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Abstract: Let P, and K, respectively denote a path and complete graph on n vertices. By
a {pH1, ¢Hs}-decomposition of a graph GG, we mean a decomposition of G into p copies of H;
and q copies of H, for any admissible pair of nonnegative integers p and ¢, where H; and H,
are subgraphs of G. In this paper, we show that for any admissible pair of nonnegative integers
p and ¢, and positive integer n > 4, there exists a {pPy, ¢S4 }-decomposition of K, if and only
if 3p+4q = (g), where Sy is a star with 4 edges.
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1. Introduction

All graphs considered here are finite. Let K denote a complete graph on k vertices. Let
Pit1, Cr and Sk (= K ;) respectively denote a path, cycle and star each having k edges. Further,
we denote a path on k+1 vertices x1, xa, . .., 11, and edges z12a, . . ., Tpxpy1 by [21 ... XpTri1]-
If there are t > 1 stars with same end vertices z1, o, ...,z and different centers yi,yo, ..., ¥,
we denote it by (y1,9s, ..., Ys;T1, T2, ..., Tx). Let Z, be the set of all positive integers. When
z,y € Z, we define |z| = max{yly € Z, y <z} and [z] = min{y|y € Z, y > x}.

A decomposition of a graph G is a partition of GG into edge-disjoint subgraphs of G. If the
subgraphs in the decomposition are isomorphic to either a graph H; or a graph H,, then it is
called a {Hy, Hy}-decomposition of G. We say that G has a {pH;, ¢Hy}-decomposition of G if
the decomposition contains p copies of H; and ¢ copies of H, for all possible choices of p and
q. Different problems on graph decomposition have been studied for a century. In particular,
the problem of decomposing a complete graph into cycles is the center of attraction of many of
these studies (e.g., the work of Alspach and Gavlas [1] and its references).

The study of {H;, Hy}-decomposition has been introduced by Abueida and Daven [2, 3].
Moreover, Abueida and O’Neil [4] have settled the existence of { Hy, Hs }-decomposition of NK,,
when {Hy, Hy} = {K;,,-1,C,} for n = 3,4, 5. Priyadharsini and Muthusamy [5] gave necessary
and sufficient condition for the existence of {G,, H, }-factorization of A\K,,, where G,, H, €
{Ch, Py, Sn_1}. Many other results on decomposition of graphs into distinct subgraphs involving
paths, cycles or stars have been proved in [6-9]. Recently, Fu, et al. [10] have found the necessary
and sufficient conditions for the existence of decomposition of K, into cycles and stars on four
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vertices. In this paper, we obtain necessary and sufficient conditions for the existence of a
{pP4, ¢S4 }-decomposition of K.

Let M (G) denote the set of all pairs (p, ¢) such that there exists a {pPy, ¢S4 }-decomposition
of G and we define the set I(n) in Table 1 which help us to show that M(K,) = I(n) for all
feasible values of n.

n I(n)
0,1,3,4 (mod 6) {(p,q) |p="l gy g="00) 3 g << {"(Z;”J }
2,5 (mod 6) {(p’ Q) |p= W 4 q= n(n8_1) _ :% 0<i< {n(ngi)—SJ }

Table 1. The Set I(n)

Remark 1. Let A+ B = {(x1 + y1, 22+ y2) | (21,22) € A, (y1,y2) € B} and rA be the sum
of r copies of A. If G = G1 & G4, where & denotes edge disjoint sum of the subgraphs G1 and

To prove our main result we state some known results as follows.

Theorem 1. [11] Let k,n € Z,. Then K,, has a Pyy1-decomposition if and only if n > k + 1
and n(n —1) =0 (mod 2k).

Theorem 2. [12,13] Let n,k € Z,. Then K, has a Sy-decomposition if and only if 2k < n
and n(n —1) =0 (mod 2k).

Theorem 3. [13] Let m,n € Zy withm < n. Then K,,,, has an Si-decomposition if and only
if one of the following holds:

1. m >k and mn =0 (mod k);
2.m<k<nandn=0 (mod k) .

2. Base Constructions

In this section, we provide some useful lemmas which are required in proving our main result.
The proof of the Lemmas 1 to 10, are given in the Appendix.

Lemma 1. There exists a {pPy, qSs}-decomposition of K, s, when m = 2,4,6.

Proof. Case 1. For m = 2.
Let V(KQ’G) = (Xl,Xg), where X1 = {$171,$172} and X2 = {35272- ‘ 1 S ) S 6} We exhibit
the {pPy, ¢S4 }-decomposition of Ky for p =4 and ¢ = 0 as

[I1,1$2,1$1,2$2,2], [$1,1$2,3I1,2$2,4], [I2,2$1,1$2,6$1,2]7 [$1,2$2,5$1,1$2,4].

Hence, M (Ks4) = (4,0).

Case 2. For m = 4.

Let V(K4’6) = (Xl,XQ), where X1 = {xl,i | 1 S 1 S 4} and X2 = {Igﬂ' | 1 S 1 S 6} We
exhibit the {pPy, ¢S, }-decomposition of Ky as follows:

1. For p =0 and ¢ = 6:
By Theorem 3, we get the required stars.
2. Forp=4and q=3:

[$1,1$2,1$1,2$2,2], [551,2952,396’1,11’2,2], [1’1,31’2,1%,4%2,2], [$1,4$2,2$1,3$2,3]> ($2,4, L25,2265L1,1,L1,2,L13, 951,4)-
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3. Forp==8and ¢=0:
The 4P, along with [$1,1$2,4$1,2$2,5], [$1,2$2,6I1,1$2,5], [1171,3132,4131,4552,5]7 [131,4552,5561,3552,6] gives
the required paths.

Hence, M(Ky46) = {(0,6), (4,3),(8,0)}.

Case 3. For m = 6.

We can write K676 = K276 D K476. Then M(K@ﬁ) 2 M(Kgﬁ) + M(K4’6) Q (47 0) +
{(0,6),(4,3),(8,0)} = {(4,6),(8,3),(12,0)}. By Theorem 3, we get 95,. Hence M(Ksg5) =
{(0,9),(4,6),(8,3),(12,0)}.

O

Lemma 2. There exists a {pPy, qS4}-decomposition of K.

Proof. From the definition of I(n), we get I(5) = (2,1). Let V(K5) = {z; | 1 < i <
5}. We exhibit the {pPjy, ¢Ss}-decomposition of K; for p = 2 and ¢ = 1 as [xexyzs7s
[x3woxs2y], (T1; 20, 3, T4, x5). Hence, M(K5) = I(5) = (2,1).

[

Y

O

Lemma 3. There exists a {pPy, qS4}-decomposition of K.

Proof. From the definition of I(n), we get 1(6) = {(1,3),(5,0)}. Let V(Ks) = {z; | 1 <i < 6}.
We exhibit the {pP;, ¢S4}-decomposition of K as follows:

1. (1,3): Let D be an arbitrary {pPy, ¢Ss}-decomposition of Ks. Suppose that p = 1 and
let P} = [z1@92374] be the only Py in D. By our assumption H, = K¢ — E(P}) has an
Ss-decomposition. Let d(x;) is degree of x;. In Hy , d(x1) = d(z4) = 4, d(z2) = d(x3) = 3
and d(zs) = d(xg) = 5. It follows that, any three of {x,z4, x5, 26} must be a center
vertex of stars in the decomposition D. Let S} = (x1; 3, 24, T5, Tg) be a star in Hy. Then
Hy, = H,— E(S}), we have d(x1) = 0, d(xq) = d(z4) = 3, d(x5) = d(z6) = 4 and d(x3) = 2.
It follows that x5 and zg must be center vertices of stars in the decomposition D. Let
S? = (x5;T9,T3,24,%¢) in Hy. Then Hs = Hy, — E(S?), we have d(x;) = d(z5) = 0,
d(zy) = d(x4) = 2, d(z3) = 1 and d(zg) = 3. Hence Hj can not have a S;-decomposition,
which is a contradiction. Hence (p,q) # (1, 3).

