Journal of Combinatorial Mathematics and Combinatorial Computing, 122: 301–316 DOI:10.61091/jcmcc122-25 http://www.combinatorialpress.com/jcmcc Received 11 May 2024, Accepted 16 September 2024, Published 30 September 2024

Article

Decomposition of Complete Graphs into Paths and Stars with Different Number of Edges

M. Ilayaraja^{1,*}, and A. Muthusamy²

- ¹ Departmentof Mathematics, Sona College of Arts and Science Salem-636005, Tamil Nadu, India.
- ² Department of Mathematics, Periyar University, Salem-636011, Tamil Nadu, India
- * Correspondence: ilayamaths@gmail.com

Abstract: Let P_n and K_n respectively denote a path and complete graph on n vertices. By a $\{pH_1, qH_2\}$ -decomposition of a graph G, we mean a decomposition of G into p copies of H_1 and q copies of H_2 for any admissible pair of nonnegative integers p and q, where H_1 and H_2 are subgraphs of G. In this paper, we show that for any admissible pair of nonnegative integers p and q, and positive integer $n \ge 4$, there exists a $\{pP_4, qS_4\}$ -decomposition of K_n if and only if $3p + 4q = \binom{n}{2}$, where S_4 is a star with 4 edges.

Keywords: Graph decomposition, Paths, Stars, Complete graph

1. Introduction

All graphs considered here are finite. Let K_k denote a complete graph on k vertices. Let P_{k+1}, C_k and $S_k (\cong K_{1,k})$ respectively denote a path, cycle and star each having k edges. Further, we denote a path on k+1 vertices $x_1, x_2, \ldots, x_{k+1}$, and edges $x_1x_2, \ldots, x_kx_{k+1}$ by $[x_1 \ldots x_kx_{k+1}]$. If there are $t \ge 1$ stars with same end vertices x_1, x_2, \ldots, x_k and different centers y_1, y_2, \ldots, y_t , we denote it by $(y_1, y_2, \ldots, y_t; x_1, x_2, \ldots, x_k)$. Let \mathbb{Z}_+ be the set of all positive integers. When $x, y \in \mathbb{Z}$, we define $\lfloor x \rfloor = \max\{y | y \in \mathbb{Z}, y \le x\}$ and $\lceil x \rceil = \min\{y | y \in \mathbb{Z}, y \ge x\}$.

A decomposition of a graph G is a partition of G into edge-disjoint subgraphs of G. If the subgraphs in the decomposition are isomorphic to either a graph H_1 or a graph H_2 , then it is called a $\{H_1, H_2\}$ -decomposition of G. We say that G has a $\{pH_1, qH_2\}$ -decomposition of G if the decomposition contains p copies of H_1 and q copies of H_2 for all possible choices of p and q. Different problems on graph decomposition have been studied for a century. In particular, the problem of decomposing a complete graph into cycles is the center of attraction of many of these studies (e.g., the work of Alspach and Gavlas [1] and its references).

The study of $\{H_1, H_2\}$ -decomposition has been introduced by Abueida and Daven [2, 3]. Moreover, Abueida and O'Neil [4] have settled the existence of $\{H_1, H_2\}$ -decomposition of λK_m , when $\{H_1, H_2\} = \{K_{1,n-1}, C_n\}$ for n = 3, 4, 5. Priyadharsini and Muthusamy [5] gave necessary and sufficient condition for the existence of $\{G_n, H_n\}$ -factorization of λK_n , where $G_n, H_n \in$ $\{C_n, P_n, S_{n-1}\}$. Many other results on decomposition of graphs into distinct subgraphs involving paths, cycles or stars have been proved in [6–9]. Recently, Fu, et al. [10] have found the necessary and sufficient conditions for the existence of decomposition of K_n into cycles and stars on four vertices. In this paper, we obtain necessary and sufficient conditions for the existence of a $\{pP_4, qS_4\}$ -decomposition of K_n .

Let M(G) denote the set of all pairs (p,q) such that there exists a $\{pP_4, qS_4\}$ -decomposition of G and we define the set I(n) in Table 1 which help us to show that $M(K_n) = I(n)$ for all feasible values of n.

n	I(n)
$0, 1, 3, 4 \pmod{6}$	$\left\{ (p,q) \mid p = \frac{n(n-1)}{6} - 4i, q = \frac{n(n-1)}{8} - \frac{3p}{4}, \ 0 \le i \le \left\lfloor \frac{n(n-1)}{24} \right\rfloor \right\}$
$2,5 \pmod{6}$	$\left\{ (p,q) \mid p = \frac{n(n-1)-8}{6} - 4i, q = \frac{n(n-1)}{8} - \frac{3p}{4}, \ 0 \le i \le \left\lfloor \frac{n(n-1)-8}{24} \right\rfloor \right\}$

Table 1. The Set I(n)

Remark 1. Let $A + B = \{(x_1 + y_1, x_2 + y_2) \mid (x_1, x_2) \in A, (y_1, y_2) \in B\}$ and rA be the sum of r copies of A. If $G = G_1 \oplus G_2$, where \oplus denotes edge disjoint sum of the subgraphs G_1 and G_2 , then $M(G) \supseteq M(G_1) + M(G_2)$.

To prove our main result we state some known results as follows.

Theorem 1. [11] Let $k, n \in \mathbb{Z}_+$. Then K_n has a P_{k+1} -decomposition if and only if $n \ge k+1$ and $n(n-1) \equiv 0 \pmod{2k}$.

Theorem 2. [12,13] Let $n, k \in \mathbb{Z}_+$. Then K_n has a S_k -decomposition if and only if $2k \leq n$ and $n(n-1) \equiv 0 \pmod{2k}$.

Theorem 3. [13] Let $m, n \in \mathbb{Z}_+$ with $m \leq n$. Then $K_{m,n}$ has an S_k -decomposition if and only if one of the following holds:

1. $m \ge k$ and $mn \equiv 0 \pmod{k}$; 2. $m < k \le n$ and $n \equiv 0 \pmod{k}$.

2. Base Constructions

In this section, we provide some useful lemmas which are required in proving our main result. The proof of the Lemmas 1 to 10, are given in the Appendix.

Lemma 1. There exists a $\{pP_4, qS_4\}$ -decomposition of $K_{m,6}$, when m = 2, 4, 6.

Proof. Case 1. For m = 2.

Let $V(K_{2,6}) = (X_1, X_2)$, where $X_1 = \{x_{1,1}, x_{1,2}\}$ and $X_2 = \{x_{2,i} \mid 1 \le i \le 6\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of $K_{2,6}$ for p = 4 and q = 0 as

$$[x_{1,1}x_{2,1}x_{1,2}x_{2,2}], [x_{1,1}x_{2,3}x_{1,2}x_{2,4}], [x_{2,2}x_{1,1}x_{2,6}x_{1,2}], [x_{1,2}x_{2,5}x_{1,1}x_{2,4}].$$

Hence, $M(K_{2,6}) = (4, 0)$.

Case 2. For m = 4.

Let $V(K_{4,6}) = (X_1, X_2)$, where $X_1 = \{x_{1,i} \mid 1 \le i \le 4\}$ and $X_2 = \{x_{2,i} \mid 1 \le i \le 6\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of $K_{4,6}$ as follows:

- 1. For p = 0 and q = 6:
 - By Theorem 3, we get the required stars.
- 2. For p = 4 and q = 3:
 - $[x_{1,1}x_{2,1}x_{1,2}x_{2,2}], [x_{1,2}x_{2,3}x_{1,1}x_{2,2}], [x_{1,3}x_{2,1}x_{1,4}x_{2,2}], [x_{1,4}x_{2,2}x_{1,3}x_{2,3}], (x_{2,4}, x_{2,5}, x_{2,6}; x_{1,1}, x_{1,2}, x_{1,3}, x_{1,4}).$

3. For p = 8 and q = 0: The $4P_4$ along with $[x_{1,1}x_{2,4}x_{1,2}x_{2,5}], [x_{1,2}x_{2,6}x_{1,1}x_{2,5}], [x_{1,3}x_{2,4}x_{1,4}x_{2,5}], [x_{1,4}x_{2,5}x_{1,3}x_{2,6}]$ gives the required paths.

Hence, $M(K_{4,6}) = \{(0,6), (4,3), (8,0)\}.$

Case 3. For m = 6.

We can write $K_{6,6} = K_{2,6} \oplus K_{4,6}$. Then $M(K_{6,6}) \supseteq M(K_{2,6}) + M(K_{4,6}) \supseteq (4,0) + \{(0,6), (4,3), (8,0)\} = \{(4,6), (8,3), (12,0)\}$. By Theorem 3, we get $9S_4$. Hence $M(K_{6,6}) = \{(0,9), (4,6), (8,3), (12,0)\}$.

Lemma 2. There exists a $\{pP_4, qS_4\}$ -decomposition of K_5 .

