \cup F_2$ by joining v_1 and v_2 with an edge and then subdividing twice the edge v_1v_2 . (The graph H_k is shown in Figure 1.)

In [6], for $k \ge 1$ an integer, the following characterization of *n*th order regular trees of degree k for $n \in \{2, 3, ..., 6\}$ is obtained.

Lemma B. For $k \ge 1$, a tree G is 2nd order regular of degree k if and only if $G \cong S(k,k)$.

Lemma C. For $n \in \{3,4,6\}$ and $k \ge 1$, a tree G is nth order regular of degree k if and only if G is a path of length 2n-1 and k=1.

Figure 1 The graph H_k

Lemma D. For $k \ge 1$, a tree G is 5th order regular of degree k if and only if G is isomorphic to H_k .

That there exists a tree which is *n*th order regular of degree k for each $n \ge 7$ and $k \ge 1$ is established in [6].

Theorem D. Let $n \ge 7$ be an integer. Then for each $k \in \mathbb{Z}^+$, there exists a tree that is nth order regular of degree k.

3. Characterizations of nth order regular trees of degree 2 for small n.

In this section we investigate nth order regular trees of degree 2 for small n. For $n \ge 2$, let G be a tree which is nth order regular of degree 2. Necessarily (cf. Lemma C) $n \notin \{3,4,6\}$. If n=2, then (cf. Lemma B) $G \cong S(2,2)$, while if n=5, then (cf. Lemma D) $G \cong H_2$. Hence in what follows we restrict our attention to those values of $n \ge 7$. By Theorem D for each $n \ge 7$, there exists a tree that is nth order regular of degree 2.

For $n \in \{7, 8, 10\}$ and $i \in \{1, 2\}$, let G_n and $G_{9,i}$ be the graphs shown in Figure 2. Furthermore, for $i \in \{1, 2, ..., 5\}$, let $G_{11,i}$ be the graph shown in Figure 3. We are now in a position to characterize nth order regular trees of degree 2 for $n \in \{7, 8, ..., 11\}$.

Theorem 1. For $n \in \{7, 8, 10\}$, G is an nth order regular tree of degree 2 if and only if $G \cong G_n$. Furthermore, G is a 9th order regular tree of degree 2 if and only if $G \cong G_{9,1}$ or $G \cong G_{9,2}$, while G is an 11th order regular tree of degree 2 if and only if $G \cong G_{11,i}$ where $i \in \{1, 2, ..., 5\}$.

Figure 2: The graphs G_n for $n \in \{7, 8, 10\}$ and $G_{9,i}$ for $i \in \{1, 2\}$.

Proof: Let $n \ge 7$ be an integer and let G be a tree which is nth order regular of degree 2. Then (cf. Theorem C) the diameter of G is 2n-1. Let u and v be vertices of G with d(u,v)=2n-1, and let $P:u=u_0,u_1,u_2,\ldots,u_{2n-1}=v$ be the u-v path in G. Necessarily u and v are end-vertices in G.

Figure 3: The graph $G_{11,i}$ for $i \in \{1, 2, ..., 5\}$.

Since G is nth order regular of degree 2, there exists a vertex w of G, distinct from u_n , that is at distance n from u. Let $Q: u = w_0, w_1, \ldots, w_n = w$ be the u - w path in G. Further let r be the largest integer for which $u_r = w_r$. Lemma A implies that deg $u_r = 3$. Since P is a longest path in G, it follows that $r \ge n/2$.

We show that $\frac{n}{2} < r < n$. If this is not the case, then $r = \frac{n}{2}$ and w is an end-vertex of G. Consider the vertex u_1 . Let u_1^* denote the vertex of G, distinct from u_{n+1} , that is at distance n from u_1 . Since P is a longest path in G, the edge $u_{\frac{n}{2}}u_{\frac{n}{2}+1}$ is necessarily an edge of the $u_1 - u_1^*$ path. Furthermore, u_n is a vertex of the $u_1 - u_1^*$ path, for if this were not the case, then $\deg_n u > 2$. Hence the $u_1 - u_1^*$ path is the path $u_1, u_2, \ldots, u_n, u_1^*$. This implies, however, that the three vertices u_1, w_{n-1} and u_{2n-1} are all at distance n from u_1^* , which produces a contradiction. We deduce, therefore, that $\frac{n}{2} < r < n$.

