Journal of Combinatorial Mathematics and Combinatorial Computing, 122: 301–316 [DOI:10.61091/jcmcc122-25](http://dx.doi.org/10.61091/jcmcc122-25) <http://www.combinatorialpress.com/jcmcc> Received 11 May 2024, Accepted 16 Septermber 2024, Published 30 September 2024

Article

Decomposition of Complete Graphs into Paths and Stars with Different Number of Edges

M. Ilayaraja¹*,*[∗] **, and A. Muthusamy**²

- ¹ Departmentof Mathematics, Sona College of Arts and Science Salem-636005, Tamil Nadu, India.
- ² Department of Mathematics, Periyar University, Salem-636011, Tamil Nadu, India
- * **Correspondence:** ilayamaths@gmail.com

Abstract: Let *Pⁿ* and *Kⁿ* respectively denote a path and complete graph on *n* vertices. By a $\{pH_1, qH_2\}$ -decomposition of a graph *G*, we mean a decomposition of *G* into *p* copies of H_1 and *q* copies of H_2 for any admissible pair of nonnegative integers *p* and *q*, where H_1 and H_2 are subgraphs of *G*. In this paper, we show that for any admissible pair of nonnegative integers *p* and *q*, and positive integer $n \geq 4$, there exists a $\{pP_4, qS_4\}$ -decomposition of K_n if and only if $3p + 4q = \binom{n}{2}$ $\binom{n}{2}$, where S_4 is a star with 4 edges.

Keywords: Graph decomposition, Paths, Stars, Complete graph

1. Introduction

All graphs considered here are finite. Let *K^k* denote a complete graph on *k* vertices. Let P_{k+1}, C_k and $S_k (\cong K_{1,k})$ respectively denote a path, cycle and star each having *k* edges. Further, we denote a path on $k+1$ vertices $x_1, x_2, \ldots, x_{k+1}$, and edges $x_1x_2, \ldots, x_kx_{k+1}$ by $[x_1 \ldots x_kx_{k+1}]$. If there are $t \geq 1$ stars with same end vertices x_1, x_2, \ldots, x_k and different centers y_1, y_2, \ldots, y_t we denote it by $(y_1, y_2, \ldots, y_t; x_1, x_2, \ldots, x_k)$. Let \mathbb{Z}_+ be the set of all positive integers. When $x, y \in \mathbb{Z}$, we define $\lfloor x \rfloor = \max\{y | y \in \mathbb{Z}, y \leq x\}$ and $\lceil x \rceil = \min\{y | y \in \mathbb{Z}, y \geq x\}.$

A *decomposition* of a graph *G* is a partition of *G* into edge-disjoint subgraphs of *G*. If the subgraphs in the decomposition are isomorphic to either a graph H_1 or a graph H_2 , then it is called a $\{H_1, H_2\}$ -decomposition of *G*. We say that *G* has a $\{pH_1, qH_2\}$ -decomposition of *G* if the decomposition contains p copies of H_1 and q copies of H_2 for all possible choices of p and *q*. Different problems on graph decomposition have been studied for a century. In particular, the problem of decomposing a complete graph into cycles is the center of attraction of many of these studies (e.g., the work of Alspach and Gavlas [\[1\]](#page-15-0) and its references).

The study of $\{H_1, H_2\}$ -decomposition has been introduced by Abueida and Daven [\[2,](#page-15-1) [3\]](#page-15-2). Moreover, Abueida and O'Neil [\[4\]](#page-15-3) have settled the existence of $\{H_1, H_2\}$ -decomposition of λK_m , when $\{H_1, H_2\} = \{K_{1,n-1}, C_n\}$ for $n = 3, 4, 5$. Priyadharsini and Muthusamy [\[5\]](#page-15-4) gave necessary and sufficient condition for the existence of $\{G_n, H_n\}$ -factorization of λK_n , where $G_n, H_n \in$ ${C_n, P_n, S_{n-1}}$. Many other results on decomposition of graphs into distinct subgraphs involving paths, cycles or stars have been proved in [\[6–](#page-15-5)[9\]](#page-15-6). Recently, Fu, et al. [\[10\]](#page-15-7) have found the necessary and sufficient conditions for the existence of decomposition of *Kⁿ* into cycles and stars on four vertices. In this paper, we obtain necessary and sufficient conditions for the existence of a ${pP_4, qS_4}$ -decomposition of K_n .

Let $M(G)$ denote the set of all pairs (p, q) such that there exists a $\{pP_4, qS_4\}$ -decomposition of *G* and we define the set $I(n)$ in Table [1](#page-1-0) which help us to show that $M(K_n) = I(n)$ for all feasible values of *n*.

	I(n)
	$\left[0,1,3,4 \pmod{6}\right]$ $\left\{(p,q) \mid p = \frac{n(n-1)}{6} - 4i, q = \frac{n(n-1)}{8} - \frac{3p}{4}, 0 \leq i \leq \left[\frac{n(n-1)}{24}\right]\right\}$
	2,5 (mod 6) $\left \{(p,q) \mid p = \frac{n(n-1)-8}{6} - 4i, q = \frac{n(n-1)}{8} - \frac{3p}{4}, 0 \le i \le \left \frac{n(n-1)-8}{24} \right \right $

Table 1. The Set *I*(*n*)

Remark 1. *Let* $A + B = \{(x_1 + y_1, x_2 + y_2) | (x_1, x_2) \in A, (y_1, y_2) \in B\}$ and rA be the sum *of r copies of A.* If $G = G_1 \oplus G_2$, where \oplus *denotes edge disjoint sum of the subgraphs* G_1 *and* G_2 *, then M*(*G*) ≥ *M*(*G*₁) + *M*(*G*₂)*.*

To prove our main result we state some known results as follows.

Theorem 1. [\[11\]](#page-15-8) *Let* $k, n \in \mathbb{Z}_+$ *. Then* K_n *has a* P_{k+1} *-decomposition if and only if* $n \geq k+1$ $and n(n-1) \equiv 0 \pmod{2k}$.

Theorem 2. [\[12,](#page-15-9) [13\]](#page-15-10) *Let* $n, k \in \mathbb{Z}_+$ *. Then* K_n *has a* S_k *-decomposition if and only if* $2k \leq n$ $and n(n-1) \equiv 0 \pmod{2k}$.

Theorem 3. [\[13\]](#page-15-10) *Let* $m, n \in \mathbb{Z}_+$ *with* $m \leq n$ *. Then* $K_{m,n}$ *has an* S_k *-decomposition if and only if one of the following holds:*

1. $m \geq k$ *and* $mn \equiv 0 \pmod{k}$; 2. $m < k \leq n$ and $n \equiv 0 \pmod{k}$.

2. Base Constructions

In this section, we provide some useful lemmas which are required in proving our main result. The proof of the Lemmas [1](#page-1-1) to [10,](#page-4-0) are given in the Appendix.

Lemma 1. *There exists a* $\{pP_4, qS_4\}$ -decomposition of $K_{m,6}$, when $m = 2, 4, 6$.

Proof. **Case 1.** For *m* = 2.

Let $V(K_{2,6}) = (X_1, X_2)$, where $X_1 = \{x_{1,1}, x_{1,2}\}$ and $X_2 = \{x_{2,i} \mid 1 \le i \le 6\}$. We exhibit the ${pP_4, qS_4}$ -decomposition of $K_{2,6}$ for $p = 4$ and $q = 0$ as

$$
[x_{1,1}x_{2,1}x_{1,2}x_{2,2}], [x_{1,1}x_{2,3}x_{1,2}x_{2,4}], [x_{2,2}x_{1,1}x_{2,6}x_{1,2}], [x_{1,2}x_{2,5}x_{1,1}x_{2,4}].
$$

Hence, $M(K_{2,6}) = (4,0)$.

Case 2. For $m = 4$.

Let $V(K_{4,6}) = (X_1, X_2)$, where $X_1 = \{x_{1,i} \mid 1 \leq i \leq 4\}$ and $X_2 = \{x_{2,i} \mid 1 \leq i \leq 6\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of $K_{4,6}$ as follows:

- 1. For $p = 0$ and $q = 6$:
	- By Theorem [3,](#page-1-2) we get the required stars.
- 2. For $p = 4$ and $q = 3$:
	- $[x_{1,1}x_{2,1}x_{1,2}x_{2,2}], [x_{1,2}x_{2,3}x_{1,1}x_{2,2}], [x_{1,3}x_{2,1}x_{1,4}x_{2,2}], [x_{1,4}x_{2,2}x_{1,3}x_{2,3}], (x_{2,4},x_{2,5},x_{2,6};x_{1,1},x_{1,2},x_{1,3},x_{1,4}).$

3. For $p = 8$ and $q = 0$: The $4P_4$ along with $[x_{1,1}x_{2,4}x_{1,2}x_{2,5}], [x_{1,2}x_{2,6}x_{1,1}x_{2,5}], [x_{1,3}x_{2,4}x_{1,4}x_{2,5}], [x_{1,4}x_{2,5}x_{1,3}x_{2,6}]$ gives the required paths.

Hence, $M(K_{4,6}) = \{(0,6), (4,3), (8,0)\}.$

Case 3. For $m = 6$.

We can write $K_{6,6} = K_{2,6} \oplus K_{4,6}$. Then $M(K_{6,6}) \supseteq M(K_{2,6}) + M(K_{4,6}) \supseteq (4,0) +$ $\{(0,6), (4,3), (8,0)\} = \{(4,6), (8,3), (12,0)\}.$ By Theorem [3,](#page-1-2) we get 9S₄. Hence $M(K_{6,6}) =$ {(0*,* 9)*,*(4*,* 6)*,*(8*,* 3)*,*(12*,* 0)}.

Lemma 2. *There exists a* ${pP_4, qS_4}$ *-decomposition of* K_5 *.*

Proof. From the definition of $I(n)$, we get $I(5) = (2, 1)$. Let $V(K_5) = \{x_i \mid 1 \leq i \leq j\}$ 5}. We exhibit the $\{pP_4, qS_4\}$ -decomposition of K_5 for $p = 2$ and $q = 1$ as $[x_2x_4x_3x_5]$, $[x_3x_2x_5x_4]$, $(x_1; x_2, x_3, x_4, x_5)$. Hence, $M(K_5) = I(5) = (2, 1)$.