Proof. From the definition of I(n), we get I(5) = (2,1). Let $V(K_5) = \{x_i \mid 1 \leq i \leq 5\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of K_5 for p = 2 and q = 1 as $[x_2x_4x_3x_5]$, $[x_3x_2x_5x_4], (x_1; x_2, x_3, x_4, x_5)$. Hence, $M(K_5) = I(5) = (2,1)$.

Lemma 3. There exists a $\{pP_4, qS_4\}$ -decomposition of K_6 .

Proof. From the definition of I(n), we get $I(6) = \{(1,3), (5,0)\}$. Let $V(K_6) = \{x_i \mid 1 \le i \le 6\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of K_6 as follows:

- 1. (1,3): Let D be an arbitrary $\{pP_4, qS_4\}$ -decomposition of K_6 . Suppose that p = 1 and let $P_4^1 = [x_1x_2x_3x_4]$ be the only P_4 in D. By our assumption $H_1 = K_6 - E(P_4^1)$ has an S_4 -decomposition. Let $d(x_i)$ is degree of x_i . In H_1 , $d(x_1) = d(x_4) = 4$, $d(x_2) = d(x_3) = 3$ and $d(x_5) = d(x_6) = 5$. It follows that, any three of $\{x_1, x_4, x_5, x_6\}$ must be a center vertex of stars in the decomposition D. Let $S_4^1 = (x_1; x_3, x_4, x_5, x_6)$ be a star in H_1 . Then $H_2 = H_1 - E(S_4^1)$, we have $d(x_1) = 0$, $d(x_2) = d(x_4) = 3$, $d(x_5) = d(x_6) = 4$ and $d(x_3) = 2$. It follows that x_5 and x_6 must be center vertices of stars in the decomposition D. Let $S_4^2 = (x_5; x_2, x_3, x_4, x_6)$ in H_2 . Then $H_3 = H_2 - E(S_4^2)$, we have $d(x_1) = d(x_5) = 0$, $d(x_2) = d(x_4) = 2$, $d(x_3) = 1$ and $d(x_6) = 3$. Hence H_3 can not have a S_4 -decomposition, which is a contradiction. Hence $(p, q) \neq (1, 3)$.
- 2. (5,0): By Theorem 1, we get the required paths.

Hence, $M(K_6) = I(6) = (5, 0)$.

Lemma 4. There exists a $\{pP_4, qS_4\}$ -decomposition of K_7 .

Proof. From the definition of I(n), we get $I(7) = \{(3,3), (7,0)\}$. Let $V(K_7) = \{x_i \mid 1 \le i \le 7\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of K_7 as follows:

1. For p = 3 and q = 3: $[x_1x_2x_3x_4], [x_4x_5x_6x_7], [x_5x_7x_4x_6], (x_3; x_1, x_5, x_6, x_7), (x_1, x_2; x_4, x_5, x_6, x_7).$ 2. For p = 7 and q = 0:

By Theorem 1, we get the required paths.

Hence, $M(K_7) = I(7) = \{(3,3), (7,0)\}.$

Lemma 5. There exists a $\{pP_4, qS_4\}$ -decomposition of K_8 .

Proof. From the definition of I(n), we get $I(8) = \{(0,7), (4,4), (8,1)\}$. Let $V(K_8) = \{x_i \mid 1 \le i \le 8\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of K_8 as follows:

1. For p = 0 and q = 7:

By Theorem 2, we get the required stars.

- 2. p = 4 and q = 4: $[x_1x_2x_8x_3], [x_2x_5x_3x_4], [x_6x_3x_1x_8], [x_1x_4x_2x_3], (x_4; x_5, x_6, x_7, x_8), (x_5; x_1, x_6, x_7, x_8), (x_6; x_1, x_2, x_7, x_8), (x_7; x_1, x_2, x_3, x_8).$
- 3. For p = 8 and q = 1: The $4P_4$ along with $[x_1x_5x_4x_8], [x_2x_6x_7x_4], [x_1x_6x_5x_7], [x_4x_6x_8x_5]$ gives the required paths and the $1S_4$ is $(x_7; x_1, x_2, x_3, x_8)$.

Hence, $M(K_8) = I(8) = \{(0,7), (4,4), (8,1)\}.$

Lemma 6. There exists a $\{pP_4, qS_4\}$ -decomposition of K_9 .

Proof. From the definition of I(n), we get $I(9) = \{(0,9), (4,6), (8,3), (12,0)\}$. Let $V(K_9) = \{x_i \mid 1 \le i \le 9\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of K_9 as follows:

- 1. For p = 0 and q = 9: By Theorem 2, we get the required stars.
- 2. For p = 4 and q = 6: $[x_1x_2x_5x_4], [x_2x_4x_1x_5], [x_6x_8x_7x_9], [x_7x_6x_9x_8], (x_3; x_1, x_2, x_4, x_5), (x_1, x_2, x_3, x_4, x_5; x_6, x_7, x_8, x_9).$
- 3. For p = 8 and q = 3: The $4P_4$ with $[x_1x_6x_2x_9], [x_1x_7x_3x_6], [x_3x_9x_1x_8], [x_3x_8x_2x_7]$ gives the required paths and $3S_4$ are $(x_3; x_1, x_2, x_4, x_5), (x_4, x_5; x_6, x_7, x_8, x_9)$.
- 4. p = 12 and q = 0: By Theorem 1, we get the required paths.

Hence, $M(K_9) = I(9) = \{(0, 9), (4, 6), (8, 3), (12, 0)\}.$

Lemma 7. There exists a $\{pP_4, qS_4\}$ -decomposition of K_{10} .

Proof. From the definition of I(n), we get $I(10) = \{(3,9), (7,6), (11,3), (15,0)\}$. Let $V(K_{10}) = \{x_i \mid 1 \le i \le 10\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of K_{10} as follows:

- 1. For p = 3 and q = 9: $[x_1x_2x_3x_4], [x_2x_4x_1x_3], [x_4x_5x_6x_7], (x_5; x_1, x_2, x_3, x_7), (x_6, x_7, x_8, x_9, x_{10}; x_1, x_2, x_3, x_4), (x_8; x_5, x_6, x_7, x_9), (x_9; x_5, x_6, x_7, x_{10}), (x_{10}; x_5, x_6, x_7, x_8).$
- 2. For p = 7 and q = 6: The $3P_4$ with $[x_1x_{10}x_2x_8], [x_3x_9x_1x_8], [x_2x_9x_4x_{10}],$ along $[x_4x_8x_3x_{10}]$ gives the required paths and $6S_4$ are $(x_6, x_7; x_1, x_2, x_3, x_4),$ $(x_5; x_1, x_2, x_3, x_7), (x_8; x_5, x_6, x_7, x_9), (x_9; x_5, x_6, x_7, x_{10}), (x_{10}; x_5, x_6, x_7, x_8).$
- 3. For p = 11 and q = 3: The 7P₄ along with $[x_1x_5x_2x_6], [x_1x_7x_3x_6], [x_1x_6x_4x_7], [x_2x_7x_5x_3]$ gives the required paths and $3S_4$ are $(x_8; x_5, x_6, x_7, x_9), (x_9; x_5, x_6, x_7, x_{10}), (x_{10}; x_5, x_6, x_7, x_8)$.
- 4. For p = 15 and q = 0: By Theorem 1, we get the required paths.

Hence, $M(K_{10}) = I(10) = \{(3, 9), (7, 6), (11, 3), (15, 0)\}.$

Lemma 8. There exists a $\{pP_4, qS_4\}$ -decomposition of K_{11} .

Proof. From the definition of I(n), we get $I(11) = \{(1, 13), (5, 10), (9, 7), (13, 4), (17, 1)\}$. Let $V(K_{11}) = \{x_i \mid 1 \le i \le 11\}$. We exhibit the $\{pP_4, qS_4\}$ -decomposition of K_{11} as follows:

1. For p = 1 and q = 13:

 $[x_3x_1x_{10}x_9], (x_1, x_2; x_4, x_5, x_6, x_7), (x_3, x_4, x_5, x_7; x_8, x_9, x_{10}, x_{11}), (x_1; x_2, x_8, x_9, x_{11}), (x_2; x_3, x_9, x_{10}, x_{11}), (x_3; x_1, x_5, x_6, x_7), (x_4; x_1, x_2, x_3, x_5), (x_6; x_5, x_7, x_9, x_{10}), (x_8; x_2, x_6, x_9, x_{10}), (x_{11}; x_6, x_8, x_9, x_{10}).$

- 2. For p = 5 and q = 10: $[x_1x_2x_3x_4], [x_4x_5x_6x_7], [x_5x_7x_4x_6], [x_8x_9x_{10}x_{11}], [x_9x_{11}x_8x_{10}], (x_1, x_2, x_3, x_4, x_5, x_6, x_7; x_8, x_9, x_{10}, x_{11}), (x_1, x_2; x_4, x_5, x_6, x_7), (x_3; x_1, x_5, x_6, x_7).$
- 3. For p = 9 and q = 7: The $5P_4$ along with $[x_2x_8x_3x_9]$, $[x_2x_{10}x_3x_{11}]$, $[x_2x_{11}x_1x_{10}]$, $[x_2x_9x_1x_8]$ gives the required paths and last $7S_4$ gives the required stars.
- 4. For p = 13 and q = 4: The $9P_4$ along with $[x_5x_8x_6x_9], [x_5x_{10}x_6x_{11}], [x_5x_9x_4x_8], [x_5x_{11}x_4x_{10}]$ gives the required paths and $4S_4$ are $(x_1, x_2; x_4, x_5, x_6, x_7), (x_3; x_1, x_5, x_6, x_7), (x_7; x_8, x_9, x_{10}, x_{11}).$
- 5. For p = 17 and q = 1: The 13P₄ along with $[x_5x_1x_3x_7]$, $[x_1x_7x_2x_6]$, $[x_3x_5x_2x_4]$, $[x_3x_6x_1x_4]$ gives the required paths and the 1S₄ is $(x_7; x_8, x_9, x_{10}, x_{11})$.

