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Abstract. Forna positive integer and v a vertex of a graph G, the nth order degree of
v in G, denoted by deg v, is the number of vertices at distance n from v. The graph G
is said to be nth order regular of degree k if, for cvery vertex v of G, deg v = k. For
ne {7,8,...,11},acharacterization of nth order regular trees of degree 2 is obtained.
Itis shownthat,forn > 2 and k € {3,4,5},if G is an nth order regular tree of degree
k, then G has diameter2n — 1.

1. Introduction

We denote the vertex set and edge set of a graph G by V(@) and E(G), respec-
tively. If v € V(G), the degree of v in G is written as deg v and the minimum
degree of G is given by 8(G) = min{degv: v € V(G)}, whereas the maximum
degree of G is A(G) = max{degv : v € V(G)}. For a connected graph G, the
distance d(u, v) between two vertices u and v is the length of a shortest w— v path,
The eccentricity eq(v) of a vertex v of G is defined as max ey (g) d(u, v). The
diameter diam G of G is max ey (¢) e(v). For other graph theory terminology we
follow [4].

Observe that the degree of a vertex v in a graph G is the number of vertices at
distance 1 from v. This observation suggests a generalization of degree. In [1],
for n a positive integer and v a vertex of a graph G, the nth order degree of v
in G, denoted by deg ,v, is defined as the number of vertices at distance n from
v. Hence deg v = degv. Further, in [1], the graph G is defined to be nth order
regular of degree & if, for every vertex v of G, deg ,v = k.

Concepts related to the nth order degree of a vertex were introduced by Bloom,
Kennedy and Quintas ([2], [3]). In [2] the distance degree sequence of G based
at a vertex v is defined as the sequence degv,degszv,..., deg giamGv, and dis-
tance degree regular graphs, namely those graphs G in which all the vertices have
the same distance degree sequence, were investigated. Randic {8] has examined
the role that distance degree sequences of graphs play in chemical applications.
Rclated work was also performed by Hilano and Nomura [7] and by Taylor and
Levingston [9].

Forne {7,8,...,11}, we obtain a characterization of nth order regular trees
of degree 2. Further, it is shown that, forn > 2 and k € {3,4,5},if G is an nth
order regular trec of degree k, then G has diameter 2n— 1.
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2. Known results

In this section we list a few known results which will prove useful to us. The
following result was proposed as a conjecture in [1] and proven in [S].

Theorem A. For n > 2, if G is a connected nth order regular graph of degree
1, then G is either a path of length 2n— 1 or G has diameler n.

The next result [6] establishes alower bound on the diameter of nth order degree
regular trees.

Theorem B. For n> 2 and k > 1, if G is a tree which is nth order regular of
degree k, then diam G > 2n— 1.

Theorems A and B yield the following characterization of nth order regular
trees of degree 1.

Corollary A. For n > 2,G is an nth order regular tree of degree 1 if and only
if Gisapathoflength 2n— 1,

The following result [6] will prove to be useful.

Lemma A. Forn> 2 and k > 1, the maximum degrce N(G) of a tree G that
is nth order regular of degree k is at most k + 1.

A necessary condition for a tree to be nth order regular of degree 2 is established
in [6].

Theorem C. For n > 2, if G is a tree which is mth order regular of degree 2,
then the diameter of G is2n—1.

Before proceeding further, we recall the definition of a double star. The dou-
ble star S(m,n) is obtained from the (disjoint) union of two stars K(1,n) and
K(1, m) where n,m € Z*, by joining a vertex of maximum degree in K(1,n)
to a vertex of maximum degree in K(1,m).

The graph H} is defined in [6] as follows. For k,€ € Z* let Hgy be the graph
obtained from K (1, k) by subdividing each edge £ times. Now let F and F; be
two disjoint copics of H; x and let v; and v, be vertices of degree k in Fy and 5,
respectively. The graph H, is obtained from F} U F, by joining v) and v, with an
edge and then subdividing twice the edge vy v2. (The graph Hy is shown in Figure
1.)