2. (5,0): By Theorem 1, we get the required paths.

Hence, M(Kg) = 1(6) = (5,0). o
Lemma 4. There exists a {pPy, qS4}-decomposition of K.

Proof. From the definition of I(n), we get I(7) = {(3,3),(7,0)}. Let V(K7) ={z; | 1 <i < T}
We exhibit the {pPy, ¢S4}-decomposition of K as follows:

1. For p=3 and ¢ = 3:

[T129324], (247526 27], [T5270476], (235 21, T5, T, T7), (71, T2; 4, T5, Tg, T7).
2. Forp="T7and ¢ =0:

By Theorem 1, we get the required paths.

Hence, M(K7) = I(7) ={(3,3),(7,0)}. O
Lemma 5. There exists a {pPy, qS4}-decomposition of K.

Proof. From the definition of I(n), we get I(8) = {(0,7), (4,4),(8,1)}. Let V(K3g) = {z; | 1 <
i < 8}. We exhibit the {pFPy, ¢S4}-decomposition of Kg as follows:

1. Forp=0and q=T:
By Theorem 2, we get the required stars.
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2.p=4and q=4:
(21292823, [22757374), [T6T32128], [212042023], (245 75, 76, 7, X8), (T5; 71, X6, T7, Tg), (T6} 1, Ta, T7,
xg), (x7; 21, X9, T3, T3).
3. Forp==8and ¢g=1:
The 4Py along with [z1252418], [Toxer724], [T1267527], [Tax62875] glves the required paths
and the 1Sy is (z7; 21, T2, T3, Tg).

Hence, M (Kg) = I1(8) = {(0,7),(4,4),(8,1)}. m|
Lemma 6. There exists a {pPy, qS4}-decomposition of K.

Proof. From the definition of I(n), we get I1(9) = {(0,9), (4,6),(8,3),(12,0)}. Let V(Ky) =
{z; | 1 <i < 9}. We exhibit the {pPy, ¢S4 }-decomposition of Ky as follows:

1. Forp=0and ¢ =9:
By Theorem 2, we get the required stars.
2. Forp=4and ¢ =6:
[$1$21‘5I4]7 [$2$4$1I5]7 [xﬁﬁsl‘ﬂg], [$7$6$9$8], ($3; L1, T2, Ty, $5);
(x1, o, T3, Ty, Ts; T, T7, Ty, Tg).
3. For p=8and g = 3:
The 4P, with [z1262279|, [v1272326], [T3292128], [T3282277] gives the required paths and
35y are (x3; 1, X9, Tq, Ts), (T4, T5; Te, T7, Ty, Tg).
4. p=12and ¢ =0:
By Theorem 1, we get the required paths.

Hence7 M(KQ) = I<9) = {(07 9>a (47 6)7 (87 3)a (127 0)} o
Lemma 7. There exists a {pPy, qS4}-decomposition of K.

Proof. From the definition of I(n), we get 1(10) = {(3,9), (7,6), (11, 3),(15,0)}. Let V(Kyo) =
{z; | 1 <1i < 10}. We exhibit the {pPy, ¢S4}-decomposition of Ko as follows:

1. Forp=3and ¢ =9:
[2120234), (X204 @1 73], (24757627, (055 21, T2, T3, 27), (T6, T7, T8, Tg, T10; T1, T2, T3, Ta), (Ts; T, T, T,
559), (539;955,3367557,5610), (5310;555,966,%7,558)-
2. Forp="7and ¢ =6:
The 3P4 along with [$1I‘101’2$8], [Ig.IgIlIg], [I2$9I4I10], [I4JI8I31’10]
gives the required paths and 654 are (x6, T7; 1, T, T3, Ty),

(w53 71, T2, T3, T7), (T8} X5, Tg, T7, T9), (T05 Ts, T, 7, T10), (T10; T, T, T7, Tg)-
3. Forp=11 and ¢ = 3:
The 7P, along with [z12520m6], [T12723%6], [x1262427], [Tox72523] gives the required paths
and 39, are (xs; s, Tg, T7, T9), (To; X5, Tg, T7, T10), (T10; 5, Tg, T7, Tg)-
4. For p=15and ¢ = 0:
By Theorem 1, we get the required paths.

Hence, M (Kyp) = 1(10) = {(3,9),(7,6),(11,3),(15,0)}. o
Lemma 8. There exists a {pPy, ¢S4}-decomposition of K.

Proof. From the definition of I(n), we get I(11) = {(1,13),(5,10),(9,7),(13,4),(17,1)}. Let
V(K1) ={z; | 1 <i<11}. We exhibit the {pPy, ¢S4 }-decomposition of Ky as follows:

1. Forp=1and ¢ =13:
[$3-’171$10I9], (xl, X2;T4,T5,Te, ﬁ?), (903, Ly, X5,T7; X8, L9, T10, $11), (351§ T2, X8, L9, $11), (352§ x3,T9,T10,
5511), ($3;$1,x5,$6,$7), (534;«’131,332,353,955)7($6;$5,$7,$9,$10)7($8;$2,$6,$9,$10)7(51311;«’136,338,359,9510)-
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2. For p =5 and ¢ = 10:
[131%2133%4]7 [$4$5$6$7]7 [905%7134%6]7 [$8$9$10$11], [37955111783710], (371, L2, X3, L4, T5,T6, L7; L, L9, L10,
xu), ($1,$2;I4,$57$6,$7), (I3;$17$5,$67$7)-

3. Forp=9and¢=T7:
The 5P, along with [zoz323%9), [X2x10T3211], [Tox1121210], [T2x9x128] gives the required
paths and last 7.5, gives the required stars.

4. For p =13 and q = 4:
The 9P, along with [z523%6%9), [T5210T6%11], [T5ToTaxs], [T5x1124710] gives the required
paths and 45, are (1, xe; x4, Ts5, Tg, T7), (X3; T1, T5, T, T7), (T7; X8, To, T10, T11)-

5. For p=17 and ¢ = 1:
The 13P, along with [x5x1x327], [112722%6], [T3x57224], [T3267124] gives the required paths
and the 1S4 is (z7; xs, Tg, T10, T11)-

Hence, M (K1) = I(11) = {(1,13), (5,10), (9, 7), (13,4), (17, 1)}. O
Lemma 9. There exists a {pPy, qS4}-decomposition of Kis.

Proof. From the definition of I(n), we get 1(12) =
{(2,15), (6,12), (10,9), (14,6), (18,3), (22,0)}. We can write Kp = 2K @
K. By Remark 1, and Lemmas 1, 3, we have M(Ks) 2 2M(Kg) +
M(KG,G) 2 (1070) + {(Oa 9)7 (47 6)7 (8a3>7(1270)} = {(10, 9)7 (14a6)a (1873)a

(22,0)} = I(12) — {(2,15),(6,12)}. We can write Ko = Ky, & Ks & K;5. Then by
Theorems 1 and 3, the graphs K, and K,s have 2P, and 85, respectively, and by
Lemma 5 the graph Ky has a decomposition for the case (p,q) € {(0,7),(4,4)}. Hence
M(Ki9) = 1(12) = {(2,15),(6,12),(10,9), (14,6), (18,3),(22,0) }. i

Lemma 10. There exists a {pPy, qS4}-decomposition of Ki4.