Lemma 3. *There exists a* ${pP_4, qS_4}$ *-decomposition of* K_6 *.*

Proof. From the definition of $I(n)$, we get $I(6) = \{(1,3), (5,0)\}$. Let $V(K_6) = \{x_i \mid 1 \le i \le 6\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of K_6 as follows:

- 1. (1,3): Let *D* be an arbitrary $\{pP_4, qS_4\}$ -decomposition of K_6 . Suppose that $p = 1$ and let $P_4^1 = [x_1x_2x_3x_4]$ be the only P_4 in *D*. By our assumption $H_1 = K_6 - E(P_4^1)$ has an *S*₄-decomposition. Let $d(x_i)$ is degree of x_i . In H_1 , $d(x_1) = d(x_4) = 4$, $d(x_2) = d(x_3) = 3$ and $d(x_5) = d(x_6) = 5$. It follows that, any three of $\{x_1, x_4, x_5, x_6\}$ must be a center vertex of stars in the decomposition *D*. Let $S_4^1 = (x_1; x_3, x_4, x_5, x_6)$ be a star in H_1 . Then $H_2 = H_1 - E(S_4^1)$, we have $d(x_1) = 0$, $d(x_2) = d(x_4) = 3$, $d(x_5) = d(x_6) = 4$ and $d(x_3) = 2$. It follows that x_5 and x_6 must be center vertices of stars in the decomposition *D*. Let $S_4^2 = (x_5; x_2, x_3, x_4, x_6)$ in H_2 . Then $H_3 = H_2 - E(S_4^2)$, we have $d(x_1) = d(x_5) = 0$, $d(x_2) = d(x_4) = 2$, $d(x_3) = 1$ and $d(x_6) = 3$. Hence H_3 can not have a S_4 -decomposition, which is a contradiction. Hence $(p, q) \neq (1, 3)$.
- 2. (5*,* 0): By Theorem [1,](#page-1-3) we get the required paths.

Hence, $M(K_6) = I(6) = (5, 0).$

Lemma 4. *There exists a* ${pP_4, qS_4}$ *-decomposition of* K_7 *.*

Proof. From the definition of $I(n)$, we get $I(7) = \{(3, 3), (7, 0)\}$. Let $V(K_7) = \{x_i \mid 1 \le i \le 7\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of K_7 as follows:

1. For $p = 3$ and $q = 3$: $[x_1x_2x_3x_4], [x_4x_5x_6x_7], [x_5x_7x_4x_6], (x_3; x_1, x_5, x_6, x_7), (x_1, x_2; x_4, x_5, x_6, x_7).$ 2. For $p = 7$ and $q = 0$:

By Theorem [1,](#page-1-3) we get the required paths.

Hence, $M(K_7) = I(7) = \{(3, 3), (7, 0)\}.$

Lemma 5. *There exists a* ${pP_4, qS_4}$ *-decomposition of* K_8 *.*

Proof. From the definition of $I(n)$, we get $I(8) = \{(0, 7), (4, 4), (8, 1)\}\.$ Let $V(K_8) = \{x_i \mid 1 \leq i \leq n \}$ $i \leq 8$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of K_8 as follows:

1. For $p = 0$ and $q = 7$:

By Theorem [2,](#page-1-4) we get the required stars.

□

- 2. $p = 4$ and $q = 4$: $[x_1x_2x_8x_3], [x_2x_5x_3x_4], [x_6x_3x_1x_8], [x_1x_4x_2x_3], (x_4; x_5, x_6, x_7, x_8), (x_5; x_1, x_6, x_7, x_8), (x_6; x_1, x_2, x_7, x_8),$ (x_8) , $(x_7; x_1, x_2, x_3, x_8)$.
- 3. For $p = 8$ and $q = 1$: The $4P_4$ along with $[x_1x_5x_4x_8], [x_2x_6x_7x_4], [x_1x_6x_5x_7], [x_4x_6x_8x_5]$ gives the required paths and the $1S_4$ is $(x_7; x_1, x_2, x_3, x_8)$.

Hence, $M(K_8) = I(8) = \{(0, 7), (4, 4), (8, 1)\}.$

Lemma 6. *There exists a* ${pP_4, qS_4}$ *-decomposition of* K_9 *.*

Proof. From the definition of $I(n)$, we get $I(9) = \{(0, 9), (4, 6), (8, 3), (12, 0)\}.$ Let $V(K_9) =$ $\{x_i \mid 1 \leq i \leq 9\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of K_9 as follows:

- 1. For $p = 0$ and $q = 9$: By Theorem [2,](#page-1-4) we get the required stars.
- 2. For $p = 4$ and $q = 6$: $[x_1x_2x_5x_4], [x_2x_4x_1x_5], [x_6x_8x_7x_9], [x_7x_6x_9x_8], (x_3; x_1, x_2, x_4, x_5),$ $(x_1, x_2, x_3, x_4, x_5; x_6, x_7, x_8, x_9).$
- 3. For *p* = 8 and *q* = 3: The $4P_4$ with $[x_1x_6x_2x_9]$, $[x_1x_7x_3x_6]$, $[x_3x_9x_1x_8]$, $[x_3x_8x_2x_7]$ gives the required paths and 3 S_4 are $(x_3; x_1, x_2, x_4, x_5), (x_4, x_5; x_6, x_7, x_8, x_9).$
- 4. $p = 12$ and $q = 0$:

By Theorem [1,](#page-1-3) we get the required paths.

Hence, $M(K_9) = I(9) = \{(0, 9), (4, 6), (8, 3), (12, 0)\}.$

Lemma 7. *There exists a* ${pP_4, qS_4}$ *-decomposition of* K_{10} *.*

Proof. From the definition of $I(n)$, we get $I(10) = \{(3, 9), (7, 6), (11, 3), (15, 0)\}$. Let $V(K_{10}) =$ ${x_i \mid 1 \le i \le 10}$. We exhibit the ${pP_4, qS_4}$ -decomposition of K_{10} as follows:

- 1. For $p = 3$ and $q = 9$: $[x_1x_2x_3x_4], [x_2x_4x_1x_3], [x_4x_5x_6x_7], (x_5; x_1, x_2, x_3, x_7), (x_6, x_7, x_8, x_9, x_{10}; x_1, x_2, x_3, x_4), (x_8; x_5, x_6, x_7, x_8, x_9, x_{10}; x_1, x_2, x_3, x_4)$ (x_9) *,* $(x_9; x_5, x_6, x_7, x_{10})$ *,* $(x_{10}; x_5, x_6, x_7, x_8)$.
- 2. For $p = 7$ and $q = 6$: The $3P_4$ along with $[x_1x_{10}x_2x_8], [x_3x_9x_1x_8], [x_2x_9x_4x_{10}],$ $[x_4x_8x_3x_{10}]$ gives the required paths and $6S_4$ are $(x_6, x_7; x_1, x_2, x_3, x_4)$, $(x_5; x_1, x_2, x_3, x_7), (x_8; x_5, x_6, x_7, x_9), (x_9; x_5, x_6, x_7, x_{10}), (x_{10}; x_5, x_6, x_7, x_8).$
- 3. For $p = 11$ and $q = 3$: The $7P_4$ along with $[x_1x_5x_2x_6]$, $[x_1x_7x_3x_6]$, $[x_1x_6x_4x_7]$, $[x_2x_7x_5x_3]$ gives the required paths and $3S_4$ are $(x_8; x_5, x_6, x_7, x_9)$, $(x_9; x_5, x_6, x_7, x_{10})$, $(x_{10}; x_5, x_6, x_7, x_8)$.
- 4. For $p = 15$ and $q = 0$: By Theorem [1,](#page-1-3) we get the required paths.

Hence, $M(K_{10}) = I(10) = \{(3, 9), (7, 6), (11, 3), (15, 0)\}.$

Lemma 8. *There exists a* ${pP_4, qS_4}$ *-decomposition of* K_{11} *.*

Proof. From the definition of $I(n)$, we get $I(11) = \{(1, 13), (5, 10), (9, 7), (13, 4), (17, 1)\}$. Let $V(K_{11}) = \{x_i \mid 1 \leq i \leq 11\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of K_{11} as follows:

1. For $p = 1$ and $q = 13$:

 $[x_3x_1x_{10}x_9], (x_1, x_2; x_4, x_5, x_6, x_7), (x_3, x_4, x_5, x_7; x_8, x_9, x_{10}, x_{11}), (x_1, x_2, x_8, x_9, x_{11}), (x_2, x_3, x_9, x_{10}, x_{11}), (x_3, x_4, x_5, x_{10}, x_{11}), (x_4, x_5, x_{11}), (x_5, x_6, x_{10}, x_{11}), (x_6, x_7, x_{10}, x_{11}), (x_7, x_8, x_{10}, x_{11}), (x_8, x$ $(x_{11}), (x_3; x_1, x_5, x_6, x_7), (x_4; x_1, x_2, x_3, x_5), (x_6; x_5, x_7, x_9, x_{10}), (x_8; x_2, x_6, x_9, x_{10}), (x_{11}; x_6, x_8, x_9, x_{10}).$

- 2. For $p = 5$ and $q = 10$: $[x_1x_2x_3x_4], [x_4x_5x_6x_7], [x_5x_7x_4x_6], [x_8x_9x_{10}x_{11}], [x_9x_{11}x_8x_{10}], (x_1, x_2, x_3, x_4, x_5, x_6, x_7; x_8, x_9, x_{10},$ $(x_{11}), (x_1, x_2; x_4, x_5, x_6, x_7), (x_3; x_1, x_5, x_6, x_7).$
- 3. For $p = 9$ and $q = 7$: The $5P_4$ along with $[x_2x_8x_3x_9], [x_2x_{10}x_3x_{11}], [x_2x_{11}x_1x_{10}], [x_2x_9x_1x_8]$ gives the required paths and last 7*S*⁴ gives the required stars.
- 4. For $p = 13$ and $q = 4$: The 9 P_4 along with $[x_5x_8x_6x_9]$, $[x_5x_{10}x_6x_{11}]$, $[x_5x_9x_4x_8]$, $[x_5x_{11}x_4x_{10}]$ gives the required paths and $4S_4$ are $(x_1, x_2; x_4, x_5, x_6, x_7)$, $(x_3; x_1, x_5, x_6, x_7)$, $(x_7; x_8, x_9, x_{10}, x_{11})$.
- 5. For $p = 17$ and $q = 1$: The 13 P_4 along with $[x_5x_1x_3x_7]$, $[x_1x_7x_2x_6]$, $[x_3x_5x_2x_4]$, $[x_3x_6x_1x_4]$ gives the required paths and the $1S_4$ is $(x_7; x_8, x_9, x_{10}, x_{11})$.