In [6], for k > 1 an integer, the following characterization of nth order regular
trees of degree k forn € {2,3,...,6} is obtained.

Lemma B. For k > 1, a tree G is 2nd order regular of degree k if and only if
G = S(k,k).

LemmaC. Forn€ {3,4,6}and k > 1, atree G is nth ordcr regular of degree
k ifand only if G is a path of length 2n— 1 and k = 1.
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Figure 1 The graph H,

LemmaD. Fork > 1, atrece G is 5th order regular of degree k if and only if G
Is isomorphic to Hy.

That there exists a tree which is nth order regular of degree k for each n > 7
and k > 1 is established in [6].

Theorem D. Let n > 7 be aninteger. Then foreach k € Z*, there exists a tree
that is nth order regular of degree k.

3. Characterizations of nth order regular trees of degree 2 for small n.

In this section we investigate nth order regular trces of degree 2 for small n. For
n > 2, let G be a tree which is nth order regular of degree 2. Necessarily (cf.
LemmaC) n ¢ {3,4,6}. If n = 2, then (cf. Lemma B) G & S(2,2), while
if n= 5, then (cf. Lemma D) G = H,. Hence in what follows we restrict our
attention to those values of » > 7. By Theorem D for cach n > 7, there exists a
tree that is nth order regular of degree 2.

Forn € {7,8,10} and i € {1,2}, lct G, and Gy ; be the graphs shown
in Figure 2. Furthermore, fori € {1,2,...,5}, let G1;; be the graph shown in
Figure 3. We are now in a position to characterize nth order regular trees of degree
2forne {7,8,...,11}.

Theorem 1. For n € {7,8,10}, G is an nth order regular trce of degree 2 if
andonly if G = G,,. Furthermore, G is a 9th order regular tree of degree 2 if and
only if G= Gy, or G = Gy 2, while G is an 11th order regular tree of degree 2
ifandonlyif G = Gn; wherei € {1,2,...,5}.
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Figure 2: The graphs G, forn e {7,8,10} and Gy ; fori € {1,2}.

Proof: Letn > 7 be an integer and lct G be a tree which is nth order regular of
degree 2. Then (cf. Theorem C) the diameter of G is 2n— 1. Let uw and v be
vertices of G with d(u,v) = 2n—1,andlet P : u = ug, u1,u2,...,U3,1 = ¥
be the © — v path in G. Necessarily u and v are end-vertices in G.



Figure 3: The graph G114 fori € {1,2,...,5}.

Since G is nth order regular of degree 2, there exists a vertex w of G, distinct
from u,, that is at distance n from u. Let Q : u = wp,wy,...,wy = w be the
u — w path in G. Further let r be the largest integer for which u, = w,. Lemma A
implies that deg u, = 3. Since P is a longest path in G, it follows that r > n/2.
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We show that § < r < n If this is not the case, then r = % and w is an
end-vertex of G. Consider the vertex u;. Let u} denote the vertex of G, distinct
from u,.1, that is at distance n from u;. Since P is a longest path in G, the edge
ugt g4 is necessarily an edge of the u; — u} path. Furthermore, u, is a vertex of
the uy — u} path, for if this were not the case, then deg ,u > 2. Hence the u; — u}
path is the path uj, u3,..., u,, u}. This implies, however, that the three vertices
1, Wy and uy,_; are all at distance n from uj, which produces a contradiction.
We deduce, therefore, that § < r < n. '

Next we observe that, for each 1 with 1 < 1 < n— r, the vertex u,,.,_; is at
distance n from each of the vertices u,_; and w,.,; (note thatr — i > 2r—n > 0).
So, since G is nth order regular of degree 2, it follows that, for2 < i < n—r,
degu,_+1 = 2 = degwy.i—1; Or, cquivalently, degu,_; = 2 = degw,,; for
1<i<n—r—-1.