Hence, $M(K_{11}) = I(11) = \{(1, 13), (5, 10), (9, 7), (13, 4), (17, 1)\}.$

Lemma 9. There exists a $\{pP_4, qS_4\}$ -decomposition of K_{12} .

Proof. From the definition of I(n),we I(12)get = $\{(2, 15), (6, 12), (10, 9), (14, 6), (18, 3), (22, 0)\}.$ We can write K_{12} $2K_6 \oplus$ By Remark 1, and Lemmas 1, 3, we have $M(K_{12})$ \supseteq $2M(K_6) +$ $K_{6.6}$. $(10,0) + \{(0,9), (4,6), (8,3), (12,0)\}$ $M(K_{6.6})$ = $\{(10,9), (14,6), (18,3), \}$ \supset (22,0) = $I(12) - \{(2,15), (6,12)\}$. We can write $K_{12} = K_4 \oplus K_8 \oplus K_{4,8}$. Then by Theorems 1 and 3, the graphs K_4 and $K_{4,8}$ have $2P_4$ and $8S_4$ respectively, and by Lemma 5 the graph K_8 has a decomposition for the case $(p,q) \in \{(0,7), (4,4)\}$. Hence $M(K_{12}) = I(12) = \{(2, 15), (6, 12), (10, 9), (14, 6), (18, 3), (22, 0)\}.$

Lemma 10. There exists a $\{pP_4, qS_4\}$ -decomposition of K_{14} .

Proof. From the definition of I(n), we get $I(14) = \{(1, 22), (5, 19), \dots, (29, 1)\}$. We can write $K_{14} = K_8 \oplus K_6 \oplus 2K_{4,6}$. Then by Remark 1, and Lemmas 1, 3 and 5, we have $M(K_{14}) \supseteq M(K_8) + M(K_6) + 2M(K_{4,6}) = \{(0,7), (4,4), (8,1)\} + (5,0) + 2\{(0,6), (4,3), (8,0)\} = \{(5,19), (9,16), \dots, (29,1)\} = I(14) - (1,22)$. Let $V(K_{14}) = \{x_i \mid 1 \leq i \leq 14\}$. Then the required decomposition for the case (p,q) = (1,22) is given as follows: $[x_7, x_6, x_{14}, x_{11}], (x_1; x_2, x_{11}, x_{12}, x_{14}), (x_3; x_1, x_2, x_{11}, x_{14}), (x_4; x_1, x_2, x_3, x_5), (x_5; x_1, x_2, x_3, x_7), (x_6; x_5, x_{11}, x_{12}, x_{13}), (x_8; x_5, x_6, x_7, x_9), (x_9; x_5, x_6, x_7, x_{10}), (x_{10}; x_5, x_6, x_7, x_8), (x_{12}; x_3, x_{11}, x_{13}, x_{14}), (x_{13}; x_1, x_3, x_{11}, x_{14}), (x_2, x_4, x_5, x_7, x_8, x_9, x_{10}; x_{11}, x_{12}, x_{13}, x_{14}), (x_6, x_7, x_8, x_9, x_{10}; x_1, x_2, x_3, x_4)$.

Hence, $M(K_{14}) = I(14) = \{(1, 22), \dots, (29, 1)\}.$

3. Main Result

In this section, we prove that K_n can be decomposed into p copies of P_4 and q copies of S_4 for all positive integer $n \ge 4$.

Lemma 11. Let $p, q \in \mathbb{Z}_+ \cup \{0\}$ and $n \equiv 0 \pmod{6}$. There exists a $\{pP_4, qS_4\}$ -decomposition of K_n if and only if $3p + 4q = \binom{n}{2}$, and $n \geq 6$. That is, $M(K_{6s}) = I(6s)$, where $s \in \mathbb{Z}_+$.

Proof. Necessity: The conditions $3p + 4q = \binom{n}{2}$ and $n \ge 6$ are trivial. That is, $M(K_{6s}) \subseteq I(6s)$. Sufficiency: We have to prove $M(K_{6s}) \supseteq I(6s)$. The proof is by induction on s. If s = 1, then $M(K_6) = I(6)$, by Lemma 3. Since $K_{6k+6} = K_{6k} \oplus K_6 \oplus K_{6k+6} = K_{6k} \oplus K_6 \oplus K_{6,6}$. From the definition of I(n), we have

$$I(24r) = \left\{ (p,q) \middle| p = \frac{(24r)(24r-1)}{6} - 4i, \ q = \frac{(24r)(24r-1)}{8} - \frac{3p}{4}, \right\}$$

Journal of Combinatorial Mathematics and Combinatorial Computing

$$\begin{split} 0 &\leq i \leq \left\lfloor \frac{(24r)(24r-1)}{24} \right\rfloor \bigg\}, \\ &= \left\{ (4x,3y)|0 \leq x \leq 24r^2 - r, \ y = (24r^2 - r) - x \right\}, \\ I(24r+6) &= \left\{ (p,q) \middle| p = \frac{(24r+6)(24r+5)}{6} - 4i, \ q = \frac{(24r+6)(24r+5)}{8} - \frac{3p}{4}, \\ &\quad 0 \leq i \leq \left\lfloor \frac{(24r+6)(24r+5)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+1,3y)|0 \leq x \leq 24r^2 + 11r+1, \ y = (24r^2 + 11r+1) - x \right\}, \\ I(24r+12) &= \left\{ (p,q) \middle| p = \frac{(24r+12)(24r+11)}{6} - 4i, \ q = \frac{(24r+12)(24r+11)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+12)(24r+11)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+2,3y)|0 \leq x \leq 24r^2 + 23r+5, \ y = (24r^2 + 23r+5) - x \right\}, \\ I(24r+18) &= \left\{ (p,q) \middle| p = \frac{(24r+18)(24r+17)}{6} - 4i, \ q = \frac{(24r+18)(24r+17)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+18)(24r+17)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+3,3y)|0 \leq x \leq 24r^2 + 35r+12, \ y = (24r^2 + 35r+12) - x \right\}, \\ I(24r+24) &= \left\{ (p,q) \middle| p = \frac{(24r+24)(24r+23)}{6} - 4i, \ q = \frac{(24r+24)(24r+23)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+24)(24r+23)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x,3y)|0 \leq x \leq 24r^2 + 47r+23, \ y = (24r^2 + 47r+23) - x \right\}. \end{split}$$

Case 1. If k = 4r, then we can write $K_{24r+6} = K_{24r} \oplus K_6 \oplus (4r)K_{6,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have $M(K_{24r+6}) \supseteq M(K_{24r}) + M(K_6) + (4r)M(K_{6,6}) = \{(4x,3y)|0 \le x \le 24r^2 - r, y = (24r^2 - r) - x\} + (5,0) + (4r)\{(0,9), (4,6), (8,3), (12,0)\} = \{(4u+1,3v)|1 \le u \le 24r^2+11r+1, v = (24r^2+11r+1)-u\} = I(24r+6) - (1,3(24r^2+11r+1))$. If r = 1, then $K_{30} = K_{16} \oplus K_{14} \oplus K_{16,14}$. The graph K_{14} can be decomposed into $1P_4$ and $22S_4$, by Lemma 10, and the graphs K_{16} and $K_{16,14}$ have an S_4 -decomposition, by Theorems 2 and 3. Hence the graph K_{30} has a decomposition into $1P_4$ and $108S_4$. For $r \ge 2$, we can write $K_{24r+6} = K_{24r-8} \oplus K_{14} \oplus K_{24r-8,14}$. Then by Lemma 10, the graph K_{14} can be decomposed into $1P_4$ and $22S_4$, and by Theorems 2 and 3, the graphs K_{24r-8} and $K_{24r-8,14}$ have an S_4 -decomposition. Hence the graph K_{24r+6} has a decomposition into $1P_4$ and $3(24r^2+11r+1)S_4$. Therefore $M(K_{24r+6}) = \{(4x+1,3y)|0 \le x \le 24r^2+11r+1, y = (24r^2+11r+1) - x\} = I(24r+6)$.