Proof. From the definition of I(n), we get I(14) = {(1,22),(5,19),...,(29,1)}. We

can write Ky = Kg @ K¢ @ 2K,46. Then by Remark 1, and Lemmas 1, 3 and 5, we have
M(K14) 2 M(K8)+M(K6)+2M(K4,6) = {(O’ 7)7 (47 4)7 (8’ 1>}+(57 O>+2{(07 6)’ (47 3)7 (Sv 0)} =
{(5,19),(9,16),...,(29,1)} = I(14) — (1,22). Let V(Kyu) = {a; | 1 < ¢ < 14}

Then the required decomposition for the case (p,q) = (1,22) is given as follows:

[$7, L6, L14, $11]7 ($1; T2, 211, T12, 9014), (903; L1, 22, L11, $14)7 ($4; L1, L2, T3, $5), (905; L1, T2, T3, IE7), ($6; Ts,
T11, T12, T13), (T8} T5, Te, T7, Tg), (To; Ts, T, T7, T10), (T105 T5, T6, T7, Ts), (T12; T3, T11, T13, T14), (T13; T1, T3,
T11, T1a), (T2, T4, Ts, T7, Tg, Tg, T10; T11, T12, T13, T14), (L6, T7, T, Tg, T10; T1, T2, T3, Tg).

Hence, M (K1) = 1(14) = {(1,22),...,(29,1)}. O
3. Main Result

In this section, we prove that K, can be decomposed into p copies of P, and ¢ copies of Sy
for all positive integer n > 4.

Lemma 11. Let p,q € Z, U{0} and n =0 (mod 6). There exists a {pFy, qS,}-decomposition
of K,, if and only if 3p + 4q = (;L), andn > 6. That is, M (Kgs) = I(6s), where s € Z., .

Proof. Necessity: The conditions 3p+4q = (g) and n > 6 are trivial. That is, M (Kss) C 1(6s).
Sufficiency: We have to prove M (Kgs) 2 I(6s). The proof is by induction on s. If s = 1, then
M (Kg) = 1(6), by Lemma 3. Since Kt = Ko @ Ko ® Kerg = Ko Ko B kKpg. From the
definition of I(n), we have

I(24r) =

(24r)(24r — 1) , (24r)(24r — 1)  3p
%n@%z G —4i, g = S -

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 301-316



M. Tlayaraja and A. Muthusamy 306
0<i< {(24r)(24r - 1)J }

24
= {(4x, 3y 0<z<24r® —7r, y=(24r* — 1) — 1},
(24r + 6)(24r + 5 2r +6)(24r +5) 3
[(24r +6) = r46)@r+5) P+ 6@r+s) 3
6 8 1
0< i< (24r +6)(24r +5) ’
== 24
= {dr+1,3)0<2<24r* +11r +1, y = (24r* + 11r + 1) — 2},
2r +12)(24r +11) 24r +12)(24r + 11
1(24r +12) = {(I%Q)‘p ( >6( >—4z,q=( >8( )

24
= {(42+2,3y)|[0 < w < 24r* + 23r + 5, y = (24r° +23r +5) — 7},

(24r +18)(24r +17) 4, g = (24r + 18)(24r + 17)
6 e 8

W e {(24r+12)(24r+11)J }

I(24r +18) = {(p,q)‘p

24
= {(42+3,3y)|0 < x < 247 + 35r + 12, y = (247 + 357 + 12) — 2},

24 4 24)(24r + 2 247 + 24)(24r + 2
Ioar 1 24) = {(p’q)‘p:( r+ )6( r+ 3)_4i,q:( r+ )8( r+23)

W s {(24r+18)(24r+17)J }

I {(24r+24;(124r+23)J }

= {(42,3y)|0 < x < 247 +47r + 23, y = (24r? +47r + 23) — 2}

Case 1. If &k = 4r, then we can write Koyt = Ko & K¢ & (4r)Kes. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M (Koyri6) 2 M(Kas) +
M(Ks) + (4r)M(Keg)= {(42,3y)|0 < = < 2412 —r, y = (24 — 1) — 2} + (5,0) +
(47){(0,9), (4,6),(8,3),(12,0)} = {(4u+1,30)|]1 < u < 24r?+11r+1, v = (24r*+11r+1)—u}=
1(24r + 6) — (1, 3(2472 + 11r + 1)). If r = 1, then K3y = Ky ® K14 @ Kig14. The graph Ky,
can be decomposed into 1P, and 2254, by Lemma 10, and the graphs K6 and K614 have an
S,-decomposition, by Theorems 2 and 3. Hence the graph K3 has a decomposition into 1P,
and 108Ss. For r > 2, we can write Kor16 = Koar—s® K14 D Koar—g14. Then by Lemma 10, the
graph K74 can be decomposed into 1P, and 2254, and by Theorems 2 and 3, the graphs Koy, _g
and Koy,—g 14 have an Sy-decomposition. Hence the graph Ksy,1¢ has a decomposition into 15
and 3(24r? + 11r 4+ 1)S,. Therefore M (Koyri6) = {(4z +1,3y)|0 < 2 < 24r% + 11r + 1, y =
(24r* + 11r + 1) — x} = I(24r + 6).

Case 2. If k = 4r + 1, then we can write Kogry12 = Kogri6 @ K @ (47 + 1)Kgp. By
the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M (Kay112) 2 M(Kayri6) +
M(Kg) + (4r + )M (Kgg) = {(4z + 1,3y)|0 < x < 247 + 11r + 1, y = 24 + 11r + 1) —
z} + (5,0) + (4r + 1){(0,9), (4,6), (8,3), (12,0)} = {(4u + 2,30)|1 < u < 24r? +23r +5, v =
(24r% 4237 +5) —u} = I(24r +12) — (2,3(24r2 + 237+ 5) ). Let Kairj12 = Koty © K12 ® Ko 1o.
The graph K5 can be decomposed into 2P, and 1554, by Lemma 9, and by Theorems 2 and
3, the graphs Kys and Koy 12 have an Sy-decomposition. Hence the graph Kosr112 has a
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decomposition into 2P; and 3(24r% + 23r + 5)S,. Therefore M(Kay112) = {(4z + 2, 3y)]|0 <
< 24r% +23r 4+ 5, y = (24r? 4+ 23r + 5) — x} = [(24r + 12).

Case 3. If k = 4r 4 2, then we can write Kogr118 = Kosri12 © K¢ ® (47 + 2) K. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M (Ks4118) 2 M(Kogri12) +
M(Kg) + (4r +2)M (Kg) = {(42+2,3y)|0 < & < 2472 +23r +5, y = (24r* +23r +5) —x} +
(5,0)+ (4r+2){(0,9), (4,6), (8,3), (12,0)} = {(4u+3,30)|1 < u < 24r2 +35r+12, v = (24r° +
35 +12) — u} = I(24r+18) — (3,3(24r2 + 357 +12)). Let Kopr 15 = Kaurps © Kio® Kot 10.
The graph Ky can be decomposed into 3P, and 95, by Lemma 7, and by Theorems 2 and
3, the graphs Koy,4s and Kosr1510 have an Sy-decomposition. Hence the graph Ksg,415 has a
decomposition into 3P, and 3(24r% + 35r + 12)S,. Therefore M (Kay1158) = {(4x + 3,3y)]0 <
x < 24r? +35r + 12, y = (24r* + 351 + 12) — x} = I(24r + 18).