Next we observe that, for each i with $1 \le i \le n-r$, the vertex u_{n+r-i} is at distance n from each of the vertices u_{r-i} and w_{r+i} (note that $r-i \ge 2r-n>0$). So, since G is nth order regular of degree 2, it follows that, for $2 \le i \le n-r$, deg $u_{r-i+1}=2=\deg w_{r+i-1}$; or, equivalently, $\deg u_{r-i}=2=\deg w_{r+i}$ for $1 \le i \le n-r-1$.

We now consider the vertex u_{2r-n} . Since G is nth order regular of degree 2, there exists a vertex z of G, distinct from u_{2r} , that is at distance n from u_{2r-n} . Let R be the $u_{2r-n}-z$ path in G. Since P is a longest path in G, R contains the vertex u_r . We show that R contains the vertex w_{r+1} . If this is not the case, then R contains the vertex u_{r+1} . Since $d(u_r, u_{2r-n}) = n-r = d(u_r, w)$, the vertices u_{2r} and z are both at distance n from w in G. However the vertex u is also at distance n from w and so $\deg_n w > 2$, which produces a contradiction. Hence R contains the vertex w_{r+1} . Thus, since $\deg w_i = 2$ for $r+1 \le i \le n-1$, R contains the $w_{2r-n} - w_n$ path as a subpath. Let $R: u_{2r-n} = w_{2r-n}, w_{2r-n+1}, \ldots, w_n, w_{n+1}, \ldots, w_{2r} = z$ be the $u_{2r-n} - z$ path in G.

Since P is a longest path in G, $\deg w_{2\tau}=1$. Observe that, for each i with $1\leq i\leq r$, the vertices u_{r-i} and w_{r+i} are both at distance n from the vertex u_{n+r-i} . Hence since G is nth order regular of degree 2, it follows that $\deg u_{r-i}=2=\deg w_{r+i}$ for $1\leq i\leq r-1$. Hence the component of $G-u_ru_{r+1}$ containing u_r is isomorphic to $P_{2\tau+1}$. For convenience, for each i with $0\leq i\leq r-1$, let us relabel the vertex $w_{2\tau-i}$ with v_i (see Figure 4).

Next we consider the vertex $v=u_{2n-1}$. Let y be the vertex, distinct from u_{n-1} , that is at distance n from v. Further let m be the largest integer for which the vertex u_{2n-1-m} is contained in the v-y path in G. Then using a similar argument as that used to establish that the component of $G-u_ru_{r+1}$ containing u_r is isomorphic to P_{2r+1} , we may show that the component of $G-u_{2n-2-m}u_{2n-1-m}$ containing u_{2n-1-m} is isomorphic to P_{2m+1} . Let $v=u_{2n-1}$, u_{2n-2} , ..., u_{2n-1-m} , v_{2n-m} , v_{2n-m+1} , ..., $v_{2n-1}=y$ be the v-y path in G.

We may assume, without loss of generality, that $m \ge r$. Now let s = n - r. Then, since $\frac{n}{2} < r < n$, $1 \le s < \frac{n}{2}$ (and $n \ge 2s + 1$). We show firstly that $s \ge 2$. If this is not the case, then s = 1 and r = n - 1. Now for each i with $0 \le i \le n - 2$, u_i is at distance n from u_{n+i} and v_{n-2-i} . It follows, therefore, that $\deg_n u_{n+i-1} = 2$ for $1 \le i \le n - 2$. Furthermore, since $\deg_n u_{n-1} = 2$, it follows that $\deg_n u_{2n-2} = 3$. However, if n > 2, then u_{n-1} is the only vertex at

Figure 4: The component of $G - u_{\tau}u_{\tau+1}$ containing u_{τ} before (a) and after (b) relabelling.

Figure 5: The component of $G - u_{2n-2-m} u_{2n-1-m}$ containing u_{2n-1-m}

distance n from u_{2n-1} in G. Since $n \ge 7$, this produces a contradiction. Hence $s \ge 2$ (and so r = n - 2).