Case 2. If k = 4r + 1, then we can write $K_{24r+12} = K_{24r+6} \oplus K_6 \oplus (4r+1)K_{6,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have $M(K_{24r+12}) \supseteq M(K_{24r+6}) + M(K_6) + (4r+1)M(K_{6,6}) = \{(4x+1,3y)|0 \le x \le 24r^2 + 11r + 1, y = (24r^2 + 11r + 1) - x\} + (5,0) + (4r+1)\{(0,9), (4,6), (8,3), (12,0)\} = \{(4u+2,3v)|1 \le u \le 24r^2 + 23r + 5, v = (24r^2 + 23r + 5) - u\} = I(24r+12) - (2,3(24r^2 + 23r + 5)).$ Let $K_{24r+12} = K_{24r} \oplus K_{12} \oplus K_{24r,12}$. The graph K_{12} can be decomposed into $2P_4$ and $15S_4$, by Lemma 9, and by Theorems 2 and 3, the graphs K_{24r} and $K_{24r,12}$ have an S_4 -decomposition. Hence the graph K_{24r+12} has a Decomposition of Complete Graphs into Paths and Stars with Different Number of Edges 307 decomposition into $2P_4$ and $3(24r^2 + 23r + 5)S_4$. Therefore $M(K_{24r+12}) = \{(4x + 2, 3y)|0 \le x \le 24r^2 + 23r + 5, y = (24r^2 + 23r + 5) - x\} = I(24r + 12).$

Case 3. If k = 4r + 2, then we can write $K_{24r+18} = K_{24r+12} \oplus K_6 \oplus (4r+2)K_{6,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have $M(K_{24r+18}) \supseteq M(K_{24r+12}) + M(K_6) + (4r+2)M(K_{6,6}) = \{(4x+2,3y)|0 \le x \le 24r^2 + 23r + 5, y = (24r^2 + 23r + 5) - x\} + (5,0) + (4r+2)\{(0,9), (4,6), (8,3), (12,0)\} = \{(4u+3,3v)|1 \le u \le 24r^2 + 35r + 12, v = (24r^2 + 35r + 12) - u\} = I(24r + 18) - (3,3(24r^2 + 35r + 12))$. Let $K_{24r+18} = K_{24r+8} \oplus K_{10} \oplus K_{24r+8,10}$. The graph K_{10} can be decomposed into $3P_4$ and $9S_4$, by Lemma 7, and by Theorems 2 and 3, the graphs K_{24r+8} and $K_{24r+8,10}$ have an S_4 -decomposition. Hence the graph K_{24r+18} has a decomposition into $3P_4$ and $3(24r^2 + 35r + 12)S_4$. Therefore $M(K_{24r+18}) = \{(4x+3,3y)|0 \le x \le 24r^2 + 35r + 12, y = (24r^2 + 35r + 12)S_4$.

Case 4. If k = 4r + 3, then we can write $K_{24r+24} = K_{24r+18} \oplus K_6 \oplus (4r+3)K_{6,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have $M(K_{24r+24}) \supseteq M(K_{24r+18}) + M(K_6) + (4r+3)M(K_{6,6}) = \{(4x+3,3y)|0 \le x \le 24r^2 + 35r + 12, y = (24r^2 + 35r + 12) - x\} + (5,0) + (4r+3)\{(0,9), (4,6), (8,3), (12,0)\} = \{(4u,3v)|2 \le u \le 24r^2 + 47r + 23, v = (24r^2 + 47r + 23) - u\} = I(24r+24) - \{(0,3(24r^2 + 47r + 23)), (4,3(24r^2 + 47r + 22))\}$. The graph K_{24r+24} has $3(24r^2 + 47r + 23)S_4$, by Theorem 3, and hence $M(K_{24r+24}) = I(24r + 24) - (4,324r^2 + 47r + 23)$. Let $K_{24r+24} = K_{24r+16} \oplus K_8 \oplus K_{24r+16,8}$. Then by Lemma 5, the graph K_8 can be decomposed into $4P_4$ and $4S_4$, and by Theorems 2 and 3, the graphs K_{24r+16} and $K_{24r+16,8}$ have an S_4 -decomposition. Hence the graph K_{24r+24} has a decomposition into $4P_4$ and $3(24r^2 + 47r + 22)S_4$. Therefore $M(K_{24r+24}) = \{(4x,3y)|0 \le x \le 24r^2 + 47r + 23, y = (24r^2 + 47r + 23) - x\} = I(24r + 24)$.

Thus $M(K_{6s}) = I(6s)$, for each $s \in \mathbb{Z}_+$.

Lemma 12. Let $p, q \in \mathbb{Z}_+ \cup \{0\}$ and $n \equiv 1 \pmod{6}$. There exists a $\{pP_4, qS_4\}$ -decomposition of K_n if and only if $3p + 4q = \binom{n}{2}$ and $n \geq 7$. That is, $M(K_{6s+1}) = I(6s+1)$, where $s \in \mathbb{Z}_+$.

Proof. Necessity: The conditions $3p + 4q = \binom{n}{2}$ and $n \ge 6$ are trivial. That is, $M(K_{6s+1}) \subseteq I(6s+1)$. Sufficiency: We have to prove $M(K_{6s+1}) \supseteq I(6s+1)$. The proof is by induction on s. If s = 1, then $M(K_7) = I(7)$, by Lemma 4. Since $K_{6k+7} = K_{6k+1} \oplus K_7 \oplus K_{6k,6} = K_{6k+1} \oplus K_7 \oplus kK_{6,6}$. From the definition of I(n), we have

$$\begin{split} I(24r+1) &= \left\{ (p,q) \middle| p = \frac{(24r+1)(24r)}{6} - 4i, \ q = \frac{(24r+1)(24r)}{8} - \frac{3p}{4}, \\ &\quad 0 \le i \le \left\lfloor \frac{(24r+1)(24r)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x,3y) \middle| 0 \le x \le 24r^2 + r, \ y = (24r^2 + r) - x \right\}, \\ I(24r+7) &= \left\{ (p,q) \middle| p = \frac{(24r+7)(24r+6)}{6} - 4i, \ q = \frac{(24r+7)(24r+6)}{8} - \frac{3p}{4}, \\ &\quad 0 \le i \le \left\lfloor \frac{(24r+7)(24r+6)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+3,3y) \middle| 0 \le x \le 24r^2 + 13r + 1, \ y = (24r^2 + 13r + 1) - x \right\}, \\ I(24r+13) &= \left\{ (p,q) \middle| p = \frac{(24r+13)(24r+12)}{6} - 4i, \ q = \frac{(24r+13)(24r+12)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \le i \le \left\lfloor \frac{(24r+13)(24r+12)}{24} \right\rfloor \right\}, \end{split}$$

Journal of Combinatorial Mathematics and Combinatorial Computing

M. Ilayaraja and A. Muthusamy

$$= \{(4x+2,3y)|0 \le x \le 24r^2 + 25r + 6, \ y = (24r^2 + 25r + 6) - x\},\$$

$$I(24r+19) = \left\{(p,q)\Big|p = \frac{(24r+19)(24r+18)}{6} - 4i, \ q = \frac{(24r+19)(24r+18)}{8} - \frac{3p}{4}, \ 0 \le i \le \left\lfloor\frac{(24r+19)(24r+18)}{24}\right\rfloor\right\},\$$

$$= \{(4x+1,3y)|0 \le x \le 24r^2 + 37r + 14, \ y = (24r^2 + 37r + 14) - x\},\$$

$$\begin{split} I(24r+25) &= \left\{ (p,q) \middle| p = \frac{(24r+25)(24r+24)}{6} - 4i, \ q = \frac{(24r+25)(24r+24)}{8} \\ &- \frac{3p}{4}, \ 0 \le i \le \left\lfloor \frac{(24r+25)(24r+24)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x,3y) \middle| 0 \le x \le 24r^2 + 49r + 25, \ y = (24r^2 + 49r + 25) - x \right\}. \end{split}$$

Case 1. If k = 4r, then we can write $K_{24r+7} = K_{24r+1} \oplus K_7 \oplus (4r)K_{6,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have $M(K_{24r+7}) \supseteq M(K_{24r+1}) + M(K_7) + (4r)M(K_{6,6}) = \{(4x, 3y)|0 \le x \le 24r^2 + r, y = (24r^2 + r) - x\} + \{(3, 3), (7, 0)\} + (4r)\{(0, 9), (4, 6), (8, 3), (12, 0)\}$

 $=\{(4u+3,3v)|0 \le u \le 24r^2 + 13r + 1, \ v = (24r^2 + 13r + 1) - u\} = I(24r + 7).$