Case 4. If k = 4r + 3, then we can write Kogi24 = Kogr18 ® Ko @ (4r 4+ 3)Kg6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M (Ko 404) 2 M(Kogri1s) +
M(Kg)+ (4r+3)M(Keg) = {(4z+3,3y)0 < 2 < 24r2+ 357 +12, y = (2472 +35r +12) — 2} +
(5,0)+(47+3){(0,9), (4, 6), (8,3), (12,0)} = {(4u, 3v)|2 < u < 242 +4Tr+23, v = (2472 +4Tr+
23)—u} = I(24r+24)—{(0,3(24r>+47r+23)), (4, 3(24r?+47r+22)) }. The graph a4 24 has

3(24r% +47r+23)S,, by Theorem 3, and hence M (Koyy104) = 1(24r+24) — (4, 32412 +47r+23).
Let Kayryo4 = Kosry16 © Kg @ Kasryi16s. Then by Lemma 5, the graph Ky can be decomposed
into 4P, and 454, and by Theorems 2 and 3, the graphs K116 and Kosrq16s have an Sy-
decomposition. Hence the graph Koy, 94 has a decomposition into 4P, and 3(24r2+47r+22)54.
Therefore M(Koyri04) = {(42,3y)|0 < 2 < 2472 + 47r + 23, y = (2472 + 47r + 23) — 2} =
I(24r + 24).

Thus M (Kgs) = I(6s), for each s € Z,,. o

Lemma 12. Let p,q € Z, U{0} andn =1 (mod 6). There exists a {pPy, qS4}-decomposition
of K,, if and only if 3p + 4q = (;) andn > 7. That is, M (Kegsi1) = 1(6s + 1), where s € Z,.
Proof. Necessity: The conditions 3p + 4q = (g) and n > 6 are trivial. That is, M(Kgsy1) C
I(6s+1). Sufficiency: We have to prove M (Kgs41) 2 1(6s+1). The proof is by induction on s. If
s =1, then M (K7;) = I(7), by Lemma 4. Since K¢j17 = Kop11D K7D Ko = Kopr1D KBk K .
From the definition of I(n), we have

24 1)(24 24 1)(24
rar 1) = { = EITDEN y;  CEELC) S
6 8 4
0<i< (24r + 1)(24r) |
- 24
= {(4xz, 3y 0 <z <24r®+7, y= (241> +71) — 2},
(24 24 24 24
41 T) = { r+7>6( 6 r+7;( r+6)_?f’

24
= {4z +3,3y)0 <x <24r* +13r + 1, y = (24r° + 13r + 1) — x},

(24r +13)(24r +12) (247 + 13)(24r + 12)
—4al, 4=
6 8

0<i< {(24r+7)(24r—|—6)J }

I(24r +13) = {(p,q)‘p

e {(24r+13§£(124r+12)J }
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= {(42+2,3y)|0 < x < 241 + 25r + 6, y = (24r° + 257 + 6) — 1},

24r +19)(24r + 18 , 24r +19)(24r 4+ 18
[(24r +19) = {(zxq)‘p:( )6< )—4z,q:( )8( )
W e rer ) ||
- 24
= {(4x+1,3y)|0 < 2 < 247 + 37r + 14, y = (247> + 37r + 14) — 2},
24 25)(24 24 24 25)(24 24
I(24r +25) = {(p,CI)’PZ( o )é P2 i, g B )8( r+2)

24
= {(42,3y)|0 < 2 < 241> +49r + 25, y = (24r® + 49r + 25) — 2}

W s {(24r+25)(24r+24)J }

Case 1. If k = 4r, then we can write Kogyry7r = Kogr1 & K7 @& (4r)Kgg. By the in-
duction hypothesis, Remark 1.1, and Lemmas 1, 4, we have M (Ko y7) 2 M(Kagri1) +
M(K7) 4+ (4r)M(Kgg) = {(4z,3y)|0 < & < 24r? +r, y = 24r* +r) — 2} + {(3,3),(7,0)} +
(4r){(0,9), (4,6), (8,3), (12,0)}
={(4u+3,30)[0 <u<24r* + 13r+1, v=(24r* + 13r + 1) —u} = [(24r + 7).

Case 2. If k = 4r + 1, then we can write Kogr113 = Kogry7 @ K7 @ (4r + 1)Kgg. By
the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have M (Ky4,113) 2 M (Koyri7) +
M(K7)+ (4r +1)M(Kgg) = {(42+3,3y)|0 < 2 < 247 +13r+1, y = (24r* + 13r+1) —z} +
{(3,3), (7,0)} + (4r + 1){(0,9), (4, 6), (8,3), (12,0)} = {(4u+2,3v)|1 < u < 2472 + 251 + 6, v =
(24r% + 257 + 6) — u} = I(24r + 13) — (2,3(24r2 + 257 + 6)). Let Kopri1s = Kosrpo ® Ky @
(87 + 3)K34. Then the graphs Koy y9 and Ks4 have an Sj;-decomposition, by Theorems 2
and 3, the graph K, has 2P;. Hence the graph Ks4..13 has a decomposition into 2P, and
3(24r? + 25r + 6)S;. Therefore M(Kayr113) = {(4z + 2,3y)|0 < z < 2472 + 251 + 6, y =
(24r% + 257 + 6) — x} = I(24r + 13).

Case 3. If k = 4r + 2, then we can write Kogt19 = Kogr13 ® K7 @ (4r 4+ 2)Kg6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have M (Ksy419) 2 M(Kasr113) +
M(K7) + (4r + 2)M (Kgs) = {(4x + 2,3y)|0 < = < 2412 + 25r + 6, y = (24r® + 251 + 6) —
z}+{(3,3),(7,0)} + (4 + 2){(0,9), (4,6), (8,3), (12,0)} = {(4u + 1,30)|1 < u < 24r* + 37r +
14, v = (2472 + 37r + 14) — u} = [(24r +19) — (1,3(247 + 37r + 14)). Let Kairy19 =
Kosris © K11 @ Kogryga1- Then the graph Ki; can be decomposed into 1P, and 135, by
Lemma 8, and Theorems 2 and 3, the graphs Kos1s and Ksr1511 have an Sy-decomposition.
Hence the graph Ky, 19 has a decomposition into 1P, and 3(24r? + 37r + 14)S,. Therefore
M(Kari19) = {(42+1,3y)|0 < 2 < 2472 +37r + 14, y = (24r? + 37r + 14) — 2} = 1(24r + 19).

Case 4. If k = 4r + 3, then we can write Kogri95 = Kogri19 © K7 & (47 + 3) K. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have M (Ks4125) 2 M(Kogri19) +
M(K7)+ (4r+3)M(Keg) = {(4z+1,3y)[|0 <z < 2412 +37r+ 14, y = (24r* +37r+14) —z} +
{(3,3),(7,0)} + (47 + 3){(0,9), (4,6),(8,3), (12,0)} = {(4u,3v)|1 < u < 24r% +49r + 25, v =
(24r% + 497 + 25) — u} = I(24r + 25) — (0,3(247 + 49r + 25)). The graph Kay5 has
3(24r%449r+-25) Sy, by Theorem 3. Hence M (Kayyy25) = {(47,3y)|0 < x < 24r2+49r+25, y =
(2412 + 49r + 25) — x} = I(24r + 25).

Thus M (Kgsv1) = I(6s 4+ 1), for each s € Z,. m]
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Lemma 13. Let p,q € Z, U{0} and n =2 (mod 6). There ezists a {pPy, qS4}-decomposition
of K, if and only if 3p + 4q = (;), n>8 and q > 1. That is, M(Kgsy2) = I(6s+ 2), where
S € Z+.