Observe that for each i with $0 \le i \le r - s$, the vertex u_i is at distance n from u_{n+i} and v_{r-s-i} . It follows, therefore, that $\deg u_{n+i-1} = 2$ for $0 \le i \le r - s$. Hence, since $\deg u_{2n-1-m} = 3$, we have $n+r-s \le 2n-1-m$; or, equivalently, $m \le n+s-r-1$. Thus $n-s=r \le m \le n+s-r-1$ and so $r \le 2s-1$ (with equality if and only if m=n+s-r-1). If s=2, then $r \le 3$; consequently, r=3 and n=5, which contradicts our choice of $n \ge 7$. Hence $s \ge 3$.

Suppose that n=7. Then s=3 and r=4. Since $\deg u_{n+i-1}=2$ for $0 \le i \le r-s$, we have $\deg u_6=2=\deg u_7$. Furthermore, $r=4 \le m \le 5$. We show that m=4. If this is not the case, then m=5 and $u_{2n-1-m}=u_8$. However the vertices u_3 , v_3 and v_{13} are all at distance 7 from the vertex u_{10} , which produces a contradiction. Hence m=4 and $u_{2n-1-m}=u_9$. Since $\deg_7 u_3=2$ and

 $\deg_7 u_{11} = 2$, it follows that $\deg u_8 = 3$ and $\deg u_5 = 3$, respectively. Moreover, since the vertices u_{10} and v_{10} are both at distance 7 from u_3 and v_3 , it follows that the vertex, distinct from u_4 and u_6 , that is adjacent to u_5 is an end-vertex and the vertex distinct from u_7 and u_9 , that is adjacent to u_8 is an end-vertex. Hence G is 7th order regular of degree 2 if and only if $G \cong G_7$.

Suppose that n=8. Then s=3 and r=5. Since r=2s-1, m=n+s-r-1=5 and so $u_{2n-1-m}=u_{10}$. Since $\deg u_{n+i-1}=2$ for $0\leq i\leq r-s$, we have $\deg u_7=2=\deg u_8=\deg u_9$. Moreover since the vertices u_5 and u_{15} are both at distance 8 from v_{13} , $\deg u_6=2$. Hence G is 8th order regular of degree 2 if and only if $G\cong G_8$.

Suppose that n=9. Then s=4 and r=5, and so $\deg u_8=\deg u_9=2$. Since $r\leq m\leq n+s-r-1$, we have $5\leq m\leq 7$. We show that $m\leq 6$. If this is not the case, then m=7 and $u_{2n-1-m}=u_{10}$. However, the vertices u_4 , v_4 and v_{15} are all at distance 9 from the vertex u_{13} , which produces a contradiction. Hence m=5 or m=6. If m=5 (m=6), then it is straightforward to see that $G\cong G_{9,1}$ ($G\cong G_{9,2}$, respectively). Hence G is 9th order regular of degree 2 if and only if $G\cong G_{9,1}$ or $G\cong G_{9,2}$.

Suppose that n=10. Then s=4 and r=6, and so $\deg u_9=\deg u_{10}=\deg u_{11}=2$. Furthermore, $6\leq m\leq 7$. If m=7, then $u_{2n-1-m}=u_{12}$. However the vertices u_5 , v_5 and v_{19} are all at distance 10 from the vertex u_{15} , which produces a contradiction. Hence m=6 and it is straightforward to see that $G\cong G_{10}$. Thus G is 10th order of degree 2 if and only if $G\cong G_{10}$.

Suppose that n=11 Then either s=4 and r=7 or s=5 and r=6. Suppose firstly that s=4 and r=7. Then since r=2s-1, m=n+s-r-1=7 and so $u_{2n-1-m}=u_{14}$. Moreover deg $u_{10}=\deg u_{11}=\deg u_{12}=\deg u_{13}=2$, and since u_7 and u_{21} (u_8 and u_{20}) are both at distance 2 from v_{18} (v_{19} , respectively), $\deg u_8=2=\deg u_9$. Hence in this case $G\cong G_{11,1}$. Suppose then that s=5 and r=6. Then $\deg u_{10}=\deg u_{11}=2$. Since $r\le m\le n+s-r-1$, we have $6\le m\le 9$. If m=8 or m=9, then $\deg u_{11}u_{16}>2$, which produces a contradiction. Hence m=6 or m=7. If m=6 (m=7), then it is straightforward to see that G is isomorphic to $G_{11,3}$ or $G_{11,4}$ or $G_{11,5}$ ($G\cong G_{11,2}$, respectively). Hence G is 11th order regular of degree 2 if and only if $G\cong G_{11,i}$ where $i\in\{1,2,\ldots,5\}$.