Case 2. If k = 4r + 1, then we can write $K_{24r+13} = K_{24r+7} \oplus K_7 \oplus (4r+1)K_{6,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have $M(K_{24r+13}) \supseteq M(K_{24r+7}) + M(K_7) + (4r+1)M(K_{6,6}) = \{(4x+3,3y)|0 \le x \le 24r^2 + 13r + 1, y = (24r^2 + 13r + 1) - x\} + \{(3,3),(7,0)\} + (4r+1)\{(0,9),(4,6),(8,3),(12,0)\} = \{(4u+2,3v)|1 \le u \le 24r^2 + 25r + 6, v = (24r^2 + 25r + 6) - u\} = I(24r + 13) - (2,3(24r^2 + 25r + 6)).$ Let $K_{24r+13} = K_{24r+9} \oplus K_4 \oplus (8r+3)K_{3,4}$. Then the graphs K_{24r+9} and $K_{3,4}$ have an S_4 -decomposition, by Theorems 2 and 3, the graph K_4 has $2P_4$. Hence the graph K_{24r+13} has a decomposition into $2P_4$ and $3(24r^2 + 25r + 6)S_4$. Therefore $M(K_{24r+13}) = \{(4x + 2, 3y)|0 \le x \le 24r^2 + 25r + 6, y = (24r^2 + 25r + 6)S_4$. Therefore $M(K_{24r+13}) = \{(4x + 2, 3y)|0 \le x \le 24r^2 + 25r + 6, y = (24r^2 + 25r + 6) - x\} = I(24r + 13).$

Case 3. If k = 4r + 2, then we can write $K_{24r+19} = K_{24r+13} \oplus K_7 \oplus (4r+2)K_{6,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have $M(K_{24r+19}) \supseteq M(K_{24r+13}) + M(K_7) + (4r+2)M(K_{6,6}) = \{(4x+2,3y)|0 \le x \le 24r^2 + 25r + 6, y = (24r^2 + 25r + 6) - x\} + \{(3,3),(7,0)\} + (4r+2)\{(0,9),(4,6),(8,3),(12,0)\} = \{(4u+1,3v)|1 \le u \le 24r^2 + 37r + 14, v = (24r^2 + 37r + 14) - u\} = I(24r + 19) - (1,3(24r^2 + 37r + 14))$. Let $K_{24r+19} = K_{24r+8} \oplus K_{11} \oplus K_{24r+8,11}$. Then the graph K_{11} can be decomposed into $1P_4$ and $13S_4$, by Lemma 8, and Theorems 2 and 3, the graphs K_{24r+8} and $K_{24r+8,11}$ have an S_4 -decomposition. Hence the graph K_{24r+19} has a decomposition into $1P_4$ and $3(24r^2 + 37r + 14)S_4$. Therefore $M(K_{24r+19}) = \{(4x+1,3y)|0 \le x \le 24r^2 + 37r + 14, y = (24r^2 + 37r + 14) - x\} = I(24r + 19)$.

Case 4. If k = 4r + 3, then we can write $K_{24r+25} = K_{24r+19} \oplus K_7 \oplus (4r+3)K_{6,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have $M(K_{24r+25}) \supseteq M(K_{24r+19}) + M(K_7) + (4r+3)M(K_{6,6}) = \{(4x+1,3y)|0 \le x \le 24r^2 + 37r + 14, y = (24r^2 + 37r + 14) - x\} + \{(3,3),(7,0)\} + (4r+3)\{(0,9),(4,6),(8,3),(12,0)\} = \{(4u,3v)|1 \le u \le 24r^2 + 49r + 25, v = (24r^2 + 49r + 25) - u\} = I(24r + 25) - (0,3(24r^2 + 49r + 25)).$ The graph K_{24r+25} has $3(24r^2 + 49r + 25)S_4$, by Theorem 3. Hence $M(K_{24r+25}) = \{(4x,3y)|0 \le x \le 24r^2 + 49r + 25, y = (24r^2 + 49r + 25)S_4$, by Theorem 3. Hence $M(K_{24r+25}) = \{(4x,3y)|0 \le x \le 24r^2 + 49r + 25, y = (24r^2 + 49r + 25) - x\} = I(24r + 25).$

Thus $M(K_{6s+1}) = I(6s+1)$, for each $s \in \mathbb{Z}_+$.

Decomposition of Complete Graphs into Paths and Stars with Different Number of Edges 309 **Lemma 13.** Let $p, q \in \mathbb{Z}_+ \cup \{0\}$ and $n \equiv 2 \pmod{6}$. There exists a $\{pP_4, qS_4\}$ -decomposition of K_n if and only if $3p + 4q = \binom{n}{2}$, $n \geq 8$ and $q \geq 1$. That is, $M(K_{6s+2}) = I(6s+2)$, where $s \in \mathbb{Z}_+$.

Proof. Necessity: The conditions $3p + 4q = \binom{n}{2}$ and $n \ge 6$ are trivial. That is, $M(K_{6s+2}) \subseteq I(6s+2)$. Then $q \ge 1$, since by Theorem 1, the graph K_{6s+2} can not have a P_4 -decomposition. Sufficiency: We have to prove $M(K_{6s+2}) \supseteq I(6s+2)$. The proof is by induction on s. If s = 1, then $M(K_8) = I(8)$, by Lemma 5. Since $K_{6k+8} = K_{6k+2} \oplus K_6 \oplus K_{6k+2,6}$. From the definition of I(n), we have

$$\begin{split} I(24r+2) &= \left\{ (p,q) \middle| p = \frac{(24r+2)(24r+1)-8}{6} - 4i, \ q = \frac{(24r+2)(24r+1)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+2)(24r+1)-8}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+3,3y+1) \middle| 0 \leq x \leq 24r^2 + 3r - 1, \ y = (24r^2 + 3r - 1) - x \right\}, \\ I(24r+8) &= \left\{ (p,q) \middle| p = \frac{(24r+8)(24r+7)-8}{6} - 4i, \ q = \frac{(24r+8)(24r+7)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+8)(24r+7)-8}{24} \right\rfloor \right\}, \\ &= \left\{ (4x,3y+1) \middle| 0 \leq x \leq 24r^2 + 15r + 2, \ y = (24r^2 + 15r + 2) - x \right\}, \\ I(24r+14) &= \left\{ (p,q) \middle| p = \frac{(24r+14)(24r+13)-8}{6} - 4i, \ q = \frac{(24r+14)(24r+13)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+14)(24r+13)-8}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+1,3y+1) \middle| 0 \leq x \leq 24r^2 + 27r + 7, \ y = (24r^2 + 27r + 7) - x \right\}, \\ I(24r+20) &= \left\{ (p,q) \middle| p = \frac{(24r+20)(24r+19)-8}{6} - 4i, \ q = \frac{(24r+20)(24r+19)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+20)(24r+19)-8}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+2,3y+1) \middle| 0 \leq x \leq 24r^2 + 39r + 15, \ y = (24r^2 + 39r + 15) - x \right\}, \\ I(24r+26) &= \left\{ (p,q) \middle| p = \frac{(24r+26)(24r+25)-8}{6} - 4i, \ q = \frac{(24r+26)(24r+25)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+26)(24r+25)-8}{6} - 4i, \ q = \frac{(24r+26)(24r+25)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+26)(24r+25)-8}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+3,3y+1) \middle| 0 \leq x \leq 24r^2 + 51r + 26, \ y = (24r^2 + 51r + 26) - x \right\}. \end{split}$$

Case 1. If k = 4r, then we can write $K_{24r+8} = K_{24r+2} \oplus K_6 \oplus K_{24r+2,6}$. Since $K_{24r+2,6} = K_{24r,6} \oplus K_{2,6} = (4r)K_{6,6} \oplus K_{2,6}$. Then $K_{24r+8} = K_{24r+2} \oplus K_6 \oplus (4r)K_{6,6} \oplus K_{2,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have $M(K_{24r+8}) \supseteq M(K_{24r+2}) + M(K_6) + (4r)M(K_{6,6}) + M(K_{2,6}) = \{(4x+3,3y+1)|0 \le x \le 24r^2 + 3r - 1, y = (24r^2 + 3r - 1) - x\} + (5,0) + (4r)\{(0,9),(4,6),(8,3),(12,0)\} + (4,0) = \{(4u,3v+1)|3 \le u \le 24r^2 + 15r + 2, v = (24r^2 + 15r + 2) - u\} = I(24r + 8) - \{(0,3(24r^2 + 15r + 2)), (4,3(24r^2 + 15r + 2))$