Proof. Necessity: The conditions 3p + 4q = (g) and n > 6 are trivial. That is, M(Kgs42) C
I(6s+2). Then g > 1, since by Theorem 1, the graph Kgs;2 can not have a Py-decomposition.
Sufficiency: We have to prove M (Kgs42) 2 I1(6s+ 2). The proof is by induction on s. If s = 1,
then M(Kg) = [(8), by Lemma 5. Since K@']H_g = K6k+2 D K6 D K6k+2,6- From the definition
of I(n), we have

24r +2)(24r +1) — 8 247 + 2)(24r + 1
I(24r +2) = {(p,q)‘pz( o )(6r+) —4i, g =" T+§ r+1)
—3—p,0<z’< (24r +2)(24r +1) — 8 |
47707 24

= {4z +3,3y+1)][0<2<24r* +3r — 1, y = (24r° + 3r — 1) — z},

247 + 8)(24r +7) — 8 247 + 8)(24r + 7
I(24r +8) = {(p,q)‘pz( s )(6T+) —42}61:( T+é( r+7)
_32, 0<i< (24r + 8)(24r +7) — 8 |
47 7= = 24
= {(42,3y + 1|0 <z < 240 + 15r + 2, y = (24r® + 157 + 2) — x},
247 + 14)(24r +13) — 8 247 + 14)(24r + 13
1(24r +14) = {(p,q)‘pz( i >(6r+ ) —4i,q=( i >8( r+ 1)

24
= {(4r+ 1,3y + 1|0 <z <24r* +2Tr + 7, y = (24r* +27r +7) — 1},
24r 4 20)(24r +19) — 8 , 24r 4 20)(24r + 19
{mq)‘p:( ) ) =8 i g | ) )

W s {(247“—1—14)(247“—1—13)—8J }

1(24 20
(24r +20) - , -

24
= {(42+2,3y +1)|0 <z < 24r* + 39 + 15, y = (24r* + 39r + 15) — x},

(24r +26)(24r +25) =8 4i, g— (247 + 26) (247 + 25)
6 T 8

W e {(24r+20)(24r—|—19)—8J }

I(24r 4+ 26) = {(p, q)‘p =

3 gcis (24r + 26)(24r + 25) — 8 |
4= 24

= {(42+3,3y +1)|0 <z < 24r* + 51r + 26, y = (24r* + 51r 4 26) — x}.

Case 1. If &k = 47‘, then we can write K247«+8 = KQ47«+2 D KG D K247«+276. Since K247«+2,6 =
Kosre © Kog = (47)Kes @ Kaog. Then Kogrys = Kogrpo @ Ko @ (47)Kge © Ka6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M (Kyy1s) 2 M(Kagri2) +
M(Kg) + (4r)M(Kgg) + M(Kag) = {(4x + 3,3y + )0 < 2z < 2472 +3r — 1, y = (24r* +
3r—1) — 2} + (5,0) + (47){(0,9), (4,6), (8,3), (12,0)} + (4,0) = {(4u,3v + 1)[3 < u < 2412 +
157 +2, v = (24r% + 15r + 2) — u} = I(24r + 8) — {(0,3(24r% + 157 + 2)), (4,3(24r* +
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157 + 1)), (8, 3(24r% + 157"))}. The graph Ksy,s has 3(24r% + 157 4 2)Sy, by Theorem 2, we

have M(Kaipis) = 1(24r +8) — {(4,3(24r2 + 157 + 1)), (8,3(24r* + 15r)) }. Let Ky =
Koy © Kg @ Kogrg. Then by Lemma 5, the graph Ky can be decomposed into 8P, or 4P,
and 454, and by Theorems 2 and 3, the graphs K4, and Kog have an Sj-decomposition.
Hence the graph Ks4.,s has a decomposition into p copies of P, and ¢ copies of S4, where
(p,q) € {(0,3(24r?+15r+2)), (4,3(24r>+15r+1)), (8,3(24r>+157) ) }. Therefore M(Kyyi5) =
{(4z, 3y + 1)[|0 <z < 24r2 + 15r + 2, y = (24r* + 15r +2) — x} = [(24r + 8).

Case 2. If k = 4r + 1, then we can write Koyry14 = Kosrps © Ko @ Kogryge. Since
K24r+8,6 = (6T + 2>K476. Then K24r+14 = K247«+8 @D K@ D (67" + 2)K476. By the induction
hypothesis, Remark 1.1, and Lemmas 1, 3, we have M (K4 114) 2 M (Kosr1s) + M (Kg) + (6r +
2)M(Ky6) = {(42,3y + 1)|0 < 2 < 2472 + 15 + 2, y = (241 + 150 + 2) — 2} + (5,0) +
(67 +2){(0,6),(4,3),(8,0)} = {(4u+ 1,3v + 1|1 < u < 24r% +2Tr + 7, v = (24r? + 27r +
7) —u} = I(24r + 14) — (1,3(24> + 27r 4+ 7)). If r = 0, then M (Kys) = I(14), by Lemma
10 . If r > 1, we can write Kosry14 = Koay @ Kis4 @ Kogr14. Then by Lemma 10, the graph
K14 can be decomposed into 1P, and 225,, and by Theorems 2 and 3, the graphs Ky, and
K414 have an Sj-decomposition. Hence the graph Ksy, 114 has a decomposition into 1P, and
3(24r? + 27r + 7)S;. Therefore M(Koyy14) = {4z + 1,3y + 1|0 <z < 24r2 +2Tr + 7, y =
(2472 +27r +7) — x} = I(24r + 14).

Case 3. If k = 4r+2, then we can write Kay,100 = Koar 414D KD Kogri146. Since Kogpi1a6 =
(67’ + 2)K476 S5 K6,6- Then K24T+20 = K24r+14 % KG D (67’ + 2)K476 SY) K6,6- By the induction
hypothesis, Remark 1.1, and Lemmas 1, 3, we have M (Ks4,120) 2 M (Koyry14) + M (Kg)+ (67 +
2)M(Kyp) = {(42+1,3y+1)|0 <z < 2472+ 27r+7, y = (24r? +27r+7) —a} +(5,0) + (6r +
2){(0,6),(4,3),(8,0)} = {(4u+2,3v+1)|1 < u < 24r*+39r+15, v = (24r* +39r +15) —u} =
1(24r+420)— (2, 3(24r2+39r+15)>. Let Koyrt20 = Koar116D K4 @ Koyry164. Then by Theorems
2 and 3, the graphs K41 16 and Kagry16.4 have an Sy-decomposition, and the graph Ky has 2P;.
Hence the graph Ky, 90 has a decomposition into 2P, and 3(24r? + 39r + 15)S,. Therefore
M (Kari20) = {(4242,3y+1)|0 < 2 < 24r*+39r+15, y = (24r?+39r+15)—x} = I(24r+20).

Case 4. If k£ = 4r 4 3, then we can write Kogrt196 = Koaryoo @ Ko @ Kosrr164. Since
K24r+20,6 = (67” + 5)K4,6. Then K241“+26 = K24r+20 D Kﬁ D (67" + 5)K4,6. By the induction
hypothesis, Remark 1.1, and Lemmas 1, 3, we have M (Ks4,126) 2 M (Ka4r120) + M (Kg) + (67 +
5)M(Ky6) = {(42+2,3y+1)|0 < z < 24r°+39r+15, y = (2412 +39r+15) —z} +(5,0) + (67 +
5){(0,6),(4,3),(8,0)} = {(4u+3,3v+1)|1 <u < 24r?+51r+26, v = (24r*+51r +26) —u} =
I(24r + 26) — (3, 3(24r? + 51r + 26)). Let Kosry26 = Koary16 © Kio © Kogrr16,0- Then by
Lemma 7, the graph K9 can be decomposed into 3P, and 75, and by Theorems 2 and 3,
the graphs Koy, 416 and Kasri16,10 have an Siy-decomposition. Hence the graph Kosr196 has a
decomposition into 3P; and 3(24r% + 517 +26)S,. Therefore M (Ko4196) = {(4x+3,3y+1)|0 <
x < 24r% 4+ 51r + 26, y = (241 + 51r 4+ 26) — x} = I(24r + 26).