This completes the proof of the theorem.

4. The diameter of nth order regular trees of degree k for small k

The following conjecture is given in [6].

Conjecture 1. For $n \ge 2$ and $k \ge 1$, if a tree G is nth order regular of degree k, then diam G = 2n - 1.

For k = 1 and k = 2 Conjecture 1 is true (cf. Corollary A and Theorem C). In this section we prove the conjecture for k = 3, k = 4 and k = 5.

Theorem 2. For $n \ge 2$, if G is a tree which is nth order regular of degree 3, then the diameter of G is 2n-1.

Proof: By Theorem A the diameter of G is at least 2n-1; so it remains to be shown that the diameter of G is at most 2n-1. Assume that diam G=m where m>2n-1. Among all the vertices of G with eccentricity equal to m, let u be one for which the number of vertices that the three paths connecting u to the three vertices at distance n from u have in common is a minimum. Let v be a vertex at distance m from u and let $P: u = u_0, u_1, \ldots, u_m = v$ be the u - v path in G. Necessarily u and v are end-vertices in G.

Since G is nth order regular of degree 3, there exist vertices x and y of G, distinct from u_n , that are at distance n from u. Let $u = x_0, x_1, \ldots, x_n = x$ and $u = y_0, y_1, \ldots, y_n = y$ be the u - x path and the u - y path, respectively. Further, let s(r) be the largest integer for which $u_s = x_s(u_r = y_r)$, respectively. We may assume, without loss of generality, that $s \le r(< n)$. Since P is a longest path in G, it follows that $s \ge n/2$ since if s < n/2, then the $x_s - v$ section of P together with the $x_s - x_n$ section would give a path of length greater than that of P. We consider two cases.

Case 1: Suppose that s=n/2. Then u, x and u_{2n} are all at distance n from u_n in G. Hence, since $\deg_n u_n = 3$, r > n/2 (and so 0 < 2r - n < r < n). We now consider the vertex u_{2r-n} . Let w be a vertex, distinct from u_{2r} , that is at distance n from u_{2r-n} . Further, let Q be the $u_{2r-n} - w$ path in G. Since P is a longest path in G, it follows that Q contains the vertex u_r . The vertex u_{r+1} is also contained in Q, for if this were not the case, then w would be at distance n from u_n in G, which contradicts the fact that $\deg_n u_n = 3$. We observe, therefore, that the path Q does not contain the vertices x and y. Since x, y and u_n are the only vertices at distance n from u in G, the path Q must contain the vertex u_n . We deduce, therefore, that the three vertices at distance n from u_{2r-n} are all contained in the component of $G - u_{n-1} u_n$ that contains the vertex u_n . Hence these three vertices are all at distance n from the vertex y in G. This, together with the fact that u is also at distance n from y, implies that $\deg_n y > 3$, producing a contradiction. Hence Case 1 cannot occur.

Case 2: Suppose that s > n/2. Then 0 < 2s - n < s < n. We now consider the vertex u_{2s-n} . Since P is a longest path in G, it follows that the three paths connecting u_{2s-n} to the three vertices at distance n from u_{2s-n} all contain the vertex u_s . Furthermore at least one of these three paths must contain the vertex x_{s+1} , for if this were not the case, then $\deg_n x > 3$, which produces a contradiction. On the other hand at least two of these paths must contain the vertex u_{s+1} , for if this were not the case, then $\deg_n u_n > 3$, a contradiction. We deduce, therefore, that if $z_{(1)}$, $z_{(2)}$ and $z_{(3)}$ denote the three vertices at distance n from u_{2s-n} in G, then the $u_{2s-n} - z_{(1)}$ path (say) contains the vertex x_{s+1} , while the $u_{2s-n} - z_{(2)}$ path and the $u_{2s-n} - z_{(3)}$ path both contain the vertex u_{s+1} .

Using a similar argument as in the preceeding paragraph, if $w_{(1)}$, $w_{(2)}$ and $w_{(3)}$ denote the three vertices at distance n from u_{2r-n} in G, then we may deduce that the $u_{2r-n}-w_{(1)}$ path (say) contains the vertex y_{r+1} , while the $u_{2r-n}-w_{(2)}$ path and the $u_{2r-n}-w_{(3)}$ path both contain the vertex u_{r+1} .