 $15r+1)\Big), \Big(8, 3(24r^2+15r)\Big)\Big\}. \text{ The graph } K_{24r+8} \text{ has } 3(24r^2+15r+2)S_4, \text{ by Theorem 2, we} \\ \text{have } M(K_{24r+8}) = I(24r+8) - \Big\{\Big(4, 3(24r^2+15r+1)\Big), \Big(8, 3(24r^2+15r)\Big)\Big\}. \text{ Let } K_{24r+8} = \\ K_{24r} \oplus K_8 \oplus K_{24r,8}. \text{ Then by Lemma 5, the graph } K_8 \text{ can be decomposed into } 8P_4 \text{ or } 4P_4 \\ \text{and } 4S_4, \text{ and by Theorems 2 and 3, the graphs } K_{24r} \text{ and } K_{24r,8} \text{ have an } S_4\text{-decomposition.} \\ \text{Hence the graph } K_{24r+8} \text{ has a decomposition into } p \text{ copies of } P_4 \text{ and } q \text{ copies of } S_4, \text{ where} \\ (p,q) \in \Big\{\Big(0, 3(24r^2+15r+2)\Big), \Big(4, 3(24r^2+15r+1)\Big), \Big(8, 3(24r^2+15r)\Big)\Big\}. \text{ Therefore } M(K_{24r+8}) = \\ \{(4x, 3y+1)|0 \le x \le 24r^2+15r+2, \ y = (24r^2+15r+2) - x\} = I(24r+8). \end{aligned}$

Case 2. If k = 4r + 1, then we can write $K_{24r+14} = K_{24r+8} \oplus K_6 \oplus K_{24r+8,6}$. Since $K_{24r+8,6} = (6r+2)K_{4,6}$. Then $K_{24r+14} = K_{24r+8} \oplus K_6 \oplus (6r+2)K_{4,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have $M(K_{24r+14}) \supseteq M(K_{24r+8}) + M(K_6) + (6r+2)M(K_{4,6}) = \{(4x, 3y+1)|0 \le x \le 24r^2 + 15r + 2, y = (24r^2 + 15r + 2) - x\} + (5, 0) + (6r+2)\{(0,6), (4,3), (8,0)\} = \{(4u+1, 3v+1)|1 \le u \le 24r^2 + 27r + 7, v = (24r^2 + 27r + 7) - u\} = I(24r + 14) - (1, 3(24r^2 + 27r + 7))$. If r = 0, then $M(K_{14}) = I(14)$, by Lemma 10. If $r \ge 1$, we can write $K_{24r+14} = K_{24r} \oplus K_{14} \oplus K_{24r,14}$. Then by Lemma 10, the graph K_{14} can be decomposed into $1P_4$ and $22S_4$, and by Theorems 2 and 3, the graphs K_{24r} and $K_{24r,14}$ have an S_4 -decomposition. Hence the graph K_{24r+14} has a decomposition into $1P_4$ and $3(24r^2 + 27r + 7)S_4$. Therefore $M(K_{24r+14}) = \{(4x+1, 3y+1)|0 \le x \le 24r^2 + 27r + 7, y = (24r^2 + 27r + 7) - x\} = I(24r + 14)$.

Case 3. If k = 4r+2, then we can write $K_{24r+20} = K_{24r+14} \oplus K_6 \oplus K_{24r+14,6}$. Since $K_{24r+14,6} = (6r+2)K_{4,6} \oplus K_{6,6}$. Then $K_{24r+20} = K_{24r+14} \oplus K_6 \oplus (6r+2)K_{4,6} \oplus K_{6,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have $M(K_{24r+20}) \supseteq M(K_{24r+14}) + M(K_6) + (6r+2)M(K_{4,6}) = \{(4x+1,3y+1)|0 \le x \le 24r^2 + 27r + 7, y = (24r^2 + 27r + 7) - x\} + (5,0) + (6r+2)\{(0,6), (4,3), (8,0)\} = \{(4u+2,3v+1)|1 \le u \le 24r^2 + 39r + 15, v = (24r^2 + 39r + 15) - u\} = I(24r+20) - (2,3(24r^2 + 39r + 15))$. Let $K_{24r+20} = K_{24r+16} \oplus K_4 \oplus K_{24r+16,4}$. Then by Theorems 2 and 3, the graphs K_{24r+16} and $K_{24r+16,4}$ have an S_4 -decomposition, and the graph K_4 has $2P_4$. Hence the graph K_{24r+20} has a decomposition into $2P_4$ and $3(24r^2 + 39r + 15)S_4$. Therefore $M(K_{24r+20}) = \{(4x+2,3y+1)|0 \le x \le 24r^2 + 39r + 15, y = (24r^2 + 39r + 15)S_4$. Therefore $M(K_{24r+20}) = \{(4x+2,3y+1)|0 \le x \le 24r^2 + 39r + 15, y = (24r^2 + 39r + 15)S_4$.

Case 4. If k = 4r + 3, then we can write $K_{24r+26} = K_{24r+20} \oplus K_6 \oplus K_{24r+16,4}$. Since $K_{24r+20,6} = (6r + 5)K_{4,6}$. Then $K_{24r+26} = K_{24r+20} \oplus K_6 \oplus (6r + 5)K_{4,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have $M(K_{24r+26}) \supseteq M(K_{24r+20}) + M(K_6) + (6r + 5)M(K_{4,6}) = \{(4x+2,3y+1)|0 \le x \le 24r^2 + 39r + 15, y = (24r^2 + 39r + 15) - x\} + (5,0) + (6r + 5)\{(0,6), (4,3), (8,0)\} = \{(4u+3,3v+1)|1 \le u \le 24r^2 + 51r + 26, v = (24r^2 + 51r + 26) - u\} = I(24r + 26) - (3,3(24r^2 + 51r + 26)).$ Let $K_{24r+26} = K_{24r+16} \oplus K_{10} \oplus K_{24r+16,10}$. Then by Lemma 7, the graph K_{10} can be decomposed into $3P_4$ and $7S_4$, and by Theorems 2 and 3, the graphs K_{24r+16} and $K_{24r+16,10}$ have an S_4 -decomposition. Hence the graph K_{24r+26} has a decomposition into $3P_4$ and $3(24r^2 + 51r + 26)S_4$. Therefore $M(K_{24r+26}) = \{(4x+3,3y+1)|0 \le x \le 24r^2 + 51r + 26, y = (24r^2 + 51r + 26)S_4$. Therefore $M(K_{24r+26}) = \{(4x+3,3y+1)|0 \le x \le 24r^2 + 51r + 26) - x\} = I(24r + 26)$. Thus $M(K_{6s+2}) = I(6s+2)$, for each $s \in \mathbb{Z}_+$.

Lemma 14. Let $p, q \in \mathbb{Z}_+ \cup \{0\}$ and $n \equiv 3 \pmod{6}$. There exists a $\{pP_4, qS_4\}$ -decomposition of K_n if and only if $3p + 4q = \binom{n}{2}$ and $n \geq 9$. That is, $M(K_{6s+3}) = I(6s+3)$, where $s \in \mathbb{Z}_+$.

Proof. Necessity: The conditions $3p + 4q = \binom{n}{2}$ and $n \ge 6$ are trivial. That is, $M(K_{6s+3}) \subseteq I(6s+3)$. Sufficiency: We have to prove $M(K_{6s+3}) \supseteq I(6s+3)$. The proof is by induction on s. If s = 1, then $M(K_9) = I(9)$, by Lemma 6. Since $K_{6k+9} = K_{6k+3} \oplus K_7 \oplus K_{6k+2,6}$. From the definition of I(n), we have

$$I(24r+3) = \left\{ (p,q) \middle| p = \frac{(24r+3)(24r+2)}{6} - 4i, \ q = \frac{(24r+3)(24r+2)}{8} - \frac{3p}{4}, \right\}$$

$$\begin{split} 0 &\leq i \leq \left\lfloor \frac{(24r+3)(24r+2)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+1,3y)|0 \leq x \leq 24r^2 + 5r, \ y = (24r^2+5r) - x \right\}, \\ I(24r+9) &= \left\{ (p,q) \middle| p = \frac{(24r+9)(24r+8)}{6} - 4i, \ q = \frac{(24r+9)(24r+8)}{8} - \frac{3p}{4}, \\ &\quad 0 \leq i \leq \left\lfloor \frac{(24r+9)(24r+8)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x,3y)|0 \leq x \leq 24r^2 + 17r + 3, \ y = (24r^2+17r+3) - x \right\}, \\ I(24r+15) &= \left\{ (p,q) \middle| p = \frac{(24r+15)(24r+14)}{6} - 4i, \ q = \frac{(24r+15)(24r+14)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+15)(24r+14)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+3,3y)|0 \leq x \leq 24r^2 + 29r + 8, \ y = (24r^2+29r+8) - x \right\}, \end{split}$$

$$\begin{split} I(24r+21) &= \left\{ (p,q) \middle| p = \frac{(24r+21)(24r+20)}{6} - 4i, \ q = \frac{(24r+21)(24r+20)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+21)(24r+20)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+2,3y) \middle| 0 \leq x \leq 24r^2 + 41r + 17, \ y = (24r^2 + 41r + 17) - x \right\}, \\ I(24r+27) &= \left\{ (p,q) \middle| p = \frac{(24r+27)(24r+26)}{6} - 4i, \ q = \frac{(24r+27)(24r+26)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+27)(24r+26)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+1,3y) \middle| 0 \leq x \leq 24r^2 + 53r + 29, \ y = (24r^2 + 53r + 29) - x \right\}. \end{split}$$