Thus M (Kgsi2) = I(6s + 2), for each s € Z,. mi

Lemma 14. Let p,q € Z, U{0} and n =3 (mod 6). There ezists a {pPy, qS4}-decomposition

of K, if and only if 3p+ 4q = (g) and n > 9. That is, M(Kesi3) = I(6s + 3), where s € Z,..

Proof. Necessity: The conditions 3p 4+ 4q = (g) and n > 6 are trivial. That is, M (Kgsy3) C
I(6s + 3). Sufficiency: We have to prove M (Kgs13) 2 1(6s + 3). The proof is by induction on
s. If s =1, then M(Ky) = 1(9), by Lemma 6. Since Kgit+9 = Kepr3 B K7 @ Kopra6. From the
definition of I(n), we have

I(24r +3) =

= —4al, 4= - T

(24r +3)(24r +2) (24r +3)(24r +2)  3p
{(p, Q)’p G 4 < T
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o< {(247* +3)(24r + 2)J }

24
= {4x—i—1 3y)[0 < @ < 247% + 51, y = (24r% + 5r) — 1},
(24 9)(24r + 8 24 9)(24r +8 3
[(24r +9) — r+9)(24r + )_42,’(]:( r+9)(24r + )_7p’
6 8 4
0< i< (24r +9)(24r + 8) |
- 24
= {(42,3)0 <2 < 24> + 17r + 3, y = (24r* + 17r + 3) — 2},
24 15)(24 14 24 15)(24 14
I(24r +15) = {(p,q)‘p:( Tt )é P g B )8( r+14)

I {(247’—1—15;51247’4—14)J }

= {(42+3,3y)|0 <z < 241 + 297 + 8, y = (24r® +29r + 8) — x},

247 + 21)(24r + 2 24r + 21)(24r + 2
W is {(24r+21;i24r+20)J }

= {(4x+2,3y)|0 < & < 240 + 41r + 17, y = (247 + 41r + 17) — x},

24r 4 27)(24r + 26 24r 4 27)(24r + 26
[(24r +27) = {(p,Q)‘p dr + )6( TEW) gy g2 BE ;( "+ 26)
3 ocie (241 4 27)(24r + 26) |
- - 24
= {(42+1,3y)|0 < o < 247 + 53r + 29, y = (247 + 53r + 29) — x}.
Case 1. If £ = 4r, then we can write Kosrr9 = Kogriz © K7 @ Kogryop. Since

K247«+276 = (6T’>K4’6 D K276. Then K247~+9 = K24T+3 D K7 @D (67”)K476 D KQ’G. By the induc-
tion hypothesis, Remark 1.1, and Lemmas 1, 4, we have M (Kag19) 2 M (Kosry3) + M(K7) +
(6r)M (Ky6)+M(Kap) = {(42+1,3y)|0 < < 2412 +5r, y = (2412 +5r)—x}+{(3,3), (7,0) } +
(67){(0,6),(4,3),(8,0)} + (4,0) = {(4u,30)|2 < u < 24r* + 1Tr + 3, v = (24r? + 17r + 3) —
up = 1(24r +9) — {(0,3(24r% + 17r + 3)), (4,3(24r? + 17r + 2)) }. The graph Ky (o has

3(24r% + 17r + 3)Sy, by Theorem 2, we have M (Kay4g) = [(24r +8) — (4, 3(24r% 4+ 17r + 2))
Let Kouryg = Kosrp1 @ Kg @ Kagry1 8. Then by Lemma 5, the graph Kg can be decomposed
into 4P, and 45, and by Theorems 2 and 3, the graphs K41 and Kjsri1 s have an Sy-
decomposition. Hence the graph Ky, 9 has a decomposition into 4P; and 3(24r2 + 17r +2)S,.
Therefore M (Kayry0) = {(42,3y)|0 < z < 24r24+17r+3, y = (24r* +17r+3) —x} = 1(24r+9).

Case 2. If k = 4r + 1, then we can write Kosry15 = Kosrpo © K7 @ Koyryge. Since
Kosryse = (6r + 2)Ky6. Then Koyry1s = Kogrro @ K7 @ (61 + 2)K,6. By the induction
hypothesis, Remark 1.1, and Lemmas 1, 4, we have M (Ko 415) 2 M (Kasryo) + M (K7) + (61 +
2)M (Ky6) = {(42,3y)|0 < & < 24r* + 17r + 3, y = (24> + 17r + 3) — 2} + {(3,3),(7,0)} +
(6r+2){(0,6),(4,3),(8,0)} = {(4u+3,30)|0 < u < 2472 4+29r +8, v = (24r*+29r+8) —u} =
I1(24r + 15).
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Case 3. If £ = 4r + 2, then we can write Kogri01 = Kosry15 ® K7 @ Kosrq156. Since
Kosri1s6 = (61 + 2)Ky6 ® Kgg, we have Koyi01 = Kogpy1s ® K7 @ (6r + 2)Ky6 ® Kgg. By
the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have M (Koyr121) 2 M (Kogri15) +
M (K7)+(6r+2)M(Ky6)+M(Kgsg) = {(42+3,3y)|0 < 2 < 24r*+29r+8, y = (2412 429r+-8) —
z}+{(3,3), (7,0) }+(6r+2){(0,6), (4, 3), (8,0)}+{(0,9), (4,6), (8,3), (12,0)} = {(4u+2,30v)|1 <
u < 2472 4 Alr 4+ 17, v = (24r% + 41r + 17) — u} = [(24r + 21) — (2,3(24r% 4 41r + 17)).
Let Kagrio1 = Koari17 ® Ky © Kosry174. Then the graphs Kourqq7 and Kosrq174 have an Sy-
decomposition, by Theorems 2 and 3, the graph K, has 2P,. Hence the graph Ks4,.121 has a
decomposition into 2P; and 3(24r% + 41r + 17)Sy. Therefore M (Kayi01) = {(4z + 2,3y)|0 <
< 24r? +41r + 17, y = (24r* + 41r + 17) — x} = I(24r + 21).

Case 4. If k£ = 4r + 3, then we can write Kogriror = Kosryo1 © K7 @ Kosrpo06. Since
Koyry206 = (6r +5)K46. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have
M(K24T+27) 2 M(KQ4T+21) + M(K7) + (67” + 5)M(K4,6) = {(41’ + 2, 3y)|0 S T S 247’2 + 41r +
17, y = (24r? +41r+17) — 2} +{(3,3), (7, 0) } + (6r +5){(0, 6), (4, 3), (8,0)} = {(4u+1,3v)[1 <
u < 24r? + 53r + 29, v = (24r% + 53r +29) — u} = [(24r + 27) — (1, 3(2472 + 53r + 29)). Let
Kosryor = Kogrr16 ® K11 @ Kogrt1611- Then by Lemma 8, the graph K, can be decomposed
into 1P, and 1354, and by Theorems 2 and 3, the graphs Kosr116 and Kasry1611 have an Sy-
decomposition. Hence the graph Ky, 197 has a decomposition into 1P, and 3(24r2+53r+29)54.
Therefore M (Kasrio7) = {(4x + 1,3y)|0 < 2 < 24r% + 53r + 29, y = (241> +53r +29) —x} =
I1(24r + 27).

Thus M (Kest3) = 1(6s + 3), for each s € Z,. mi

Lemma 15. Let p,q € Z, U{0} and n =4 (mod 6). There exists a {pFy, qS,}-decomposition

of K, if and only if 3p + 4q = (g) andn > 4. That is, M (Kgsra) = 1(6s +4), where s € Z, .