Hence, $M(K_{11}) = I(11) = \{(1, 13), (5, 10), (9, 7), (13, 4), (17, 1)\}.$

Lemma 9. *There exists a* ${pP_4, qS_4}$ *-decomposition of* K_{12} *.*

Proof. From the definition of $I(n)$, we get $I(12)$ = $\{(2, 15), (6, 12), (10, 9), (14, 6), (18, 3), (22, 0)\}.$ We can write $K_{12} = 2K_6 \oplus$ *K*_{6,6}. By Remark [1,](#page-1-1) and Lemmas 1, [3,](#page-2-0) we have $M(K_{12})$ ⊇ $2M(K_6)$ + $M(K_{6.6})$ \supseteq $(10, 0)$ + $\{(0, 9), (4, 6), (8, 3), (12, 0)\}$ = $\{(10, 9), (14, 6), (18, 3),$ $(22, 0)$ } = $I(12) - \{(2, 15), (6, 12)\}$. We can write $K_{12} = K_4 \oplus K_8 \oplus K_{4,8}$. Then by Theorems [1](#page-1-3) and [3,](#page-1-2) the graphs K_4 and $K_{4,8}$ have $2P_4$ and $8S_4$ respectively, and by Lemma [5](#page-2-1) the graph K_8 has a decomposition for the case $(p,q) \in \{(0,7), (4,4)\}.$ Hence $M(K_{12}) = I(12) = \{(2, 15), (6, 12), (10, 9), (14, 6), (18, 3), (22, 0)\}.$

Lemma 10. *There exists a* ${pP_4, qS_4}$ *-decomposition of* K_{14} *.*

Proof. From the definition of $I(n)$, we get $I(14) = \{(1, 22), (5, 19), \ldots, (29, 1)\}.$ We can write $K_{14} = K_8 \oplus K_6 \oplus 2K_{4,6}$. Then by Remark [1,](#page-1-1) and Lemmas 1, [3](#page-2-0) and [5,](#page-2-1) we have $M(K_{14}) \supseteq M(K_8) + M(K_6) + 2M(K_{4,6}) = \{(0,7), (4,4), (8,1)\} + (5,0) + 2\{(0,6), (4,3), (8,0)\} =$ $\{(5, 19), (9, 16), \ldots, (29, 1)\} = I(14) - (1, 22).$ Let $V(K_{14}) = \{x_i \mid 1 \leq i \leq 14\}.$ Then the required decomposition for the case $(p,q) = (1,22)$ is given as follows: $[x_7, x_6, x_{14}, x_{11}], (x_1, x_2, x_{11}, x_{12}, x_{14}), (x_3, x_1, x_2, x_{11}, x_{14}), (x_4, x_1, x_2, x_3, x_5), (x_5, x_1, x_2, x_3, x_7), (x_6, x_5, x_6, x_7),$ $(x_{11}, x_{12}, x_{13}), (x_8, x_5, x_6, x_7, x_9), (x_9, x_5, x_6, x_7, x_{10}), (x_{10}, x_5, x_6, x_7, x_8), (x_{12}, x_3, x_{11}, x_{13}, x_{14}), (x_{13}, x_1, x_3, x_{14}),$ $(x_{11}, x_{14}), (x_2, x_4, x_5, x_7, x_8, x_9, x_{10}; x_{11}, x_{12}, x_{13}, x_{14}), (x_6, x_7, x_8, x_9, x_{10}; x_1, x_2, x_3, x_4).$ Hence, $M(K_{14}) = I(14) = \{(1, 22), \ldots, (29, 1)\}.$

3. Main Result

In this section, we prove that K_n can be decomposed into p copies of P_4 and q copies of S_4 for all positive integer $n \geq 4$.

Lemma 11. *Let* $p, q \in \mathbb{Z}_+ \cup \{0\}$ *and* $n \equiv 0 \pmod{6}$ *. There exists a* $\{pP_4, qS_4\}$ *-decomposition of* K_n *if and only if* $3p + 4q = \binom{n}{2}$ $\binom{n}{2}$, and $n \ge 6$. That is, $M(K_{6s}) = I(6s)$, where $s \in \mathbb{Z}_{+}$.

Proof. Necessity: The conditions $3p+4q = \binom{n}{2}$ $\binom{n}{2}$ and $n \geq 6$ are trivial. That is, $M(K_{6s}) \subseteq I(6s)$. Sufficiency: We have to prove $M(K_{6s}) \supseteq I(6s)$. The proof is by induction on *s*. If $s = 1$, then $M(K_6) = I(6)$, by Lemma [3.](#page-2-0) Since $K_{6k+6} = K_{6k} \oplus K_{6k} \oplus K_{6k,6} = K_{6k} \oplus K_6 \oplus kK_{6,6}$. From the definition of $I(n)$, we have

$$
I(24r) = \left\{ (p,q) \middle| p = \frac{(24r)(24r-1)}{6} - 4i, \ q = \frac{(24r)(24r-1)}{8} - \frac{3p}{4}, \right\}
$$

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 301–316

$$
0 \leq i \leq \left[\frac{(24r)(24r-1)}{24} \right],
$$

\n
$$
= \{(4x,3y)|0 \leq x \leq 24r^2 - r, y = (24r^2 - r) - x \},
$$

\n
$$
I(24r+6) = \left\{ (p,q) \Big| p = \frac{(24r+6)(24r+5)}{6} - 4i, q = \frac{(24r+6)(24r+5)}{8} - \frac{3p}{4},
$$

\n
$$
0 \leq i \leq \left[\frac{(24r+6)(24r+5)}{24} \right] \right\},
$$

\n
$$
= \{(4x+1,3y)|0 \leq x \leq 24r^2 + 11r + 1, y = (24r^2 + 11r + 1) - x \},
$$

\n
$$
I(24r+12) = \left\{ (p,q) \Big| p = \frac{(24r+12)(24r+11)}{6} - 4i, q = \frac{(24r+12)(24r+11)}{8} - \frac{3p}{4}, 0 \leq i \leq \left[\frac{(24r+12)(24r+11)}{24} \right] \right\},
$$

\n
$$
= \{(4x+2,3y)|0 \leq x \leq 24r^2 + 23r + 5, y = (24r^2 + 23r + 5) - x \},
$$

\n
$$
I(24r+18) = \left\{ (p,q) \Big| p = \frac{(24r+18)(24r+17)}{6} - 4i, q = \frac{(24r+18)(24r+17)}{8} - \frac{3p}{4}, 0 \leq i \leq \left[\frac{(24r+18)(24r+17)}{24} \right] \right\},
$$

\n
$$
= \{(4x+3,3y)|0 \leq x \leq 24r^2 + 35r + 12, y = (24r^2 + 35r + 12) - x \},
$$

\n
$$
I(24r+24) = \left\{ (p,q) \Big| p = \frac{(24r+24)(24r+23)}{6} - 4i, q = \frac{(24r+24)(24r
$$

Case 1. If $k = 4r$, then we can write $K_{24r+6} = K_{24r} \oplus K_6 \oplus (4r)K_{6,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [3,](#page-2-0) we have $M(K_{24r+6}) \supseteq M(K_{24r})$ + $M(K_6) + (4r)M(K_{6,6}) = \{(4x, 3y)|0 \le x \le 24r^2 - r, y = (24r^2 - r) - x\} + (5, 0) +$ $(4r)\{(0,9), (4,6), (8,3), (12,0)\} = \{(4u+1,3v)|1 \le u \le 24r^2+11r+1, v = (24r^2+11r+1)-u\}$ $I(24r+6) - (1,3(24r^2+11r+1))$. If $r = 1$, then $K_{30} = K_{16} \oplus K_{14} \oplus K_{16,14}$. The graph K_{14} can be decomposed into $1P_4$ and $22S_4$, by Lemma [10,](#page-4-0) and the graphs K_{16} and $K_{16,14}$ have an S_4 -decomposition, by Theorems [2](#page-1-4) and [3.](#page-1-2) Hence the graph K_{30} has a decomposition into $1P_4$ and 108*S*₄. For *r* ≥ 2, we can write $K_{24r+6} = K_{24r-8} \oplus K_{14} \oplus K_{24r-8,14}$. Then by Lemma [10,](#page-4-0) the graph K_{14} can be decomposed into $1P_4$ and $22S_4$ $22S_4$, and by Theorems 2 and [3,](#page-1-2) the graphs K_{24r-8} and $K_{24r-8,14}$ have an S_4 -decomposition. Hence the graph K_{24r+6} has a decomposition into 1 P_4 and $3(24r^2 + 11r + 1)S_4$. Therefore $M(K_{24r+6}) = \{(4x + 1, 3y)|0 \le x \le 24r^2 + 11r + 1, y =$ $(24r^2 + 11r + 1) - x$ = $I(24r + 6)$.

Case 2. If $k = 4r + 1$, then we can write $K_{24r+12} = K_{24r+6} \oplus K_6 \oplus (4r+1)K_{6,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [3,](#page-2-0) we have $M(K_{24r+12}) \supseteq M(K_{24r+6})$ + $M(K_6) + (4r + 1)M(K_{6,6}) = \{(4x + 1, 3y)|0 \le x \le 24r^2 + 11r + 1, y = (24r^2 + 11r + 1)$ x } + (5*,* 0) + (4*r* + 1){(0*,* 9)*,*(4*,* 6)*,*(8*,* 3)*,*(12*,* 0)} = {(4*u* + 2*,* 3*v*)|1 ≤ *u* ≤ 24*r*² + 23*r* + 5*, v* = $(24r^2 + 23r + 5) - u$ = $I(24r + 12) - (2, 3(24r^2 + 23r + 5))$. Let $K_{24r+12} = K_{24r} \oplus K_{12} \oplus K_{24r,12}$. The graph K_{12} K_{12} K_{12} can be decomposed into $2P_4$ and $15S_4$, by Lemma [9,](#page-4-1) and by Theorems 2 and [3,](#page-1-2) the graphs K_{24r} and $K_{24r,12}$ have an S_4 -decomposition. Hence the graph K_{24r+12} has a Decomposition of Complete Graphs into Paths and Stars with Different Number of Edges 307 decomposition into $2P_4$ and $3(24r^2 + 23r + 5)S_4$. Therefore $M(K_{24r+12}) = \{(4x + 2, 3y)|0 \le$ $x \le 24r^2 + 23r + 5$, $y = (24r^2 + 23r + 5) - x$ = $I(24r + 12)$.

Case 3. If $k = 4r + 2$, then we can write $K_{24r+18} = K_{24r+12} \oplus K_6 \oplus (4r+2)K_{6,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [3,](#page-2-0) we have $M(K_{24r+18}) \supseteq M(K_{24r+12})$ + $M(K_6) + (4r + 2)M(K_{6,6}) = \{(4x + 2, 3y)|0 \le x \le 24r^2 + 23r + 5, y = (24r^2 + 23r + 5) - x\} +$ $(5,0) + (4r+2)\{(0,9), (4,6), (8,3), (12,0)\} = \{(4u+3,3v)|1 \le u \le 24r^2+35r+12, v = (24r^2+35r+12), v = 24r^2+35r+12\}$ $35r + 12) - u$ = $I(24r + 18) - (3, 3(24r^2 + 35r + 12))$. Let $K_{24r+18} = K_{24r+8} \oplus K_{10} \oplus K_{24r+8,10}$. The graph K_{10} can be decomposed into $3P_4$ and $9S_4$, by Lemma [7,](#page-3-0) and by Theorems [2](#page-1-4) and [3,](#page-1-2) the graphs K_{24r+8} and $K_{24r+8,10}$ have an S_4 -decomposition. Hence the graph K_{24r+18} has a decomposition into $3P_4$ and $3(24r^2 + 35r + 12)S_4$. Therefore $M(K_{24r+18}) = \{(4x + 3, 3y)|0 \le$ $x \le 24r^2 + 35r + 12$, $y = (24r^2 + 35r + 12) - x$ = $I(24r + 18)$.