Case 1. If k = 4r, then we can write $K_{24r+9} = K_{24r+3} \oplus K_7 \oplus K_{24r+2,6}$. Since $K_{24r+2,6} = (6r)K_{4,6} \oplus K_{2,6}$. Then $K_{24r+9} = K_{24r+3} \oplus K_7 \oplus (6r)K_{4,6} \oplus K_{2,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have $M(K_{24r+9}) \supseteq M(K_{24r+3}) + M(K_7) + (6r)M(K_{4,6}) + M(K_{2,6}) = \{(4x+1,3y)|0 \le x \le 24r^2 + 5r, y = (24r^2 + 5r) - x\} + \{(3,3), (7,0)\} + (6r)\{(0,6), (4,3), (8,0)\} + (4,0) = \{(4u,3v)|2 \le u \le 24r^2 + 17r + 3, v = (24r^2 + 17r + 3) - u\} = I(24r + 9) - \{(0,3(24r^2 + 17r + 3)), (4,3(24r^2 + 17r + 2))\}$. The graph K_{24r+9} has $3(24r^2 + 17r + 3)S_4$, by Theorem 2, we have $M(K_{24r+8}) = I(24r + 8) - (4,3(24r^2 + 17r + 2)))$. Let $K_{24r+9} = K_{24r+1} \oplus K_8 \oplus K_{24r+1,8}$. Then by Lemma 5, the graph K_8 can be decomposed into $4P_4$ and $4S_4$, and by Theorems 2 and 3, the graphs K_{24r+1} and $K_{24r+1,8}$ have an S_4 -decomposition. Hence the graph K_{24r+9} has a decomposition into $4P_4$ and $3(24r^2 + 17r + 2)S_4$. Therefore $M(K_{24r+9}) = \{(4x,3y)|0 \le x \le 24r^2 + 17r + 3, y = (24r^2 + 17r + 3) - x\} = I(24r + 9)$.

Case 2. If k = 4r + 1, then we can write $K_{24r+15} = K_{24r+9} \oplus K_7 \oplus K_{24r+8,6}$. Since $K_{24r+8,6} = (6r+2)K_{4,6}$. Then $K_{24r+15} = K_{24r+9} \oplus K_7 \oplus (6r+2)K_{4,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have $M(K_{24r+15}) \supseteq M(K_{24r+9}) + M(K_7) + (6r+2)M(K_{4,6}) = \{(4x,3y)|0 \le x \le 24r^2 + 17r + 3, y = (24r^2 + 17r + 3) - x\} + \{(3,3),(7,0)\} + (6r+2)\{(0,6),(4,3),(8,0)\} = \{(4u+3,3v)|0 \le u \le 24r^2 + 29r + 8, v = (24r^2 + 29r + 8) - u\} = I(24r + 15).$

Case 3. If k = 4r + 2, then we can write $K_{24r+21} = K_{24r+15} \oplus K_7 \oplus K_{24r+15,6}$. Since $K_{24r+15,6} = (6r+2)K_{4,6} \oplus K_{6,6}$, we have $K_{24r+21} = K_{24r+15} \oplus K_7 \oplus (6r+2)K_{4,6} \oplus K_{6,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have $M(K_{24r+21}) \supseteq M(K_{24r+15}) + M(K_7) + (6r+2)M(K_{4,6}) + M(K_{6,6}) = \{(4x+3,3y)|0 \le x \le 24r^2 + 29r + 8, y = (24r^2 + 29r + 8) - x\} + \{(3,3),(7,0)\} + (6r+2)\{(0,6),(4,3),(8,0)\} + \{(0,9),(4,6),(8,3),(12,0)\} = \{(4u+2,3v)|1 \le u \le 24r^2 + 41r + 17, v = (24r^2 + 41r + 17) - u\} = I(24r + 21) - (2,3(24r^2 + 41r + 17)).$ Let $K_{24r+21} = K_{24r+17} \oplus K_4 \oplus K_{24r+17,4}$. Then the graphs K_{24r+17} and $K_{24r+17,4}$ have an S_4 -decomposition, by Theorems 2 and 3, the graph K_4 has $2P_4$. Hence the graph K_{24r+21} has a decomposition into $2P_4$ and $3(24r^2 + 41r + 17)S_4$. Therefore $M(K_{24r+21}) = \{(4x+2,3y)|0 \le x \le 24r^2 + 41r + 17, y = (24r^2 + 41r + 17)S_4]$.

Case 4. If k = 4r + 3, then we can write $K_{24r+27} = K_{24r+21} \oplus K_7 \oplus K_{24r+20,6}$. Since $K_{24r+20,6} = (6r+5)K_{4,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have $M(K_{24r+27}) \supseteq M(K_{24r+21}) + M(K_7) + (6r+5)M(K_{4,6}) = \{(4x+2,3y)|0 \le x \le 24r^2 + 41r + 17, y = (24r^2 + 41r + 17) - x\} + \{(3,3),(7,0)\} + (6r+5)\{(0,6),(4,3),(8,0)\} = \{(4u+1,3v)|1 \le u \le 24r^2 + 53r + 29, v = (24r^2 + 53r + 29) - u\} = I(24r + 27) - (1,3(24r^2 + 53r + 29))$. Let $K_{24r+27} = K_{24r+16} \oplus K_{11} \oplus K_{24r+16,11}$. Then by Lemma 8, the graph K_{11} can be decomposed into $1P_4$ and $13S_4$, and by Theorems 2 and 3, the graphs K_{24r+16} and $K_{24r+16,11}$ have an S_4 -decomposition. Hence the graph K_{24r+27} has a decomposition into $1P_4$ and $3(24r^2 + 53r + 29)S_4$. Therefore $M(K_{24r+27}) = \{(4x+1,3y)|0 \le x \le 24r^2 + 53r + 29, y = (24r^2 + 53r + 29) - x\} = I(24r + 27).$

Thus $M(K_{6s+3}) = I(6s+3)$, for each $s \in \mathbb{Z}_+$.

Lemma 15. Let $p, q \in \mathbb{Z}_+ \cup \{0\}$ and $n \equiv 4 \pmod{6}$. There exists a $\{pP_4, qS_4\}$ -decomposition of K_n if and only if $3p + 4q = \binom{n}{2}$ and $n \geq 4$. That is, $M(K_{6s+4}) = I(6s+4)$, where $s \in \mathbb{Z}_+$.

Proof. Necessity: The conditions $3p + 4q = \binom{n}{2}$ and $n \ge 4$ are trivial. That is, $M(K_{6s+4}) \subseteq I(6s+4)$. Sufficiency: We have to prove $M(K_{6s+4}) \supseteq I(6s+4)$. The proof is by induction on s. If s = 0, then $M(K_4) = I(4)$, by Theorem 1. If s = 1, then $M(K_{10}) = I(10)$, by Lemma 7. Since $K_{6k+10} = K_{6k+4} \oplus K_6 \oplus K_{6k+4,6}$. From the definition of I(n), we have

$$\begin{split} I(24r+4) &= \left\{ (p,q) \middle| p = \frac{(24r+4)(24r+3)}{6} - 4i, \ q = \frac{(24r+4)(24r+3)}{8} - \frac{3p}{4} \\ &\quad 0 \leq i \leq \left\lfloor \frac{(24r+4)(24r+3)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+2,3y) \middle| 0 \leq x \leq 24r^2 + 7r, \ y = (24r^2 + 7r) - x \right\}, \\ I(24r+10) &= \left\{ (p,q) \middle| p = \frac{(24r+10)(24r+9)}{6} - 4i, \ q = \frac{(24r+10)(24r+9)}{8} \\ &\quad -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+10)(24r+9)}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+3,3y) \middle| 0 \leq x \leq 24r^2 + 19r + 3, \ y = (24r^2 + 19r + 3) - x \right\}, \\ I(24r+16) &= \left\{ (p,q) \middle| p = \frac{(24r+16)(24r+15)}{6} - 4i, \ q = \frac{(24r+16)(24r+15)}{8} \right\} \end{split}$$

$$-\frac{3p}{4}, \ 0 \le i \le \left\lfloor \frac{(24r+16)(24r+15)}{24} \right\rfloor \Biggr\},$$