Proof. Necessity: The conditions 3p + 4g = (g’) and n > 4 are trivial. That is, M (Kgs44) C
I(6s + 4). Sufficiency: We have to prove M (Kgs14) 2 1(6s +4). The proof is by induction on
s. If s =0, then M(K4) = I(4), by Theorem 1. If s = 1, then M (Ky) = I(10), by Lemma 7.

Since K10 = Kopra © Ko @ Kepra6. From the definition of I(n), we have

247 + 4)(24r + 3 24r +4)(24r +3) 3
[(24r +4) = (p,q)‘p:( r+4)(24r + >—4z',q:( r+4)(24r + )_7}97
6 8 4
D<o (24r+4)(247"+3)J}7
== 24
= {(4z+2,3y)|0 <z <240 + Tr, y = (24r° + Tr) — '},
247 +10)(24r + 9 247 + 10)(24r + 9
1(24r +10) = {(p,q)‘pz( i ()),( rr )—42',61:( rr g( r+9)
B gcic (247 + 10)(24r + 9) |
== 24
= {(42+3,3y)|0 <z < 24r* + 197 + 3, y = (24r® + 197 + 3) — x},
247 + 16)(24r + 15 247 + 16)(24r + 15
1(24r +16) = {(p,q)‘pz( T )6( T )—4i,q=( T )8< r+ 1)
3 i< (24r 4 16)(24r + 15) |
4= 24
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= {(42,3y)|0 < 2 < 247 + 31r + 10, y = (247 + 31r + 10) — 2},

241 + 22)(24r + 21 , 24r + 22)(24r + 21
1(24r +22) = {(p,q)‘p=< )6( ) 4 q:( >8< )
W e {(24r+22)(24r+21)J }
- 24
= {(42+1,3y)|0 < 2 < 247 +43r + 19, y = (247 + 43r + 19) — 2},
24r + 28)(24r 4+ 27 ) 24r 4+ 28)(24r + 27
1(24r 4 28) = {(p,Q)‘p=< )6( ) 4 q:( >8( )

24
= {(42+2,3y)|0 < & < 24r* + 55r + 31, y = (247 + 557 + 31) — x}.

W s {(241"—1—28)(247‘—1—27)J }

Case 1. If £k = 47‘, then we can write K247‘+10 = K24r+4 D K6 D KQ4T+476. Since K247‘+4,6 =
4TK6,6 D K476. Then K24r+10 = K24r+4 @D K@ D 4TK6,6 @ K476. By the induction hypOthG‘SiS,
Remark 1.1, and Lemmas 1, 3, we have M (Kasry10) 2 M (Kosrya) + M (Kg) + (4r)M (Kgg) +
M(Kyg) = {(4x +2,3y)|0 <z < 2402 + Tr, y = (2472 + 1) — 2} + (5,0) + (4r){(0,9), (4,6),
(8,3),(12,0)} + {(0,6),(4,3),(8,0)} = {(4u + 3,3v)]1 < u < 24r*> +19r + 3, v = (247? +
19r + 3) — u} = I(24r + 10) — (3, 3(24r? + 19r + 3)) Let Kosrr10 = Koar ® Kig ® Kour 0.
Then by Lemma 7, the graph Kjy can be decomposed into 3P, and 9S4, and by Theorems 2
and 3, the graphs Ky4, and Koy, 19 have an Sy-decomposition. Hence the graph Ks4,410 has a
decomposition into 3P; and 3(24r% 4+ 19r + 3)S,. Therefore M (Kay110) = {(4z + 3,3y)|0 <
< 24r? +19r 4+ 3, y = (24r? + 197 + 3) — z} = I(24r + 10).

Case 2. If k£ = 4r + ]_, then we can write K247~+16 = K24T+10 D K6 D K24r+10,6- Since
Kosrr06 = (4r + 1)Kg6 ® Kyg. Then Koyrp16 = Kosrp10 @ Ko @ (4r + 1) Kg g @ Kyu6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M (Koyr116) 2 M (Kasri10) +
M(Kg)+ (4r+1)M (Keg) + M(Kyg) = {(4x+3,3y)|0 < 2 < 2472 +19r + 3, y = (24r? +19r +
3) —z}+ (5,0) + (4r + 1){(0,9),(4,6),(8,3),(12,0)} + {(0,6), (4,3),(8,0)} = {(4u,3v)|2 <
u < 24024 31r +10, v = (247 + 31y + 10) — u} = I(24r + 16) — {(0,3(24r% + 31r +

10)), (4, 3(2472 + 31r + 9))} The graph Kyy, 116 has 3(24r% + 31r + 10)S,, by Theorem 2.

Hence K247”+16 = ](247" + 16) - (4, 3(247“2 + 31r + 9)) Let K247n+16 = K247~+8 D Kg D K24r+8,8-
Then by Lemma 5, graph Kg can be decomposed into 4P, and 65, and by Theorems 2 and
3, the graphs K445 and Koy488 have an Ss-decomposition. Hence the graph Koy,116 has a
decomposition into 4Py and 3(24r? + 31r + 9)S,. Therefore M (Kayry16) = {(42,3y)|0 < = <
24r% + 31r + 10, y = (247% + 31r + 10) — x} = (247 + 16).

Case 3. If £ = 4r + 2, then we can write Kogri90 = Kosry16 © Ko © Kosrr166. Since
Kosri166 = (4r 4+ 2) K6 @ Kug. Then Koypqo0 = Kospp16 ® Ko @ (41 4+ 2)Kg6 @ Ky6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M (Ksyy00) 2 M (Kasr116) +
M(Kg) + (4r + 2)M (Ke) + M (Kyp) = {(42,3y)|0 <z < 2472 + 31r + 10, y = (247> + 31r +
10) —x} 4 (5,0) + (47 +2){(0,9), (4,6),(8,3),(12,0) } +{(0,6), (4,3),(8,0)} = {(4u+1,30)|1 <
u < 2472 + 437 +19, v = (24r% + 43r + 19) — u} = I(24r + 22) — (1,3(24r2 + 437 + 19)).

Let Koari0o = Kosrrs @ K14 @ Kosryg14. Then by Lemma 10, the graph K4 can be decom-
posed into 1P and 225, and by Theorems 2 and 3, the graphs Kay,+s and Kosr1514 have an Sy-
decomposition. Hence the graph Koy, 99 has a decomposition into 1P, and 3(24r2+43r+ 19)5,.
Therefore M (Kayry29) = {(4x 4+ 1,3y)|0 <z < 2412 +43r + 19, y = (24r* +43r +19) — z} =
1(24r + 22).

Case 4. If k£ = 4r + 3, then we can write Kosri9s = Kosryoo @ K¢ @ Kosrpo26. Since

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 301-316



M. Tlayaraja and A. Muthusamy 314

Kosrio26 = (4r 4+ 3) Ko s ® Kyug. Then Koypyos = Kosryoo @ Ko @ (4r + 3) Ko © Ky6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M (Ko y08) 2 M (Kogri92) +
M (Kg)+ (4r+3)M (Kg6) + M(Kyig) = {(4z+1,39)|0 < = < 24r2+43r +19, y = (2472 +43r +
19) —x} 4 (5,0) + (4r+3){(0,9), (4,6),(8,3),(12,0)} +{(0,6), (4,3),(8,0)} = {(4u+2,30)|1 <
u < 24r? 4 557 + 31, v = (24r% 4 55r + 31) — u} = I(24r + 28) — (2,3(24r% + 55r + 31)).
Let Kogrios = Kogrioa @ K4 @ Kogri244. Then by Theorems 2 and 3, the graphs Kay,404 and
K4ri1244 have an Sy-decomposition, the graph K4 has 2P;. Hence the graph Kou,198 has a
decomposition into 2P; and 3(24r% + 551 + 31)S,. Therefore M (Kay108) = {(4x + 2,3y)]0 <
x < 24r? 4+ 55r 4+ 31, y = (24r* + 551 + 31) — x} = I(24r + 28).