Case 4. If $k = 4r + 3$, then we can write $K_{24r+24} = K_{24r+18} \oplus K_6 \oplus (4r+3)K_{6,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [3,](#page-2-0) we have $M(K_{24r+24}) \supseteq M(K_{24r+18})$ + $M(K_6) + (4r + 3)M(K_{6,6}) = \{(4x + 3, 3y)|0 \le x \le 24r^2 + 35r + 12, y = (24r^2 + 35r + 12) - x\}$ $(5,0)+(4r+3)\{(0,9),(4,6),(8,3),(12,0)\} = \{(4u,3v)|2 \le u \le 24r^2+47r+23, v = (24r^2+47r+3)$ $23)-u$ } = $I(24r+24)-\{(0,3(24r^2+47r+23)), (4,3(24r^2+47r+22))\}$. The graph K_{24r+24} has $3(24r^2+47r+23)S_4$, by Theorem [3,](#page-1-2) and hence $M(K_{24r+24}) = I(24r+24) - (4,324r^2+47r+23)$. Let $K_{24r+24} = K_{24r+16} \oplus K_8 \oplus K_{24r+16,8}$. Then by Lemma [5,](#page-2-1) the graph K_8 can be decomposed into $4P_4$ and $4S_4$, and by Theorems [2](#page-1-4) and [3,](#page-1-2) the graphs K_{24r+16} and $K_{24r+16,8}$ have an S_4 decomposition. Hence the graph K_{24r+24} has a decomposition into $4P_4$ and $3(24r^2+47r+22)S_4$. Therefore $M(K_{24r+24}) = \{(4x, 3y)|0 \le x \le 24r^2 + 47r + 23, y = (24r^2 + 47r + 23) - x\}$ $I(24r + 24)$.

Thus $M(K_{6s}) = I(6s)$, for each $s \in \mathbb{Z}_+$.

Lemma 12. *Let* $p, q \in \mathbb{Z}_+ \cup \{0\}$ *and* $n \equiv 1 \pmod{6}$ *. There exists a* $\{pP_4, qS_4\}$ *-decomposition of* K_n *if and only if* $3p + 4q = \binom{n}{2}$ $\binom{n}{2}$ and $n \ge 7$. That is, $M(K_{6s+1}) = I(6s+1)$, where $s \in \mathbb{Z}_+$.

Proof. Necessity: The conditions $3p + 4q = \binom{n}{2}$ $\binom{n}{2}$ and $n \geq 6$ are trivial. That is, $M(K_{6s+1}) \subseteq$ *I*(6*s*+1). Sufficiency: We have to prove $M(K_{6s+1}) \supseteq I(6s+1)$. The proof is by induction on *s*. If $s = 1$, then $M(K_7) = I(7)$, by Lemma [4.](#page-2-2) Since $K_{6k+7} = K_{6k+1} ⊕ K_7 ⊕ K_{6k,6} = K_{6k+1} ⊕ K_7 ⊕ kK_{6,6}$. From the definition of $I(n)$, we have

$$
I(24r+1) = \begin{cases} (p,q) \Big| p = \frac{(24r+1)(24r)}{6} - 4i, \ q = \frac{(24r+1)(24r)}{8} - \frac{3p}{4}, \\ 0 \le i \le \left\lfloor \frac{(24r+1)(24r)}{24} \right\rfloor \end{cases}
$$

\n
$$
= \{ (4x,3y)| 0 \le x \le 24r^2 + r, \ y = (24r^2 + r) - x \},
$$

\n
$$
I(24r+7) = \begin{cases} (p,q) \Big| p = \frac{(24r+7)(24r+6)}{6} - 4i, \ q = \frac{(24r+7)(24r+6)}{8} - \frac{3p}{4}, \\ 0 \le i \le \left\lfloor \frac{(24r+7)(24r+6)}{24} \right\rfloor \}, \\ = \{ (4x+3,3y)| 0 \le x \le 24r^2 + 13r + 1, \ y = (24r^2 + 13r + 1) - x \}, \\ (p,q) \Big| p = \frac{(24r+13)(24r+12)}{6} - 4i, \ q = \frac{(24r+13)(24r+12)}{8} - \frac{3p}{4}, \ 0 \le i \le \left\lfloor \frac{(24r+13)(24r+12)}{24} \right\rfloor \}, \end{cases}
$$

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 301–316

M. Ilayaraja and A. Muthusamy 308

$$
= \{(4x + 2, 3y)|0 \le x \le 24r^2 + 25r + 6, y = (24r^2 + 25r + 6) - x\},\
$$

$$
I(24r + 19) = \begin{cases} (p,q) \Big| p = \frac{(24r + 19)(24r + 18)}{6} - 4i, q = \frac{(24r + 19)(24r + 18)}{8} \\ -\frac{3p}{4}, 0 \le i \le \left\lfloor \frac{(24r + 19)(24r + 18)}{24} \right\rfloor \end{cases},\
$$

$$
= \{(4x + 1, 3y)|0 \le x \le 24r^2 + 37r + 14, y = (24r^2 + 37r + 14) - x\},\
$$

$$
I(24r + 25) = \begin{cases} (p,q) \Big| p = \frac{(24r + 25)(24r + 24)}{6} - 4i, & q = \frac{(24r + 25)(24r + 24)}{8} \\ -\frac{3p}{4}, & 0 \le i \le \left[\frac{(24r + 25)(24r + 24)}{24} \right] \end{cases},
$$

= $\{(4x, 3y)| 0 \le x \le 24r^2 + 49r + 25, y = (24r^2 + 49r + 25) - x\}.$

Case 1. If $k = 4r$, then we can write $K_{24r+7} = K_{24r+1} \oplus K_7 \oplus (4r)K_{6,6}$. By the in-duction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [4,](#page-2-2) we have $M(K_{24r+7}) \supseteq M(K_{24r+1})$ + $M(K_7) + (4r)M(K_{6,6}) = \{(4x, 3y)|0 \le x \le 24r^2 + r, y = (24r^2 + r) - x\} + \{(3, 3), (7, 0)\} +$ (4*r*){(0*,* 9)*,*(4*,* 6)*,*(8*,* 3)*,*(12*,* 0)}

 $=\{(4u+3,3v)|0 \le u \le 24r^2+13r+1, v = (24r^2+13r+1)-u\} = I(24r+7).$

Case 2. If $k = 4r + 1$, then we can write $K_{24r+13} = K_{24r+7} \oplus K_7 \oplus (4r+1)K_{6,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [4,](#page-2-2) we have $M(K_{24r+13}) \supseteq M(K_{24r+7})$ + $M(K_7) + (4r+1)M(K_{6,6}) = \{(4x+3,3y)|0 \le x \le 24r^2+13r+1, y = (24r^2+13r+1) - x\} +$ $\{(3,3),(7,0)\} + (4r+1)\{(0,9),(4,6),(8,3),(12,0)\} = \{(4u+2,3v)|1 \le u \le 24r^2+25r+6, v=$ $(24r^2 + 25r + 6) - u$ = $I(24r + 13) - (2,3(24r^2 + 25r + 6))$. Let $K_{24r+13} = K_{24r+9} \oplus K_4 \oplus$ $(8r + 3)K_{3,4}$. Then the graphs K_{24r+9} K_{24r+9} K_{24r+9} and $K_{3,4}$ have an S_4 -decomposition, by Theorems 2 and [3,](#page-1-2) the graph K_4 has $2P_4$. Hence the graph K_{24r+13} has a decomposition into $2P_4$ and $3(24r^2 + 25r + 6)S_4$. Therefore $M(K_{24r+13}) = \{(4x + 2, 3y)|0 \le x \le 24r^2 + 25r + 6, y =$ $(24r^2 + 25r + 6) - x$ = $I(24r + 13)$.

Case 3. If $k = 4r + 2$, then we can write $K_{24r+19} = K_{24r+13} \oplus K_7 \oplus (4r+2)K_{6,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [4,](#page-2-2) we have $M(K_{24r+19}) \supseteq M(K_{24r+13})$ + $M(K_7) + (4r + 2)M(K_{6,6}) = \{(4x + 2, 3y)|0 \le x \le 24r^2 + 25r + 6, y = (24r^2 + 25r + 6)$ $x + \{(3,3), (7,0)\} + (4r+2)\{(0,9), (4,6), (8,3), (12,0)\} = \{(4u+1,3v)|1 \le u \le 24r^2 + 37r + 12r^2 + 37r^2\}$ 14, $v = (24r^2 + 37r + 14) - u$ = $I(24r + 19) - (1,3(24r^2 + 37r + 14))$. Let K_{24r+19} = $K_{24r+8} \oplus K_{11} \oplus K_{24r+8,11}$. Then the graph K_{11} can be decomposed into 1*P*₄ and 13*S*₄, by Lemma [8,](#page-3-1) and Theorems [2](#page-1-4) and [3,](#page-1-2) the graphs K_{24r+8} and $K_{24r+8,11}$ have an S_4 -decomposition. Hence the graph K_{24r+19} has a decomposition into $1P_4$ and $3(24r^2+37r+14)S_4$. Therefore $M(K_{24r+19}) = \{(4x+1, 3y)|0 \le x \le 24r^2 + 37r + 14, y = (24r^2 + 37r + 14) - x\} = I(24r + 19).$

Case 4. If $k = 4r + 3$, then we can write $K_{24r+25} = K_{24r+19} \oplus K_7 \oplus (4r+3)K_{6,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [4,](#page-2-2) we have $M(K_{24r+25}) \supseteq M(K_{24r+19})$ + $M(K_7) + (4r + 3)M(K_{6,6}) = \{(4x + 1, 3y)|0 \le x \le 24r^2 + 37r + 14, y = (24r^2 + 37r + 14) - x\}$ $\{(3,3), (7,0)\} + (4r+3)\{(0,9), (4,6), (8,3), (12,0)\} = \{(4u,3v)|1 \le u \le 24r^2 + 49r + 25, v =$ $(24r^2 + 49r + 25) - u$ = $I(24r + 25) - (0,3(24r^2 + 49r + 25))$. The graph K_{24r+25} has $3(24r^2+49r+25)S_4$, by Theorem [3.](#page-1-2) Hence $M(K_{24r+25}) = \{(4x,3y)|0 \le x \le 24r^2+49r+25, y=$ $(24r^2 + 49r + 25) - x$ = $I(24r + 25)$.

Thus $M(K_{6s+1}) = I(6s+1)$, for each $s \in \mathbb{Z}_+$.

Lemma 13. *Let* $p, q \in \mathbb{Z}_+ \cup \{0\}$ *and* $n \equiv 2 \pmod{6}$ *. There exists a* $\{pP_4, qS_4\}$ *-decomposition of* K_n *if and only if* $3p + 4q = \binom{n}{2}$ $\binom{n}{2}$, $n \geq 8$ and $q \geq 1$. That is, $M(K_{6s+2}) = I(6s + 2)$, where $s \in \mathbb{Z}_{+}$.