We now consider the vertex ua,_,. Since G is nth order regular of degree 2,
there exists a vertex z of G, distinct from u3,., that is at distance n from uy,_,. Let
Rbethe uy,_, — 2 pathinG. Since P isalongest path in G, R contains the vertex
u,. We show that R contains the vertex w,,1 . If this is not the case, then R contains
the vertex u,+1. Since d( Uy, ¥2,-n) = n—r = d(u,, w), the vertices u,, and z are
both at distance n from w in G. However the vertex v is also at distance n from w
and so deg ,w > 2, which produces a contradiction. Hence R contains the vertex
wy41. Thus, sincedegw; = 2 forr+ 1 < 1 < n— 1, R contains the wy,_, — wy
path as a subpath. Let R : 2,—p = Wayen, Warntl,eev, W, Wetl,ees, Way = 2
be the u3,., — z pathin G.

Since P is a longest path in G, degw,, = 1. Observe that, for each i with
1 < ¢ < 7, the vertices u,_; and w,,; are both at distance n from the vertex
unr-i. Hence since G is nth order regular of degree 2, it follows that deg u,; =
2 = degw,+; for 1 < 1 < r — 1. Hence the component of G — u,u,+1 containing
u, is isomorphic to P,,,,. For convenience, foreachi with0 < i < r—1,letus
relabel the vertex ws,_; with v; (see Figure 4).

Next we consider the vertex v = u3,-; . Let y be the vertex, distinct from t,_; ,
that is at distance nfrom v. Further let m be the largest integer for which the vertex
%24-1-m is contained in the v — y path in G. Then using a similar argument as that
used to establish that the component of G — u,u,,) containing u, is isomorphic
0 Pay+1, we may show that the component of G — 4342 224-1-r, CONLAINIng
U2n—1-m IS isomorphic t0 Pyps1. Let v = upp g, %02, ., U2n1—m, V2n-m>,
Vin-m+l,...,V2a-1 = y bethev — ypathin G.

We may assume, without loss of gencrality, that m > r. Nowlets = n— 7.
Then, since 2 < r < mn, 1 <s< §(andn > 2s+ 1). We show firstly that
s > 2. If this is not the case, then s = 1 and r = n— 1. Now for each i with
0 <1< n-2,yu;isat distance n from u,,; and v,_2_;. It follows, therefore,
that deg ,unei—1 = 2 for 1 < 1 < n— 2. Furthermore, since deg,u, 1 = 2,it
follows that deg uz,—2 = 3. However, if n > 2, then u,_; is the only vertex at
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Figure 4: The component of G — u,u,.; containing u, before (a) and after (b)
relabelling.

u
2n-1-m

Figure 5: The component of G — 4252 —m U2n—1-m CONMAININE U2y 1_m

distance = from uy,_; in G. Since n > 7, this produces a contradiction. Hence
s>2(andsor=n—2).

Observe that for each ¢ with 0 < i < r — s, the vertex u; is at distance n from
Unes and v,_,_;. It follows, therefore, that deguqy ;1 = 2 for0 < 1 < r —s.
Hence, since deg u25_1_m = 3, we have n+r—3s < 2n— 1 —m; or, cquivalently,
m<nts—r—1. Thusn—s=r<{m<n+s—r—1andsor < 2s—1 (with
equality if and only if m = n+ s — r— 1). If s = 2, then r < 3; consequently,
r =3 and n= 5, which contradicts our choice of n > 7. Hence s > 3.

Suppose that n = 7. Thens = 3 and r = 4. Since degunsi—1 = 2 for
0 < i< r—s,wehavedegug = 2 = deguy. Furthermore,r =4 < m < 5. We
show that m = 4. If this is not the case, thenm = § and u3 1, = ug. However
the vertices u3, vs and v;3 are all at distance 7 from the vertex uo, which produces
a contradiction. Hence m = 4 and u2,-1-m = ug. Since degqus = 2 and
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degrun = 2, it follows that deg ug = 3 and degus = 3, respectively. Moreover,
since the vertices uyo and vy are both at distance 7 from u3 and vs, it follows that
the vertex, distinct from u4 and ug, that is adjacent to us is an end-vertex and the
vertex distinct from u7 and ug, that is adjacent to ug is an end-vertex. Hence G
is 7th order regular of degree 2 if and only if G = G5.