We observe that the vertices $u, u_{2n}, z_{(1)}$ and $z_{(2)}$ are all at distance n from the vertex u_n in G. This produces a contradiction unless $z_{(1)} = w_{(1)}$. This implies, in particular, that s = r and $x_{s+1} = y_{s+1}$. Furthermore, the vertices u_{2s-n} , x and y are therefore all at distance n from u_{2s} in G.

We now consider the vertex $z_{(1)}(=w_{(1)})$. Let z be the vertex, distinct from u_{2s-n} and u_n , that is at distance n from $z_{(1)}$ in G. By our choice of the vertex u, the $z_{(1)}-z$ path must contain the $z_{(1)}-u_s$ path. Now if the $z_{(1)}-z$ path does not contain the vertex $u_{s+1}(u_{s-1})$, then it follows that $\deg_n u_{2s} > 3$ ($\deg_n u > 3$, respectively), which produces a contradiction. Hence Case 2 cannot occur.

Since both Case 1 and Case 2 produce a contradiction, we deduce that our assumption that the diameter of G is greater than 2n-1 is incorrect. This completes the proof of the theorem.

Theorem 3. For $n \ge 2$, if G is a tree which is nth order regular of degree 4, then the diameter of G is 2n-1.

Proof: By Theorem A the diameter of G is at least 2n-1; so it remains to be shown that the diameter of G is at most 2n-1. Assume that diam G=m where m>2n-1. Among all the vertices of G with eccentricity equal to m, let u be one for which the number of vertices that the four paths connecting u to the four vertices at distance m from u have in common is a minimum. Let v be a vertex at distance m from u and let $P: u = u_0, u_1, \ldots, u_m = v$ be the u - v path in G. Necessarily u and v are end-vertices in G.

Since G is nth order regular of degree 4, there exist vertices x, y and w of G, distinct from u_n , that are at distance n from u. Let $u = x_0, x_1, \ldots, x_n = x$, $u = y_0, y_1, \ldots, y_n = y$ and $u = w_0, w_1, \ldots, w_n = w$ be the u - x, u - y and u - w paths, respectively. Further, let s, r and t denote the largest integers for which $u_s = x_s, u_r = y_r$ and $u_t = w_t$, respectively. We may assume, without loss of generality, that $s \le r \le t(< n)$. Since P is a longest path in G, it follows that $s \ge \frac{n}{2}$. We consider three cases.

Case 1 Suppose that s = n/2. Then u, x and u_{2n} are all at distance n from u_n in G. If s = t, then the vertices y and w are also at distance n from u_n , which produces a contradiction. Hence s < t (and so 0 < 2t - n < t < n). Observe that the vertex x is therefore at distance n from w. We now consider the vertex u_{2t-n} . Since P is a longest path in G, it follows that the four paths connecting u_{2t-n} to the four vertices at distance n from u_{2t-n} all contain the vertex u_t . Furthermore at least two of these four paths must contain the vertex w_{t+1} , for if this were not the case, then $\deg_n w > 4$, which produces a contradiction. However we now arrive at a contradiction since $\deg_n u_n > 4$. Hence Case 1 cannot occur.

Case 2 Suppose that n/2 < s < t. Then 0 < 2s - n < s < t < n. We now consider the vertex u_{2s-n} . Necessarily, the four paths connecting u_{2s-n} to the four vertices at distance n from u_{2s-n} all contain the vertex u_s . Furthermore at least one of these four paths must contain the vertex x_{s+1} , for otherwise, if this were not the case, then $\deg_n x > 4$, which produces a contradiction. Let $x_{(1)}$ denote the vertex at distance n from u_{2s-n} such that the $u_{2s-n} - x_{(1)}$ path contains the vertex x_{s+1} . Observe that the vertices w and u_n are both at distance n from $x_{(1)}$ in G.

We now consider the vertex u_{2t-n} . Since P is a longest path in G, it follows that the four paths connecting u_{2t-n} to the four vertices at distance n from u_{2t-n} all contain the vertex u_t . Furthermore at least two of these four paths must contain the vertex w_{t+1} , for if this were not the case, then $\deg_n w > 4$, which produces a contradiction. However we now arrive at a contradiction since $\deg_n u_n > 4$. Hence Case 2 cannot occur.