Proof. Necessity: The conditions $3p + 4q = \binom{n}{2}$ $\binom{n}{2}$ and $n \geq 6$ are trivial. That is, $M(K_{6s+2}) \subseteq$ *I*(6*s* + 2). Then $q \geq 1$, since by Theorem [1,](#page-1-3) the graph K_{6s+2} can not have a P_4 -decomposition. Sufficiency: We have to prove $M(K_{6s+2}) \supseteq I(6s+2)$. The proof is by induction on *s*. If $s = 1$, then $M(K_8) = I(8)$, by Lemma [5.](#page-2-1) Since $K_{6k+8} = K_{6k+2} \oplus K_6 \oplus K_{6k+2,6}$. From the definition of $I(n)$, we have

$$
I(24r+2) = \begin{cases} (p,q)|p = \frac{(24r+2)(24r+1)-8}{6} - 4i, \ q = \frac{(24r+2)(24r+1)}{8} \\ -\frac{3p}{4}, \ 0 \le i \le \left[\frac{(24r+2)(24r+1)-8}{24} \right] \end{cases},
$$

\n
$$
= \{ (4x+3,3y+1)|0 \le x \le 24r^2 + 3r - 1, \ y = (24r^2+3r-1)-x \},
$$

\n
$$
I(24r+8) = \begin{cases} (p,q)|p = \frac{(24r+8)(24r+7)-8}{6} - 4i, \ q = \frac{(24r+8)(24r+7)}{8} \\ -\frac{3p}{4}, \ 0 \le i \le \left[\frac{(24r+8)(24r+7)-8}{24} \right] \end{cases},
$$

\n
$$
= \{ (4x,3y+1)|0 \le x \le 24r^2 + 15r + 2, \ y = (24r^2+15r+2)-x \},
$$

\n
$$
I(24r+14) = \begin{cases} (p,q)|p = \frac{(24r+14)(24r+13)-8}{6} - 4i, \ q = \frac{(24r+14)(24r+13)}{8} \\ -\frac{3p}{4}, \ 0 \le i \le \left[\frac{(24r+14)(24r+13)-8}{24} \right] \end{cases},
$$

\n
$$
= \{ (4x+1,3y+1)|0 \le x \le 24r^2 + 27r + 7, \ y = (24r^2+27r+7)-x \},
$$

\n
$$
I(24r+20) = \begin{cases} (p,q)|p = \frac{(24r+20)(24r+19)-8}{6} - 4i, \ q = \frac{(24r+20)(24r+19)}{8} \\ -\frac{3p}{4}, \ 0 \le i \le \left[\frac{(24r+20)(24r+19)-8}{24} \right] \end{cases},
$$

\n
$$
= \{ (4x+2,3y+1)|0 \le x \le 24r^2 + 39r + 15, \ y = (24r^2+3
$$

Case 1. If $k = 4r$, then we can write $K_{24r+8} = K_{24r+2} \oplus K_6 \oplus K_{24r+2,6}$. Since $K_{24r+2,6} =$ $K_{24r,6} \oplus K_{2,6} = (4r)K_{6,6} \oplus K_{2,6}$. Then $K_{24r+8} = K_{24r+2} \oplus K_6 \oplus (4r)K_{6,6} \oplus K_{2,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [3,](#page-2-0) we have $M(K_{24r+8}) \supseteq M(K_{24r+2})$ + $M(K_6) + (4r)M(K_{6,6}) + M(K_{2,6}) = \{(4x + 3, 3y + 1)|0 \le x \le 24r^2 + 3r - 1, y = (24r^2 +$ $3r-1) - x$ + (5*,* 0) + (4*r*){(0*,* 9)*,*(4*,* 6)*,*(8*,* 3)*,*(12*,* 0)} + (4*,* 0) = {(4*u,* 3*v* + 1)|3 ≤ *u* ≤ 24*r*² + $15r + 2$, $v = (24r^2 + 15r + 2) - u$ = $I(24r + 8) - \{(0, 3(24r^2 + 15r + 2)), (4, 3(24r^2 + 15r + 2))\}$

 $(15r+1)$, $(8,3(24r^2+15r))$. The graph K_{24r+8} has $3(24r^2+15r+2)S_4$, by Theorem [2,](#page-1-4) we $M(K_{24r+8}) = I(24r+8) - \{(4,3(24r^2+15r+1)), (8,3(24r^2+15r))\}$. Let $K_{24r+8} =$ $K_{24r} \oplus K_8 \oplus K_{24r,8}$. Then by Lemma [5,](#page-2-1) the graph K_8 can be decomposed into $8P_4$ or $4P_4$ and $4S_4$, and by Theorems [2](#page-1-4) and [3,](#page-1-2) the graphs K_{24r} and $K_{24r,8}$ have an S_4 -decomposition. Hence the graph K_{24r+8} has a decomposition into p copies of P_4 and q copies of S_4 , where $(p,q) \in \left\{ (0,3(24r^2+15r+2)), (4,3(24r^2+15r+1)), (8,3(24r^2+15r)) \right\}$. Therefore $M(K_{24r+8}) =$ $\{(4x, 3y + 1)|0 \le x \le 24r^2 + 15r + 2, y = (24r^2 + 15r + 2) - x\} = I(24r + 8).$

Case 2. If $k = 4r + 1$, then we can write $K_{24r+14} = K_{24r+8} \oplus K_6 \oplus K_{24r+8,6}$. Since $K_{24r+8,6} = (6r+2)K_{4,6}$. Then $K_{24r+14} = K_{24r+8} \oplus K_6 \oplus (6r+2)K_{4,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [3,](#page-2-0) we have $M(K_{24r+14}) \supseteq M(K_{24r+8}) + M(K_6) + (6r+1)$ $2)M(K_{4,6}) = \{(4x, 3y + 1)|0 \le x \le 24r^2 + 15r + 2, y = (24r^2 + 15r + 2) - x\} + (5, 0) +$ $(6r+2){(0,6),(4,3),(8,0)} = {(4u+1,3v+1)|1 \le u \le 24r^2+27r+7, v = (24r^2+27r+7)}$ $(7) - u$ } = $I(24r + 14) - (1,3(24r^2 + 27r + 7))$. If $r = 0$, then $M(K_{14}) = I(14)$, by Lemma [10](#page-4-0). If $r \ge 1$, we can write $K_{24r+14} = K_{24r} \oplus K_{14} \oplus K_{24r,14}$. Then by Lemma [10,](#page-4-0) the graph K_{14} can be decomposed into $1P_4$ and $22S_4$ $22S_4$, and by Theorems 2 and [3,](#page-1-2) the graphs K_{24r} and $K_{24r,14}$ have an S_4 -decomposition. Hence the graph K_{24r+14} has a decomposition into $1P_4$ and $3(24r^2 + 27r + 7)S_4$. Therefore $M(K_{24r+14}) = \{(4x+1, 3y+1)|0 \le x \le 24r^2 + 27r + 7, y =$ $(24r^2 + 27r + 7) - x$ = $I(24r + 14)$.

Case 3. If $k = 4r+2$, then we can write $K_{24r+20} = K_{24r+14} \oplus K_6 \oplus K_{24r+14,6}$. Since $K_{24r+14,6} =$ $(6r+2)K_{4,6} \oplus K_{6,6}$. Then $K_{24r+20} = K_{24r+14} \oplus K_6 \oplus (6r+2)K_{4,6} \oplus K_{6,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [3,](#page-2-0) we have $M(K_{24r+20}) \supseteq M(K_{24r+14}) + M(K_6) + (6r+1)$ $2)M(K_{4,6}) = \{(4x+1, 3y+1)|0 \le x \le 24r^2+27r+7, y = (24r^2+27r+7)-x\}$ + $(5,0)$ + $(6r+1)$ $2){(0,6), (4,3), (8,0)} = {(4u+2, 3v+1)|1 \le u \le 24r^2+39r+15, v = (24r^2+39r+15)-u}$ *I*(24*r*+20)−(2,3(24*r*²+39*r*+15)). Let $K_{24r+20} = K_{24r+16} \oplus K_{4} \oplus K_{24r+16,4}$. Then by Theorems [2](#page-1-4) and [3,](#page-1-2) the graphs K_{24r+16} and $K_{24r+16,4}$ have an S_4 -decomposition, and the graph K_4 has $2P_4$. Hence the graph K_{24r+20} has a decomposition into $2P_4$ and $3(24r^2+39r+15)S_4$. Therefore $M(K_{24r+20}) = \{(4x+2, 3y+1)|0 \le x \le 24r^2+39r+15, y = (24r^2+39r+15)-x\} = I(24r+20).$

Case 4. If $k = 4r + 3$, then we can write $K_{24r+26} = K_{24r+20} \oplus K_6 \oplus K_{24r+16,4}$. Since $K_{24r+20,6} = (6r+5)K_{4,6}$. Then $K_{24r+26} = K_{24r+20} \oplus K_6 \oplus (6r+5)K_{4,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [3,](#page-2-0) we have $M(K_{24r+26}) \supseteq M(K_{24r+20}) + M(K_6) + (6r+1)$ $5)M(K_{4,6}) = \{(4x+2, 3y+1)|0 \le x \le 24r^2+39r+15, y = (24r^2+39r+15)-x\}$ + (5*,* 0) + (6*r* + $\{5\}\{(0,6), (4,3), (8,0)\} = \{(4u+3, 3v+1)|1 \le u \le 24r^2+51r+26, v = (24r^2+51r+26)-u\}$ $I(24r + 26) - (3,3(24r^2 + 51r + 26))$. Let $K_{24r+26} = K_{24r+16} \oplus K_{10} \oplus K_{24r+16,10}$. Then by Lemma [7,](#page-3-0) the graph K_{10} can be decomposed into $3P_4$ and $7S_4$, and by Theorems [2](#page-1-4) and [3,](#page-1-2) the graphs K_{24r+16} and $K_{24r+16,10}$ have an S_4 -decomposition. Hence the graph K_{24r+26} has a decomposition into $3P_4$ and $3(24r^2+51r+26)S_4$. Therefore $M(K_{24r+26}) = \{(4x+3, 3y+1)|0 \leq$ $x \le 24r^2 + 51r + 26$, $y = (24r^2 + 51r + 26) - x$ = $I(24r + 26)$. Thus $M(K_{6s+2}) = I(6s+2)$, for each $s \in \mathbb{Z}_+$.

Lemma 14. *Let* $p, q \in \mathbb{Z}_+ \cup \{0\}$ *and* $n \equiv 3 \pmod{6}$ *. There exists a* $\{pP_4, qS_4\}$ *-decomposition of* K_n *if and only if* $3p + 4q = \binom{n}{2}$ $\binom{n}{2}$ and $n \ge 9$. That is, $M(K_{6s+3}) = I(6s+3)$, where $s \in \mathbb{Z}_+$.