Suppose thatn = 8. Thens = 3 andr = 5. Sincer = 2s—-1, m =
n+8—r—1=5andsouz,1—m = ujo. Sincedeg upi_) =2 for0 <1< r—s,
we have deg u7 = 2 = degug = degug. Moreover since the vertices us and u;s
are both at distance 8 from v;3, degus = 2. Hence G is 8th order regular of
degree 2 if and only if G = Gs.

Suppose that n= 9. Thens = 4 and r = 5, and so degug = deguy = 2.
Sincer<{m<n+s—r—1,wehave5 < m < 7. Weshow thatm < 6. If
this is not the case, then m = 7 and uz,-1—5, = u10. However, the vertices uq, v4
and v;s are all at distance 9 from the vertex u;3, which produces a contradiction.
Hencem=5orm=6.1fm =5 (m = 6), then it is straightforward to see that
G ¥ Gy, (G = Gy 3, respectively). Hence G is 9th order regular of degree 2 if
andonly if G Gy, or G ¥ Gy 3.

Suppose that n = 10. Thens = 4 and r = 6, and so degug = degup =
deguy; = 2. Furthermore, 6 < m < 7. If m = 7, then uap1_;m = uj2.
However the vertices us,vs and v¢ are all at distance 10 from the vertex u;s,
which produces a contradiction. Hence m = 6 and it is straightforward to see that
G = Gho. Thus G is 10th order of degree 2 if and only if G & G)o.

Suppose that n = 11 Theneithers =4 andr =7 ors = 5 and r = 6. Suppose
firstly thats =4 andr = 7. Thensincer=2s~1, m=n+s—r—1=7 and
SO U2p-1—-m = U14. Moreoverdegujo = deguy; = degujy = degu ;3 = 2, and
since u7 and uz; (us and ugo) are both at distance 2 from vyg(v19, respectively),
deg ug = 2 = deg ug. Hence in this case G = G11,1. Suppose then that s = 5 and
r=6. Thendeguyo = deguy = 2. Sincer< m< n+s—r—~1,wehave 6 <
m<9.Ifm=8orm=9,thendeguis > 2, which produces a contradiction.
Hencem=6 orm=7.Ifm=6 (m=7), then it is straightforward to see that
G is isomorphic 0 G113 or G114 or G 5 (G & Gy 2, respectively). Hence G is
11th order regular of degree 2 if and only if G & Gy 4 where i € {1,2,...,5}.

This completes the proof of the theorem. |

4. The diameter of nth order regular trees of degree & for small k
The following conjecture is given in [6].

Conjecture 1. For n > 2 and k > 1, ifa tree G is nth order regular of degree
k, then diam G=2n— 1.

For k = 1 and k = 2 Conjecture 1 is true (cf. Corollary A and Theorem C). In
this section we prove the conjecture fork =3, k=4 andk = §.
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Theorem 2. For n > 2, if G is a tree which is nth order regular of degree 3,
then the diameterof G is 2n— 1.

Proof: By Theorem A the diameter of G is at least 2n — 1; s0 it remains to be
shown that the diameter of G is at most 2n— 1. Assume that diam G = m where
m > 2n— 1. Among all the vertices of G with eccentricity equal to m, let u be
one for which the number of vertices that the three paths connecting u to the three
vertices at distance n from u have in common is a minimum. Let v be a vertex at
distance m fromu andlet P : u = up,t1,..., Uy = v be the u — v path in G.
Necessarily u and v are end-vertices in G.

Since G is nth order regular of degree 3, there exist vertices z and y of G,
distinct from u,,, that are at distance n from u. Letu = z¢,11,...,Z2, = 7 and
u=yo,¥,..-,Ys = v be the u — z path and the u — y path, respectively. Further,
let 3(r) be the largest integer for which u, = z,(u, = y,, respectively). We may
assume, without loss of generality, that s < 7(< n). Since P is a longest path in
G, it follows that s > n/2 since if s < n/2, then the z, — v section of P together
with the ¢, — z, section would give a path of length greater than that of P. We
consider two cases.