Case 3 Suppose that n/2 < s = t. Then 0 < 2s - n < s = r = t < n. We now consider the vertex u_{2s-n} . Let $x_{(1)}$, $y_{(1)}$ and $w_{(1)}$ denote the vertices at distance n from u_{2s-n} such that the $u_{2s-n} - x_{(1)}$, $u_{2s-n} - y_{(1)}$ and the $u_{2s-n} - w_{(1)}$ paths, respectively, contain the respective vertices x_{s+1} , y_{s+1} and w_{s+1} . Observe that the vertices $x_{(1)}$, $y_{(1)}$ and $w_{(1)}$ are all at distance n from u_n in G. Since $\deg_n u_n = 4$, it follows, therefore, that the vertices $x_{(1)}$, $y_{(1)}$ and $w_{(1)}$ are not all distinct. We may assume, without loss of generality, that $x_{(1)} = y_{(1)}$. In particular, this implies that $x_{s+1} = y_{s+1}$.

We now consider the vertex $x_{(1)}$. By our choice of the vertex u, the four paths connecting $x_{(1)}$ to the four vertices at distance n from $x_{(1)}$ all contain the $x_{(1)}-u_s$ path. Let Q_1 and Q_2 denote the two paths connecting $x_{(1)}$ to the two vertices, distinct from u_{2s-n} and u_n , at distance n from $x_{(1)}$ in G. If neither of the paths Q_1 or Q_2 contain the vertex $u_{s+1}(u_{s-1})$, then it follows that $\deg_n u_{2s} > 4$ ($\deg_n u > 4$, respectively), which produces a contradiction. Hence we may assume, without loss of generality, that the path Q_1 contains the vertex u_{s-1} , while the path Q_2 contains the vertex u_{s+1} . However the vertex at distance n from $x_{(1)}$ on the path Q_1 , together with the four vertices u_{2s-n}, x, y and w, are all at distance n from u_{2s-n} in G, which produces a contradiction. Hence Case 3 cannot occur.

Since Cases 1, 2 and 3 all produce a contradiction, we deduce that our assumption that the diameter of G is greater than 2n-1 is incorrect. This completes the proof of the theorem.

One may also show that if G is a tree which is nth order regular of degree 5, then diam G = 2n - 1. We omit the proof (a copy of which is available from the author).

Theorem 4. For $n \ge 2$, if G is a tree which is nth order regular of degree 5, then the diameter of G is 2n-1.

References

- 1. Y. Alavi, D.R. Lick and H.B. Zou, Second order degree regular graphs, in "Graph theory, Combinatorics, and Applications", John Wiley & Sons, New York, 1991, pp. 1–8.
- 2. G.S. Bloom, J.W. Kennedy and L.V. Quintas, Some problems concerning distance and path degree sequences, "Graph Theory (Lagow 1981) Lecture Notes in Math.", Springer,, Berlin-New York, pp. 179-190.
- 3. G.S. Bloom, J.W. Kennedy and L.V. Quintas, *Distance degree regular graphs*, in "Proceedings of the Fourth Kalamazoo International Conference on the Theory and Applications of Graphs", John Wiley & Sons, New York, 1981, pp. 95–108.
- 4. G. Chartrand and L. Lesniak, "Graphs & Digraphs", 2nd ed., Wadsworth, Monterey, CA, 1986.
- 5. M.A. Henning and H.C. Swart, On a conjecture on nth order degree regular graphs. Submitted for publication.
- 6. M.A. Henning, H.C. Swart and P.A. Winter, On nth order degree regular trees. Submitted for publication.
- 7. T. Hilano and K. Nomura, *Distance degree regular graphs*, J. Combin. Theory Ser. B 37 (1984), 96–100.
- 8. M. Randic, Characterizations of atoms, molecules and classes of molecules based on path enumeration, Match 7 (1979), 5-64.
- 9. D.E. Taylor and R. Levingston, *Distance-regular graphs*, in "Proc. International Conference on Combinatorial Theory", Lecture Notes in Math. 686, Springer-Berlin, 1978, pp. 313–323.