Proof. Necessity: The conditions $3p + 4q = \binom{n}{2}$ $\binom{n}{2}$ and $n \geq 6$ are trivial. That is, $M(K_{6s+3}) \subseteq$ *I*(6*s* + 3). Sufficiency: We have to prove $M(K_{6s+3}) \supseteq I(6s+3)$. The proof is by induction on *s*. If $s = 1$, then $M(K_9) = I(9)$, by Lemma [6.](#page-3-2) Since $K_{6k+9} = K_{6k+3} \oplus K_7 \oplus K_{6k+2,6}$. From the definition of $I(n)$, we have

$$
I(24r+3) = \begin{cases} (p,q) \Big| p = \frac{(24r+3)(24r+2)}{6} - 4i, \ q = \frac{(24r+3)(24r+2)}{8} - \frac{3p}{4}, \end{cases}
$$

$$
0 \le i \le \left\lfloor \frac{(24r+3)(24r+2)}{24} \right\rfloor \},
$$

\n
$$
= \left\{ (4x+1,3y)|0 \le x \le 24r^2 + 5r, y = (24r^2 + 5r) - x \right\},
$$

\n
$$
I(24r+9) = \left\{ (p,q) \middle| p = \frac{(24r+9)(24r+8)}{6} - 4i, q = \frac{(24r+9)(24r+8)}{8} - \frac{3p}{4},
$$

\n
$$
0 \le i \le \left\lfloor \frac{(24r+9)(24r+8)}{24} \right\rfloor \right\},
$$

\n
$$
= \left\{ (4x,3y)|0 \le x \le 24r^2 + 17r + 3, y = (24r^2 + 17r + 3) - x \right\},
$$

\n
$$
I(24r+15) = \left\{ (p,q) \middle| p = \frac{(24r+15)(24r+14)}{6} - 4i, q = \frac{(24r+15)(24r+14)}{8} - \frac{3p}{4}, 0 \le i \le \left\lfloor \frac{(24r+15)(24r+14)}{24} \right\rfloor \right\},
$$

\n
$$
= \left\{ (4x+3,3y)|0 \le x \le 24r^2 + 29r + 8, y = (24r^2 + 29r + 8) - x \right\},
$$

$$
I(24r + 21) = \left\{ (p,q) \Big| p = \frac{(24r + 21)(24r + 20)}{6} - 4i, q = \frac{(24r + 21)(24r + 20)}{8} \right\}
$$

$$
-\frac{3p}{4}, 0 \le i \le \left[\frac{(24r + 21)(24r + 20)}{24} \right] \Bigg\},
$$

$$
= \left\{ (4x + 2, 3y) \Big| 0 \le x \le 24r^2 + 41r + 17, y = (24r^2 + 41r + 17) - x \right\},
$$

$$
I(24r + 27) = \left\{ (p,q) \Big| p = \frac{(24r + 27)(24r + 26)}{6} - 4i, q = \frac{(24r + 27)(24r + 26)}{8} \right\}
$$

$$
-\frac{3p}{4}, 0 \le i \le \left[\frac{(24r + 27)(24r + 26)}{24} \right] \Bigg\},
$$

$$
= \left\{ (4x + 1, 3y) \Big| 0 \le x \le 24r^2 + 53r + 29, y = (24r^2 + 53r + 29) - x \right\}.
$$

Case 1. If $k = 4r$, then we can write $K_{24r+9} = K_{24r+3} \oplus K_7 \oplus K_{24r+2,6}$. Since $K_{24r+2,6} = (6r)K_{4,6} \oplus K_{2,6}$. Then $K_{24r+9} = K_{24r+3} \oplus K_7 \oplus (6r)K_{4,6} \oplus K_{2,6}$. By the induc-tion hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [4,](#page-2-2) we have $M(K_{24r+9}) \supseteq M(K_{24r+3}) + M(K_7)$ $(6r)M(K_{4,6})+M(K_{2,6}) = {(4x+1,3y)|0 \le x \le 24r^2+5r, y = (24r^2+5r)-x}+{(3,3),(7,0)}+$ $(6r){(0,6),(4,3),(8,0)} + (4,0) = {(4u,3v)|2 \le u \le 24r^2 + 17r + 3, v = (24r^2 + 17r + 3)}$ u } = $I(24r + 9) - \{(0,3(24r^2 + 17r + 3)), (4,3(24r^2 + 17r + 2))\}$. The graph K_{24r+9} has $3(24r^2+17r+3)S_4$, by Theorem [2,](#page-1-4) we have $M(K_{24r+8}) = I(24r+8) - (4,3(24r^2+17r+2)).$ Let $K_{24r+9} = K_{24r+1} \oplus K_8 \oplus K_{24r+1,8}$. Then by Lemma [5,](#page-2-1) the graph K_8 can be decomposed into $4P_4$ and $4S_4$, and by Theorems [2](#page-1-4) and [3,](#page-1-2) the graphs K_{24r+1} and $K_{24r+1,8}$ have an S_4 decomposition. Hence the graph K_{24r+9} has a decomposition into $4P_4$ and $3(24r^2+17r+2)S_4$. Therefore $M(K_{24r+9}) = \{(4x, 3y)|0 \le x \le 24r^2 + 17r + 3, y = (24r^2 + 17r + 3) - x\} = I(24r+9).$

Case 2. If $k = 4r + 1$, then we can write $K_{24r+15} = K_{24r+9} \oplus K_7 \oplus K_{24r+8,6}$. Since $K_{24r+8,6} = (6r+2)K_{4,6}$. Then $K_{24r+15} = K_{24r+9} \oplus K_7 \oplus (6r+2)K_{4,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [4,](#page-2-2) we have $M(K_{24r+15}) \supseteq M(K_{24r+9}) + M(K_7) + (6r +$ $2)M(K_{4,6}) = \{(4x,3y)|0 \le x \le 24r^2 + 17r + 3, y = (24r^2 + 17r + 3) - x\} + \{(3,3), (7,0)\} +$ $(6r+2){(0,6), (4,3), (8,0)} = {(4u+3,3v)|0 \le u \le 24r^2+29r+8, v = (24r^2+29r+8)-u}$ $I(24r + 15)$.

Case 3. If $k = 4r + 2$, then we can write $K_{24r+21} = K_{24r+15} \oplus K_7 \oplus K_{24r+15,6}$. Since $K_{24r+15,6} = (6r+2)K_{4,6} \oplus K_{6,6}$, we have $K_{24r+21} = K_{24r+15} \oplus K_7 \oplus (6r+2)K_{4,6} \oplus K_{6,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [4,](#page-2-2) we have $M(K_{24r+21}) \supseteq M(K_{24r+15})$ + $M(K_7)+(6r+2)M(K_{4,6})+M(K_{6,6}) = \{(4x+3,3y)|0 \le x \le 24r^2+29r+8, y = (24r^2+29r+8)$ $x + \{(3,3), (7,0)\} + (6r+2)\{(0,6), (4,3), (8,0)\} + \{(0,9), (4,6), (8,3), (12,0)\} = \{(4u+2,3v)|1 \leq$ $u \leq 24r^2 + 41r + 17$, $v = (24r^2 + 41r + 17) - u$ = $I(24r + 21) - (2, 3(24r^2 + 41r + 17))$. Let $K_{24r+21} = K_{24r+17} \oplus K_4 \oplus K_{24r+17,4}$. Then the graphs K_{24r+17} and $K_{24r+17,4}$ have an S_4 -decomposition, by Theorems [2](#page-1-4) and [3,](#page-1-2) the graph K_4 has $2P_4$. Hence the graph K_{24r+21} has a decomposition into $2P_4$ and $3(24r^2 + 41r + 17)S_4$. Therefore $M(K_{24r+21}) = \{(4x + 2, 3y)|0 \le$ $x \le 24r^2 + 41r + 17$, $y = (24r^2 + 41r + 17) - x$ = $I(24r + 21)$.

Case 4. If $k = 4r + 3$, then we can write $K_{24r+27} = K_{24r+21} \oplus K_7 \oplus K_{24r+20,6}$. Since $K_{24r+20,6} = (6r+5)K_{4,6}$ $K_{24r+20,6} = (6r+5)K_{4,6}$ $K_{24r+20,6} = (6r+5)K_{4,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, 4, we have *M*(*K*_{24*r*+27}) ⊇ *M*(*K*_{24*r*+21}) + *M*(*K*₇) + (6*r* + 5)*M*(*K*_{4,6}) = {(4*x* + 2, 3*y*)|0 ≤ *x* ≤ 24*r*² + 41*r* + 17*,* $y = (24r^2 + 41r + 17) - x$ + {(3*,* 3*),*(7*,* 0*)*} + (6*r*+5){(0*,* 6*),*(4*,* 3*),*(8*,* 0*)*} = {(4*u*+1*,* 3*v*)|1 ≤ $u \leq 24r^2 + 53r + 29$, $v = (24r^2 + 53r + 29) - u$ = $I(24r + 27) - (1, 3(24r^2 + 53r + 29))$. Let $K_{24r+27} = K_{24r+16} \oplus K_{11} \oplus K_{24r+16,11}$. Then by Lemma [8,](#page-3-1) the graph K_{11} can be decomposed into $1P_4$ and $13S_4$, and by Theorems [2](#page-1-4) and [3,](#page-1-2) the graphs K_{24r+16} and $K_{24r+16,11}$ have an S_4 decomposition. Hence the graph K_{24r+27} has a decomposition into $1P_4$ and $3(24r^2+53r+29)S_4$. Therefore $M(K_{24r+27}) = \{(4x+1, 3y)|0 \le x \le 24r^2 + 53r + 29, y = (24r^2 + 53r + 29) - x\}$ $I(24r + 27)$.

Thus $M(K_{6s+3}) = I(6s+3)$, for each $s \in \mathbb{Z}_+$.

Lemma 15. *Let* $p, q \in \mathbb{Z}_+ \cup \{0\}$ *and* $n \equiv 4 \pmod{6}$ *. There exists a* $\{pP_4, qS_4\}$ *-decomposition of* K_n *if and only if* $3p + 4q = \binom{n}{2}$ $\binom{n}{2}$ and $n \geq 4$. That is, $M(K_{6s+4}) = I(6s+4)$, where $s \in \mathbb{Z}_+$.

Proof. Necessity: The conditions $3p + 4q = \binom{n}{2}$ $\binom{n}{2}$ and $n \geq 4$ are trivial. That is, $M(K_{6s+4}) \subseteq$ *I*(6*s* + 4). Sufficiency: We have to prove $M(K_{6s+4}) \supseteq I(6s+4)$. The proof is by induction on *s*. If $s = 0$, then $M(K_4) = I(4)$, by Theorem [1.](#page-1-3) If $s = 1$, then $M(K_{10}) = I(10)$, by Lemma [7.](#page-3-0) Since $K_{6k+10} = K_{6k+4} \oplus K_6 \oplus K_{6k+4,6}$. From the definition of $I(n)$, we have

$$
I(24r+4) = \begin{cases} (p,q) \Big| p = \frac{(24r+4)(24r+3)}{6} - 4i, \ q = \frac{(24r+4)(24r+3)}{8} - \frac{3p}{4}, \\ 0 \le i \le \left[\frac{(24r+4)(24r+3)}{24} \right] \end{cases},
$$

\n
$$
= \{ (4x+2,3y) \Big| 0 \le x \le 24r^2 + 7r, \ y = (24r^2 + 7r) - x \},
$$

\n
$$
I(24r+10) = \begin{cases} (p,q) \Big| p = \frac{(24r+10)(24r+9)}{6} - 4i, \ q = \frac{(24r+10)(24r+9)}{8} \\ -\frac{3p}{4}, \ 0 \le i \le \left[\frac{(24r+10)(24r+9)}{24} \right] \end{cases},
$$

\n
$$
= \{ (4x+3,3y) \Big| 0 \le x \le 24r^2 + 19r + 3, \ y = (24r^2 + 19r + 3) - x \},
$$

\n
$$
I(24r+16) = \begin{cases} (p,q) \Big| p = \frac{(24r+16)(24r+15)}{6} - 4i, \ q = \frac{(24r+16)(24r+15)}{8} \end{cases}
$$

$$
-\frac{3p}{4}, \ 0 \le i \le \left\lfloor \frac{(24r+16)(24r+15)}{24} \right\rfloor \Bigg\},\
$$