Case 1: Suppose that s = n/2. Then u, z and u3, are all at distance n from
u, in G. Hence, since deg,u, = 3, r > n/2 (andso0 < 2r—n< r < n).
We now consider the vertex ua,_,. Let w be a vertex, distinct from ujy,, that is
at distance n from us,..,,. Further, let Q be the uy,_, — w path in G. Since P is
a longest path in G, it follows that Q contains the vertex u,. The vertex u,. is
also contained in Q, for if this were not the case, then w would be at distance n
from u,, in G, which contradicts the fact that deg ,u, = 3. We observe, therefore,
that the path Q does not contain the vertices z and y. Since z,y and u, are the
only vertices at distance » from u in G, the path Q must contain the vertex u,,. We
deduce, therefore, that the three vertices at distance n from u3,._,, are all contained
in the component of G — u,_; u, that contains the vertex u,. Hence these three
vertices are all at distance n from the vertex y in G. This, together with the fact that
u is also at distance » from y, implies that deg,y > 3, producing a contradiction.
Hence Case 1 cannot occur.

Case 2: Suppose that s > n/2. Then0 < 25— 2 < s < n. Wenow
congsider the vertex uz,_,. Since P is a longest path in G, it follows that the
three paths connecting u;,.,, to the three vertices at distance n from uz,_, all
contain the vertex u,. Furthermore at least one of these three paths must contain
the vertex z,.1, for if this were not the case, then deg .,z > 3, which produces
a contradiction. On the other hand at least two of these paths must contain the
vertex ug+1, for if this were not the case, then deg,u, > 3, a contradiction. We
deduce, therefore, that if z()y, z(2) and 2(3) denote the three vertices at distance n
from uy,_, in G, then the uz,_, — 21y path (say) contains the vertex z,.,, while
the uz,_n — 2(2) path and the uz,_, — 2(3) path both contain the vertex ;4.
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Using a similar argument as in the prececding paragraph, if w1y, w(z) and w(s
denote the three vertices at distance n from u,,._,, in G, then we may deduce that
the uz,_, — w(1) path (say) contains the vertex y,.1, while the uz,_, — w() path
and the u2,_, — w(3) path both contain the vertex u,.;.

We observe that the vertices u, uz,, 2(1) and 2(2 are all at distance n from the
vertex uy, in G. This produces a contradiction unless 2(y = wyy). This implies, in
particular, that s = r and 4+ = y,. Furthermore, the vertices u3,_,,z and y
are therefore all at distance n from uj, in G.

We now consider the vertex z(1)(= w(y). Let z be the vertex, distinct from
42, and u,, that is at distance n from z(;y in G. By our choice of the vertex u,
the z(1) — z path must contain the z(;y — u, path. Now if the z(;y — z path does not
contain the vertex u,4+1(u,—1), then it follows that deguz, > 3 (deg,u > 3,
respectively), which produces a contradiction. Hence Case 2 cannot occur.

Since both Case 1 and Case 2 produce a contradiction, we deduce that our as-
sumption that the diameter of G is greater than 2 n— 1 is incorrect. This completes
the proof of the theorem. 1

Theorem 3. For n > 2, if G is a tree which is nth order regular of degree 4,
then the diameter of G is2n— 1.

Proof: By Theorem A the diameter of G is at least 2n — 1; 5o it remains to be
shown that the diameter of G is at most 2n — 1. Assume that diam G = m where
m > 2n— 1. Among all the vertices of G with eccentricity equal to m, let u be
one for which the number of vertices that the four paths connecting u to the four
vertices at distance m from u have in common is a minimum. Let v be a vertex
at distance m fromu andlet P : u = uo,41,...,ty, = vbe the u — v path in G.
Necessarily u and v are end-vertices in G.