Thus M (Kgsya) = I(6s +4), for each s € Z,. mi

Lemma 16. Let p,q € Z, U{0} and n =5 (mod 6). There ezists a {pPy, qS4}-decomposition
of K, if and only if 3p + 4q = (g), n>5and g > 1. That is, M(Kgsy5) = I(6s + 5), where
s € Z, U{0}.

Proof. Necessity: The conditions 3p + 4q = (g) and n > 5 are trivial. That is, M (Kgsi5) C
I(6s+5). Then g > 1, since by Theorem 1, the graph Kgs,5 can not have a Py-decomposition.
Sufficiency: We have to prove M (Kgs45) 2 I(6s+5). The proof is by induction on s. If s = 0,
then M (K5) = I(5), by Lemma 2. Since Kgpt11 = Kekts D K7 @ Kepras. From the definition
of I(n), we have

I +5) = {(p, q>’p: (247“—1—5)(2647“—1—4) 8. (247‘+5)8(247"+4)
B << (24r + 5)(24r +4) — 8
I 24 ’

= {(4x+2,3y+ 1|0 <z <24r* +9r, y = (24r° +9r) — z},

247 + 11)(24r + 10) — 247 + 11)(24r + 1
a4 11) = {(p7q>’p:( 4 )(6r+ 0) 8_42_7(]:( 4 )8( r +10)
_3£’O<i< (247 + 11)(247 + 10) — 8 |
g 0=t 24

= {(Ar+ 1,3y + 1|0 <z < 24r? + 21r + 4, y = (24r° + 217 +4) — 1},

24r +17)(24r + 16) — 24r +17)(24r + 1
o4r 1 17) = {(M)’p:( PN 16 -8 (24 72( r+ 16)

6

3
—Zp,ogis

(24r + 17)(24r + 16) — 8
)

= {(42,3y + 1|0 < 2 < 247 + 33r + 11, y = (247> + 33r + 11) — '},
(24r +23)(24r +22) =8 (247 + 23)(24r + 22)

6 ’ 8

I(24r 4+23) = {(p7 q)‘p =

3p )
- <1 <
3 0SS 24

= {(42 43,3y +1)|0 <z < 247r% + 45r + 20, y = (24r* + 45r + 20) — =},
24r +29)(24r +28) =8 24r + 29)(24r + 28
{mq)‘ o )( )=8 i g )( )

{(m +23)(24r + 22) — 8J }

1(24r 429) =

6 ’ 8
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(247 + 29)(24r + 28) — sJ }

3p }
- <1 <
0 0sts 24

= {(4z+2,3y +1)[0 <2 < 24r* +57r + 33, y = (24r® + 57r + 33) — z}.

Case 1. If k = 4r, then we can write Koyri11 = Kogr 5B K7B Kogrta6. Since Kogria e = (674
1)Ky6. Then Kogri11 = Kogris @ K7 @ (6r + 1)Ky 6. By the induction hypothesis, Remark 1.1,
and Lemmas 1, 4, we have M (Kagy11) 2 M (Kosri5)+M(K7)+(6r+1)M(Ky6) = {(42+2, 3y+
[0 <z <24r249r, y = (24r°+9r)—z}+{(3,3), (7,0) } +(6r+1){(0,6), (4,3), (8,0)} = {(4u+
L3v+1)1 <u<24r?+21r+4, v = (24r2+21r+4) —u} = 1(24r+11) — (1,3(24r2+21r+4)).
Let Kogri11 = Koar © K11 @ Kagr11. Then by Lemma 8, the graph K;; can be decomposed into
1P, and 135y, and by Theorems 2 and 3, the graphs Ks4, and Ksy, 11 have an S;-decomposition.
Hence the graph Kyy,11; has a decomposition into 1P; and 3(24r? + 21r + 4)S;. Therefore
M (Kagry11) = {(4x+1,3y+1)|0 <z < 24r2 4+ 21r+4, y = (24r* +21r+4) —z} = [(24r +11).

Case 2. If £ = 4r + 1, then we can write Kogr117 = Kosry11 © K7 @ Kosrq106. Since
Kosri106 = (6r + 1) K46 @ Keg. Then Koyrp1r = Kogry11 ® K7 @ (6r + 1)Ky6 & Keg. By
the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have M (Koyr117) 2 M (Kogri11) +
M (K7)+(6r+1)M(Ky)+M(Keg) = {(4x+1,3y+1)|0 < z < 24r2+21r+4, y = (24r*4+21r+
4)—x}+{(3,3),(7,0)}+ (6r+1){(0,6), (4,3), (8,0)} +{(0,9), (4,6), (8,3), (12,0)} = {(4u, 3v+
D[1 < w < 242 433r+11, v = (24r°+33r+11) —u} = [(24r+17)— (0,3(24r>+33r+11)). The
graph Ksy,417 has an Sy-decomposition, by Theorem 2. Hence M (Kayy417) = {(42, 3y +1)|0 <
x <241+ 33r + 11, y = (247> + 33r + 11) — a} = 1(24r + 17)

Case 3. If £ = 4r + 2, then we can write Kogri93 = Kosry17 © K7 @ Kosrq166. Since
K247"+16,6 = (67" + 4)K4’6. Then K247«+23 = K24,«+17 @D K7 D (67’ + 4)K4,6. By the induction
hypothesis, Remark 1.1, and Lemmas 1, 4, we have M (Ks4123) 2 M(Kogri17) + M(K7) +
(6r + 4)M(Kye) = {(42,3y + 1)|0 < o < 247 + 33r + 11, y = (24r? + 33r + 11) — 2z} +
{(3,3), (7,0)} + (67 + 4){(0,6), (4,3), (8,0)} = {(du + 3,30 + 1)|0 < u < 24r% + 45r + 20, v =
(2412 + 451 + 20) — u} = I(24r + 23).

Case 4. If k£ = 4r + 3, then we can write Kogri99 = Kosryoz ® K7 @ Kogrio06. Since
Kogrioo6 = (6r+4)K46® Kgg. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we
have M(K24T+29) 2 M(K24T+23) + M(K7) + (67” —|—4)M(K476) + M(KG’G) = {(4$ + 3, 3y + 1)|O S
x < 2472 +45r +20, y = (2472 +45r +20) — 2} +{(3,3), (7.0)} + (6r +4){(0,6), (4,3), (8,0)} +
{(0,9),(4,6),(8,3),(12,0)} = {(4u+2,3v+ 1)1 <u < 24r?+57r+33, v = (24r? +57r+33) —
u} = 1(24r +29) — (2, 3(24r% + 5Tr + 33)). Let Kouryo9 = Kosrios © K4 @ Kosrio54. Then by
Theorems 2 and 3, the graphs Koy, 495 and Kag,4 05 4 have an Sy-decomposition, the graph K4 has
2P,. Hence the graph Koy, 29 has a decomposition into 2P and 3(24r2+57r +33)S,. Therefore
M (Kari99) = {(4u+2,3v+1)|0 < u < 24r?+57r+33, v = (24r*+57r+33) —u} = 1(24r+29).

Thus M (Kesy5) = I(6s + 5), for each s € Zy U {0}. mi

The consequences of Lemmas 11 to 16 implies our main result as follows.

Theorem 4. Let p and q are nonnegative integers, and n > 4 be a positive integer. There
exists a {pPy, ¢S4 }-decomposition of K, if and only if 3p + 4q = (g) That is, M (K,) = I(n),
where 4 <n €7Z,.
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