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 301–316

$$
= \{(4x, 3y)|0 \le x \le 24r^2 + 31r + 10, y = (24r^2 + 31r + 10) - x\},
$$

\n
$$
I(24r + 22) = \begin{cases} (p,q)|p = \frac{(24r + 22)(24r + 21)}{6} - 4i, q = \frac{(24r + 22)(24r + 21)}{8} \\ -\frac{3p}{4}, 0 \le i \le \left\lfloor \frac{(24r + 22)(24r + 21)}{24} \right\rfloor \},\\ 24 \le 24r^2 + 43r + 19, y = (24r^2 + 43r + 19) - x\},\\ I(24r + 28) = \begin{cases} (p,q)|p = \frac{(24r + 28)(24r + 27)}{6} - 4i, q = \frac{(24r + 28)(24r + 27)}{8} \\ -\frac{3p}{4}, 0 \le i \le \left\lfloor \frac{(24r + 28)(24r + 27)}{24} \right\rfloor \end{cases},
$$

\n
$$
= \{(4x + 2, 3y)|0 \le x \le 24r^2 + 55r + 31, y = (24r^2 + 55r + 31) - x\}.
$$

Case 1. If $k = 4r$, then we can write $K_{24r+10} = K_{24r+4} \oplus K_6 \oplus K_{24r+4,6}$. Since $K_{24r+4,6} =$ $4rK_{6,6} \oplus K_{4,6}$. Then $K_{24r+10} = K_{24r+4} \oplus K_6 \oplus 4rK_{6,6} \oplus K_{4,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [3,](#page-2-0) we have $M(K_{24r+10}) \supseteq M(K_{24r+4}) + M(K_6) + (4r)M(K_{6,6}) +$ $M(K_{4,6}) = \{(4x + 2, 3y)|0 \le x \le 24r^2 + 7r, y = (24r^2 + 7r) - x\} + (5,0) + (4r)\{(0,9), (4,6),$ $(8,3), (12,0)$ + { $(0,6), (4,3), (8,0)$ } = { $(4u + 3,3v)$] $\le u \le 24r^2 + 19r + 3$, $v = (24r^2 +$ $19r + 3 - u$ = $I(24r + 10) - (3,3(24r^2 + 19r + 3))$. Let $K_{24r+10} = K_{24r} \oplus K_{10} \oplus K_{24r,10}$. Then by Lemma [7,](#page-3-0) the graph K_{10} can be decomposed into $3P_4$ and $9S_4$, and by Theorems [2](#page-1-4) and [3,](#page-1-2) the graphs K_{24r} and $K_{24r,10}$ have an S_4 -decomposition. Hence the graph K_{24r+10} has a decomposition into $3P_4$ and $3(24r^2 + 19r + 3)S_4$. Therefore $M(K_{24r+10}) = \{(4x + 3, 3y)|0 \le$ $x \le 24r^2 + 19r + 3$, $y = (24r^2 + 19r + 3) - x$ = $I(24r + 10)$.

Case 2. If $k = 4r + 1$, then we can write $K_{24r+16} = K_{24r+10} \oplus K_6 \oplus K_{24r+10,6}$. Since $K_{24r+10,6} = (4r+1)K_{6,6} \oplus K_{4,6}$. Then $K_{24r+16} = K_{24r+10} \oplus K_6 \oplus (4r+1)K_{6,6} \oplus K_{4,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [3,](#page-2-0) we have $M(K_{24r+16}) \supseteq M(K_{24r+10})$ + $M(K_6) + (4r+1)M(K_{6,6}) + M(K_{4,6}) = \{(4x+3,3y)|0 \le x \le 24r^2 + 19r + 3, y = (24r^2 + 19r + 3)$ $(3) - x$ + (5*,* 0) + (4*r* + 1){(0*,* 9)*,*(4*,* 6)*,*(8*,* 3)*,*(12*,* 0)} + {(0*,* 6*),*(4*,* 3*),*(8*,* 0)} = {(4*u,* 3*v*)|2 ≤ $u \leq 24r^2 + 31r + 10$, $v = (24r^2 + 31r + 10) - u$ = $I(24r + 16) - \{(0, 3(24r^2 + 31r +$ 10), $(4,3(24r^2+31r+9))$. The graph K_{24r+16} has $3(24r^2+31r+10)S_4$, by Theorem [2.](#page-1-4) Hence $K_{24r+16} = I(24r+16) - (4,3(24r^2+31r+9))$. Let $K_{24r+16} = K_{24r+8} ⊕ K_8 ⊕ K_{24r+8,8}$. Then by Lemma [5,](#page-2-1) graph K_8 can be decomposed into $4P_4$ and $6S_4$, and by Theorems [2](#page-1-4) and [3,](#page-1-2) the graphs K_{24r+8} and $K_{24r+8,8}$ have an S_4 -decomposition. Hence the graph K_{24r+16} has a decomposition into $4P_4$ and $3(24r^2 + 31r + 9)S_4$. Therefore $M(K_{24r+16}) = \{(4x, 3y)|0 \le x \le$ $24r^2 + 31r + 10$, $y = (24r^2 + 31r + 10) - x$ = $I(24r + 16)$.

Case 3. If $k = 4r + 2$, then we can write $K_{24r+22} = K_{24r+16} \oplus K_6 \oplus K_{24r+16,6}$. Since $K_{24r+16,6} = (4r+2)K_{6,6} \oplus K_{4,6}$. Then $K_{24r+22} = K_{24r+16} \oplus K_6 \oplus (4r+2)K_{6,6} \oplus K_{4,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [3,](#page-2-0) we have $M(K_{24r+22}) \supseteq M(K_{24r+16})$ + $M(K_6) + (4r + 2)M(K_{6,6}) + M(K_{4,6}) = \{(4x, 3y)|0 \le x \le 24r^2 + 31r + 10, y = (24r^2 + 31r + 10)^2\}$ $10) − x$ } + (5*,* 0) + (4*r* + 2){(0*,* 9)*,*(4*,* 6)*,*(8*,* 3)*,*(12*,* 0)} + {(0*,* 6*),*(4*,* 3*),*(8*,* 0)} = {(4*u*+ 1*,* 3*v*)|1 ≤ $u \leq 24r^2 + 43r + 19$, $v = (24r^2 + 43r + 19) - u$ = $I(24r + 22) - (1, 3(24r^2 + 43r + 19))$.

Let $K_{24r+22} = K_{24r+8} \oplus K_{14} \oplus K_{24r+8,14}$. Then by Lemma [10,](#page-4-0) the graph K_{14} can be decomposed into $1P_4$ and $22S_4$ $22S_4$, and by Theorems 2 and [3,](#page-1-2) the graphs K_{24r+8} and $K_{24r+8,14}$ have an S_4 decomposition. Hence the graph K_{24r+22} has a decomposition into $1P_4$ and $3(24r^2+43r+19)S_4$. Therefore $M(K_{24r+22}) = \{(4x+1, 3y)|0 \le x \le 24r^2 + 43r + 19, y = (24r^2 + 43r + 19) - x\}$ $I(24r + 22)$.

Case 4. If $k = 4r + 3$, then we can write $K_{24r+28} = K_{24r+22} \oplus K_6 \oplus K_{24r+22,6}$. Since

 $K_{24r+22,6} = (4r+3)K_{6,6} \oplus K_{4,6}$. Then $K_{24r+28} = K_{24r+22} \oplus K_6 \oplus (4r+3)K_{6,6} \oplus K_{4,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [3,](#page-2-0) we have $M(K_{24r+28}) \supseteq M(K_{24r+22})$ + $M(K_6) + (4r+3)M(K_{6,6}) + M(K_{4,6}) = \{(4x+1, 3y)|0 \le x \le 24r^2 + 43r + 19, y = (24r^2 + 43r + 19)$ $19) − x$ } + (5*,* 0) + (4*r* + 3){(0*,* 9)*,*(4*,* 6)*,*(8*,* 3)*,*(12*,* 0)} + {(0*,* 6*),*(4*,* 3*),*(8*,* 0)} = {(4*u* + 2*,* 3*v*)|1 ≤ $u \leq 24r^2 + 55r + 31$, $v = (24r^2 + 55r + 31) - u$ = $I(24r + 28) - (23(24r^2 + 55r + 31))$. Let $K_{24r+28} = K_{24r+24} \oplus K_4 \oplus K_{24r+24,4}$ $K_{24r+28} = K_{24r+24} \oplus K_4 \oplus K_{24r+24,4}$ $K_{24r+28} = K_{24r+24} \oplus K_4 \oplus K_{24r+24,4}$. Then by Theorems 2 and [3,](#page-1-2) the graphs K_{24r+24} and $K_{24r+24,4}$ have an S_4 -decomposition, the graph K_4 has $2P_4$. Hence the graph K_{24r+28} has a decomposition into $2P_4$ and $3(24r^2 + 55r + 31)S_4$. Therefore $M(K_{24r+28}) = \{(4x + 2, 3y)|0 \le$ $x \le 24r^2 + 55r + 31$, $y = (24r^2 + 55r + 31) - x$ = $I(24r + 28)$.

Thus $M(K_{6s+4}) = I(6s+4)$, for each $s \in \mathbb{Z}_+$.

$$
\Box
$$

Lemma 16. *Let* $p, q \in \mathbb{Z}_+ \cup \{0\}$ *and* $n \equiv 5 \pmod{6}$ *. There exists a* $\{pP_4, qS_4\}$ *-decomposition of* K_n *if and only if* $3p + 4q = \binom{n}{2}$ $\binom{n}{2}$, $n \geq 5$ and $q \geq 1$. That is, $M(K_{6s+5}) = I(6s+5)$, where $s \in \mathbb{Z}_+ \cup \{0\}.$

Proof. Necessity: The conditions $3p + 4q = \binom{n}{2}$ $\binom{n}{2}$ and $n \geq 5$ are trivial. That is, $M(K_{6s+5}) \subseteq$ *I*(6*s* + 5). Then $q \geq 1$, since by Theorem [1,](#page-1-3) the graph K_{6s+5} can not have a *P*₄-decomposition. Sufficiency: We have to prove $M(K_{6s+5}) \supseteq I(6s+5)$. The proof is by induction on *s*. If $s = 0$, then $M(K_5) = I(5)$, by Lemma [2.](#page-2-3) Since $K_{6k+11} = K_{6k+5} \oplus K_7 \oplus K_{6k+4,6}$. From the definition of $I(n)$, we have

$$
I(24r+5) = \begin{cases} (p,q) \Big| p = \frac{(24r+5)(24r+4)-8}{6} - 4i, \ q = \frac{(24r+5)(24r+4)}{8} \\ -\frac{3p}{4}, \ 0 \le i \le \left[\frac{(24r+5)(24r+4)-8}{24} \right] \end{cases},
$$

\n
$$
= \{ (4x+2,3y+1) \Big| 0 \le x \le 24r^2 + 9r, \ y = (24r^2+9r)-x \},
$$

\n
$$
I(24r+11) = \begin{cases} (p,q) \Big| p = \frac{(24r+11)(24r+10)-8}{6} - 4i, \ q = \frac{(24r+11)(24r+10)}{8} \\ -\frac{3p}{4}, \ 0 \le i \le \left[\frac{(24r+11)(24r+10)-8}{24} \right] \end{cases},
$$