Since G is nth order regular of degree 4, there exist vertices z, y and w of G,
distinct from u,, that are at distance = from u. Letu = z¢,2),...,Z, = Z,
%= Y0,Y1,...,Yn = yand u = wo,wy,...,w, = whbethe v — z,u — y and
u — w paths, respectively. Further, let s, and ¢ denote the largest integers for
which u, = z,,u, = y, and u; = w;, respectively. We may assume, without loss
of generality, that s < r < t(< n). Since P is a longest path in G, it follows that
s > 3. We consider three cases.

Case 1 Suppose that s = n/2. Then u, z and u,, are all at distance n from u,
inG. If s = t, then the vertices y and w are also at distance n from u,, which
produces a contradiction. Hence s < ¢t (andso0 < 2¢—n < t < m). Observe that
the vertex z is therefore at distance » from w. We now consider the vertex ua;—_,.
Since P is a longest path in G, it follows that the four paths connecting u2;_, t0
the four vertices at distance = from u3;_,, all contain the vertex u;. Furthermore at
least two of these four paths must contain the vertex wy, 1, for if this were not the
case, then deg ,w > 4, which produces a contradiction. However we now arrive
at a contradiction since deg ,u, > 4. Hence Case 1 cannot occur.
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Case 2 Suppose that /2 < s <t. Then0 < 2s—n< s <t < n. Wenow
consider the vertex us,_,. Necessarily, the four paths connecting u3,_,, to the four
vertices at distance n from ua,_, all contain the vertex u,. Furthermore at least
one of these four paths must contain the vertex z,+1, for otherwise, if this were
not the case, then deg ,z > 4, which produces a contradiction. Let z¢;) denote
the vertex at distance n from u3,_, such that the uy,_, — (1 path contains the
vertex z,.1. Observe that the vertices w and u,, are both at distance » from z())
inG.

We now consider the vertex uj;_,. Since P is a longest path in G, it follows
that the four paths connecting u3;_, to the four vertices at distance n from uz¢_,
all contain the vertex u,. Furthecrmore at least two of these four paths must contain
the vertex w1, for if this were not the case, then deg,w > 4, which produces
a contradiction. However we now arrive at a contradiciton since deg ,u, > 4.
Hence Case 2 cannot occur.

Case 3 Suppose thatn/2 < s =t. Then0 < 2s—n< s=r=1 < n. Wenow
consider the vertex ua,_,. Let z(y), yo1y and wqyy denote the vertices at distance
nfrom uj,_, such that the uz s, — (1), ¥2s—n — y(1y and the uy,_,, — w1y paths,
respectively, contain the respective vertices .1, ys+1 and w,.1. Observe that the
vertices x(1y, y(1) and wyy are all at distance n from u,, in G. Since degquq = 4,
it follows, therefore, that the vertices z(1y, y(1y and wyyy are not all distinct. We
may assume, without loss of generality, that z(1y = y(1). In particular, this implies
that Tee1 = Yas1.

We now consider the vertex z(1y. By our choice of the vertex u, the four paths
connecting z(1) to the four vertices at distance n from z(1) all contain the z(1) — u,
path, Let Q; and Q, denote the two paths connecting z(1y to the two vertices,
distinct from u; ,_, and u,,, at distance n from z(,y in G. If neither of the paths @,
or Q2 contain the vertex us41 (u,-1), then it follows that deg ,u2, > 4 (degau >
4, respectively), which produces a contradiction. Hence we may assume, without
loss of generality, that the path Q; contains the vertex u,_;, while the path Q>
contains the vertex u,,,. However the vertex at distance n from (1) on the path
Q1 , together with the four vertices u3,—q, Z,y and w, are all at distance n from
u2,-y in G, which produces a contradiction. Hence Case 3 cannot occur.

Since Cases 1, 2 and 3 all produce a contradiction, we deduce that our assump-
tion that the diameter of G is greater than 2 n— 1 is incorrect. This completes the
proof of the theorem. |

One may also show that if G is a tree which is ath order regular of degree 5,
then diam G = 2n— 1. We omit the proof (a copy of which is available from the
author).

Theorem 4. For n > 2, if G is a trec which is nth order regular of degree 5,
then the diameter of G is 2n— 1.
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