\n
$$
= \{ (4x+1,3y+1) \Big| 0 \le x \le 24r^2 + 21r + 4, \ y = (24r^2+21r+4)-x \},
$$

\n
$$
I(24r+17) = \begin{cases} (p,q) \Big| p = \frac{(24r+17)(24r+16)-8}{6} - 4i, \ q = \frac{(24r+17)(24r+16)}{8} \\ -\frac{3p}{4}, \ 0 \le i \le \left[\frac{(24r+17)(24r+16)-8}{24} \right] \end{cases},
$$

\n
$$
= \{ (4x,3y+1) \Big| 0 \le x \le 24r^2 + 33r + 11, \ y = (24r^2+33r+11)-x \},
$$

\n
$$
I(24r+23) = \begin{cases} (p,q) \Big| p = \frac{(24r+23)(24r+22)-8}{6} - 4i, \ q = \frac{(24r+23)(24r+22)}{8} \\ -\frac{3p}{4}, \ 0 \le i \le \left[\frac{(24r+23)(24r+22)-8}{24} \right] \end{cases}, \ y = \{ (4x+3,3y+1) \Big| 0 \le x \le 24r^
$$

6

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 301–316

 $p =$

J \mathcal{L}

 (p, q)

 $I(24r + 29) =$

8

$$
-\frac{3p}{4}, \ 0 \le i \le \left\lfloor \frac{(24r+29)(24r+28)-8}{24} \right\rfloor \},
$$

= $\{(4x+2,3y+1)|0 \le x \le 24r^2+57r+33, \ y=(24r^2+57r+33)-x\}.$

Case 1. If $k = 4r$, then we can write $K_{24r+11} = K_{24r+5} \oplus K_7 \oplus K_{24r+4,6}$. Since $K_{24r+4,6} = (6r+1)$ 1) $K_{4,6}$. Then $K_{24r+11} = K_{24r+5} \oplus K_7 \oplus (6r+1)K_{4,6}$. By the induction hypothesis, Remark 1.1, and Lemmas [1,](#page-1-1) [4,](#page-2-2) we have *M*(*K*²⁴*r*+11) ⊇ *M*(*K*²⁴*r*+5)+*M*(*K*7)+(6*r*+1)*M*(*K*⁴*,*⁶) = {(4*x*+2*,* 3*y*+ $1|0 \leq x \leq 24r^2+9r$, $y = (24r^2+9r)-x$ { $(3,3)$, $(7,0)$ } + $(6r+1)$ { $(0,6)$, $(4,3)$, $(8,0)$ } = { $(4u+$ $1, 3v+1$ | $1 \le u \le 24r^2+21r+4$, $v = (24r^2+21r+4)-u$ } = $I(24r+11) - (1, 3(24r^2+21r+4)).$ Let $K_{24r+11} = K_{24r} \oplus K_{11} \oplus K_{24r,11}$. Then by Lemma [8,](#page-3-1) the graph K_{11} can be decomposed into $1P_4$ and $13S_4$, and by Theorems [2](#page-1-4) and [3,](#page-1-2) the graphs K_{24r} and $K_{24r,11}$ have an S_4 -decomposition. Hence the graph K_{24r+11} has a decomposition into $1P_4$ and $3(24r^2 + 21r + 4)S_4$. Therefore $M(K_{24r+11}) = \{(4x+1, 3y+1)|0 \le x \le 24r^2 + 21r + 4, y = (24r^2 + 21r + 4) - x\} = I(24r+11).$

Case 2. If $k = 4r + 1$, then we can write $K_{24r+17} = K_{24r+11} \oplus K_7 \oplus K_{24r+10,6}$. Since $K_{24r+10,6} = (6r+1)K_{4,6} \oplus K_{6,6}$. Then $K_{24r+17} = K_{24r+11} \oplus K_7 \oplus (6r+1)K_{4,6} \oplus K_{6,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [4,](#page-2-2) we have $M(K_{24r+17}) \supseteq M(K_{24r+11})$ + $M(K_7)+(6r+1)M(K_{4,6})+M(K_{6,6}) = \{(4x+1,3y+1)|0 \le x \le 24r^2+21r+4, y = (24r^2+21r+4)$ $\{(-4)-x\} + \{(3,3),(7,0)\} + (6r+1)\{(0,6),(4,3),(8,0)\} + \{(0,9),(4,6),(8,3),(12,0)\} = \{(4u,3v+1),(4,6u),(4,6v+1)\}$ 1)|1 ≤ *u* ≤ 24*r*²+33*r*+11*, v* = (24*r*²+33*r*+11)−*u*} = *I*(24*r*+17)−(0*,* 3(24*r*²+33*r*+11)). The graph K_{24r+17} has an S_4 -decomposition, by Theorem [2.](#page-1-4) Hence $M(K)_{24r+17}$ = $\{(4x, 3y + 1) | 0 \leq$ $x \le 24r^2 + 33r + 11$, $y = (24r^2 + 33r + 11) - x$ = $I(24r + 17)$

Case 3. If $k = 4r + 2$, then we can write $K_{24r+23} = K_{24r+17} \oplus K_7 \oplus K_{24r+16,6}$. Since $K_{24r+16,6} = (6r+4)K_{4,6}$. Then $K_{24r+23} = K_{24r+17} \oplus K_7 \oplus (6r+4)K_{4,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, [4,](#page-2-2) we have $M(K_{24r+23}) \supseteq M(K_{24r+17}) + M(K_7)$ + $(6r + 4)M(K_{4,6}) = \{(4x, 3y + 1)|0 \le x \le 24r^2 + 33r + 11, y = (24r^2 + 33r + 11) - x\}$ $\{(3,3), (7,0)\} + (6r+4)\{(0,6), (4,3), (8,0)\} = \{(4u+3, 3v+1)|0 \le u \le 24r^2+45r+20, v=$ $(24r^2 + 45r + 20) - u$ = $I(24r + 23)$.

Case 4. If $k = 4r + 3$, then we can write $K_{24r+29} = K_{24r+23} \oplus K_7 \oplus K_{24r+22,6}$. Since $K_{24r+22,6} = (6r+4)K_{4,6} \oplus K_{6,6}$ $K_{24r+22,6} = (6r+4)K_{4,6} \oplus K_{6,6}$ $K_{24r+22,6} = (6r+4)K_{4,6} \oplus K_{6,6}$. By the induction hypothesis, Remark 1.[1,](#page-1-1) and Lemmas 1, 4, we have $M(K_{24r+29})$ ⊇ $M(K_{24r+23}) + M(K_7) + (6r+4)M(K_{4,6}) + M(K_{6,6}) = {(4x+3, 3y+1)|0 ≤$ $x \leq 24r^2 + 45r + 20$, $y = (24r^2 + 45r + 20) - x$ + { $(3, 3)$ *,* $(7, 0)$ } + $(6r + 4)$ { $(0, 6)$ *,* $(4, 3)$ *,* $(8, 0)$ } + $\{(0,9), (4,6), (8,3), (12,0)\} = \{(4u+2, 3v+1)|1 \le u \le 24r^2+57r+33, v = (24r^2+57r+33)$ u } = $I(24r + 29) - (2,3(24r^2 + 57r + 33))$. Let $K_{24r+29} = K_{24r+25} \oplus K_4 \oplus K_{24r+25,4}$. Then by Theorems [2](#page-1-4) and [3,](#page-1-2) the graphs K_{24r+25} and $K_{24r+25,4}$ have an S_4 -decomposition, the graph K_4 has 2 P_4 . Hence the graph K_{24r+29} has a decomposition into $2P_4$ and $3(24r^2+57r+33)S_4$. Therefore $M(K_{24r+29}) = \{(4u+2, 3v+1)|0 \le u \le 24r^2+57r+33, v = (24r^2+57r+33)-u\} = I(24r+29).$ Thus $M(K_{6s+5}) = I(6s+5)$, for each $s \in \mathbb{Z}_+ \cup \{0\}$. □

The consequences of Lemmas [11](#page-4-2) to [16](#page-13-0) implies our main result as follows.

Theorem 4. Let *p* and *q* are nonnegative integers, and $n \geq 4$ be a positive integer. There *exists a* $\{pP_4, qS_4\}$ -decomposition of K_n *if and only if* $3p + 4q = \binom{n}{2}$ $\binom{n}{2}$. That is, $M(K_n) = I(n)$, *where* $4 \leq n \in \mathbb{Z}_+$ *.*

4. Acknowledgments

Author's thank the University Grants Commission, Government of India, New Delhi for its support through the Grant No.F.510/7/DRS-I/2016(SAP-I) and the anonymous referees whose suggestion improved the presentation of the paper.

References

- 1. Alspach, B. and Gavlas, H., 2001. Cycle decompositions of *Kⁿ* and *Kⁿ* − *I*. *Journal of Combinatorial Theory, Series B,81*, pp.77–99.
- 2. Abueida, A. and Daven, M., 2003. Multidesigns for graph-pairs of order 4 and 5. *Graphs and Combinatorics,19*, pp.433–447.
- 3. Abueida, A. and Daven, M., 2004. Multidecomposition of the complete graph. *Ars Combinatoria,72*, pp.17–22.
- 4. Abueida, A. and O'Neil, T., 2007. Multidecomposition of *λK^m* into small cycles and claws. *Bulletin of the Institute of Combinatorics and its Applications,49*, pp.32–40.
- 5. Priyadharsini, H. M. and Muthusamy, A., 2009. (G_m, H_m) -Multifactorization of λK_m . Jour*nal of Combinatorial Mathematics and Combinatorial Computing,69*, pp.145–150.
- 6. Fu, C.-M., Hsu, Y.-F., Lo, S.-W. and Husu, Y.-F., 2014. Decomposition of complete graphs into triangles and claws. *Taiwanese Journal of Mathematics,18*, pp.1563–1581.
- 7. Shyu, T.W., 2010. Decomposition of complete graphs into paths and stars. *Discrete Mathematics,310*, pp.2164–2169.
- 8. Shyu, T.W., 2013. Decomposition of complete graphs into cycles and stars. *Graphs and Combinatorics,29*, pp.301–313.
- 9. Shyu, T.W., 2010. Decomposition of complete graphs into cycles and paths. *Ars Combinatoria,97*, pp.257–270.
- 10. Fu, C.M., Hsu, Y.F. and Lee, M.F., 2018. Decomposition of complete graphs into 4-cycles and 3-stars. *Utilitas Mathematica,106*, pp.271–288.
- 11. Tarsi, M., 1983. Decomposition of complete multigraph into simple paths: Nonbalanced Handcuffed designs. *Journal of Combinatorial Theory, Series A,34*, pp.60–70.
- 12. Tarsi, M., 1979. Decomposition of complete multigraph into stars. *Discrete Mathematics, 26*, pp.273–278.
- 13. Yamamoto, S., Ikeda, H., Shige-ede, S., Ushio, K. and Hamada, N., 1975. On claw decomposition of complete graphs and complete bipartite graphs. *Hiroshima Mathematical Journal, 5*, pp.33–42.

©2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License [\(http://creativecommons.org/licenses/by/4.0\)](http://creativecommons.org/licenses/by/4.0)