Journal of Combinatorial Mathematics and Combinatorial Computing

$$= \{(4x, 3y)|0 \le x \le 24r^2 + 31r + 10, \ y = (24r^2 + 31r + 10) - x\},\$$

$$I(24r + 22) = \left\{(p, q)\Big|p = \frac{(24r + 22)(24r + 21)}{6} - 4i, \ q = \frac{(24r + 22)(24r + 21)}{8}\right\},\$$

$$= \left\{(4x + 1, 3y)|0 \le x \le 24r^2 + 43r + 19, \ y = (24r^2 + 43r + 19) - x\},\$$

$$I(24r + 28) = \left\{(p, q)\Big|p = \frac{(24r + 28)(24r + 27)}{6} - 4i, \ q = \frac{(24r + 28)(24r + 27)}{8}\right\},\$$

$$= \left\{(4x + 2, 3y)|0 \le x \le 24r^2 + 55r + 31, \ y = (24r^2 + 55r + 31) - x\}.$$

Case 1. If k = 4r, then we can write $K_{24r+10} = K_{24r+4} \oplus K_6 \oplus K_{24r+4,6}$. Since $K_{24r+4,6} = 4rK_{6,6} \oplus K_{4,6}$. Then $K_{24r+10} = K_{24r+4} \oplus K_6 \oplus 4rK_{6,6} \oplus K_{4,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have $M(K_{24r+10}) \supseteq M(K_{24r+4}) + M(K_6) + (4r)M(K_{6,6}) + M(K_{4,6}) = \{(4x + 2, 3y)|0 \le x \le 24r^2 + 7r, y = (24r^2 + 7r) - x\} + (5, 0) + (4r)\{(0, 9), (4, 6), (8, 3), (12, 0)\} + \{(0, 6), (4, 3), (8, 0)\} = \{(4u + 3, 3v)|1 \le u \le 24r^2 + 19r + 3, v = (24r^2 + 19r + 3) - u\} = I(24r + 10) - (3, 3(24r^2 + 19r + 3))$. Let $K_{24r+10} = K_{24r} \oplus K_{10} \oplus K_{24r,10}$. Then by Lemma 7, the graph K_{10} can be decomposed into $3P_4$ and $9S_4$, and by Theorems 2 and 3, the graphs K_{24r} and $K_{24r,10}$ have an S_4 -decomposition. Hence the graph K_{24r+10} has a decomposition into $3P_4$ and $3(24r^2 + 19r + 3)S_4$. Therefore $M(K_{24r+10}) = \{(4x + 3, 3y)|0 \le x \le 24r^2 + 19r + 3, y = (24r^2 + 19r + 3)S_4$.

Case 2. If k = 4r + 1, then we can write $K_{24r+16} = K_{24r+10} \oplus K_6 \oplus K_{24r+10,6}$. Since $K_{24r+10,6} = (4r+1)K_{6,6} \oplus K_{4,6}$. Then $K_{24r+16} = K_{24r+10} \oplus K_6 \oplus (4r+1)K_{6,6} \oplus K_{4,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have $M(K_{24r+16}) \supseteq M(K_{24r+10}) + M(K_6) + (4r+1)M(K_{6,6}) + M(K_{4,6}) = \{(4x+3,3y)|0 \le x \le 24r^2 + 19r + 3, y = (24r^2 + 19r + 3) - x\} + (5,0) + (4r+1)\{(0,9), (4,6), (8,3), (12,0)\} + \{(0,6), (4,3), (8,0)\} = \{(4u,3v)|2 \le u \le 24r^2 + 31r + 10, v = (24r^2 + 31r + 10) - u\} = I(24r + 16) - \{(0,3(24r^2 + 31r + 10)), (4,3(24r^2 + 31r + 9))\}$. The graph K_{24r+16} has $3(24r^2 + 31r + 10)S_4$, by Theorem 2. Hence $K_{24r+16} = I(24r + 16) - (4,3(24r^2 + 31r + 9))$. Let $K_{24r+16} = K_{24r+8} \oplus K_8 \oplus K_{24r+8,8}$. Then by Lemma 5, graph K_8 can be decomposed into $4P_4$ and $6S_4$, and by Theorems 2 and 3, the graphs K_{24r+8} and $K_{24r+8,8}$ have an S_4 -decomposition. Hence the graph K_{24r+16} has a decomposition into $4P_4$ and $3(24r^2 + 31r + 9)S_4$. Therefore $M(K_{24r+16}) = \{(4x, 3y)|0 \le x \le 24r^2 + 31r + 10, y = (24r^2 + 31r + 10) - x\} = I(24r + 16)$.

Case 3. If k = 4r + 2, then we can write $K_{24r+22} = K_{24r+16} \oplus K_6 \oplus K_{24r+16,6}$. Since $K_{24r+16,6} = (4r+2)K_{6,6} \oplus K_{4,6}$. Then $K_{24r+22} = K_{24r+16} \oplus K_6 \oplus (4r+2)K_{6,6} \oplus K_{4,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have $M(K_{24r+22}) \supseteq M(K_{24r+16}) + M(K_6) + (4r+2)M(K_{6,6}) + M(K_{4,6}) = \{(4x, 3y)|0 \le x \le 24r^2 + 31r + 10, y = (24r^2 + 31r + 10) - x\} + (5,0) + (4r+2)\{(0,9), (4,6), (8,3), (12,0)\} + \{(0,6), (4,3), (8,0)\} = \{(4u+1, 3v)|1 \le u \le 24r^2 + 43r + 19, v = (24r^2 + 43r + 19) - u\} = I(24r + 22) - (1,3(24r^2 + 43r + 19)).$

Let $K_{24r+22} = K_{24r+8} \oplus K_{14} \oplus K_{24r+8,14}$. Then by Lemma 10, the graph K_{14} can be decomposed into $1P_4$ and $22S_4$, and by Theorems 2 and 3, the graphs K_{24r+8} and $K_{24r+8,14}$ have an S_4 -decomposition. Hence the graph K_{24r+22} has a decomposition into $1P_4$ and $3(24r^2+43r+19)S_4$. Therefore $M(K_{24r+22}) = \{(4x+1,3y)|0 \le x \le 24r^2+43r+19, y = (24r^2+43r+19) - x\} = I(24r+22).$

Case 4. If k = 4r + 3, then we can write $K_{24r+28} = K_{24r+22} \oplus K_6 \oplus K_{24r+22,6}$. Since

 $K_{24r+22,6} = (4r+3)K_{6,6} \oplus K_{4,6}$. Then $K_{24r+28} = K_{24r+22} \oplus K_6 \oplus (4r+3)K_{6,6} \oplus K_{4,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have $M(K_{24r+28}) \supseteq M(K_{24r+22}) +$ $M(K_6) + (4r+3)M(K_{6,6}) + M(K_{4,6}) = \{(4x+1,3y) | 0 \le x \le 24r^2 + 43r + 19, \ y = (24r^2 + 43r + 1), \ y = (24r^2 +$ $19) - x\} + (5,0) + (4r+3)\{(0,9), (4,6), (8,3), (12,0)\} + \{(0,6), (4,3), (8,0)\} = \{(4u+2, 3v) | 1 \le 1, 2, 3v\} + (5,0) + (4r+3)\{(0,9), (4,6), (8,3), (12,0)\} + (4r+3)\{(0,9), (4,6), (8,3), (12,0)\} + (4r+3)\{(0,9), (4,6), (8,3), (12,0)\} + (4r+3)\{(0,9), (8,0)\} = \{(4u+2, 3v) | 1 \le 1, 2, 3v\} + (4r+3)\{(1,9), (12,0)\} + (4r+3)$ $u \leq 24r^2 + 55r + 31, v = (24r^2 + 55r + 31) - u = I(24r + 28) - (2, 3(24r^2 + 55r + 31)).$ Let $K_{24r+28} = K_{24r+24} \oplus K_4 \oplus K_{24r+24,4}$. Then by Theorems 2 and 3, the graphs K_{24r+24} and $K_{24r+24,4}$ have an S_4 -decomposition, the graph K_4 has $2P_4$. Hence the graph K_{24r+28} has a decomposition into $2P_4$ and $3(24r^2 + 55r + 31)S_4$. Therefore $M(K_{24r+28}) = \{(4x+2,3y)|0 \le 10^{-1}\}$ $x \le 24r^2 + 55r + 31, \ y = (24r^2 + 55r + 31) - x = I(24r + 28).$

Thus $M(K_{6s+4}) = I(6s+4)$, for each $s \in \mathbb{Z}_+$.

Lemma 16. Let $p, q \in \mathbb{Z}_+ \cup \{0\}$ and $n \equiv 5 \pmod{6}$. There exists a $\{pP_4, qS_4\}$ -decomposition of K_n if and only if $3p + 4q = \binom{n}{2}$, $n \ge 5$ and $q \ge 1$. That is, $M(K_{6s+5}) = I(6s+5)$, where $s \in \mathbb{Z}_+ \cup \{0\}.$

Proof. Necessity: The conditions $3p + 4q = \binom{n}{2}$ and $n \ge 5$ are trivial. That is, $M(K_{6s+5}) \subseteq$ I(6s+5). Then $q \ge 1$, since by Theorem 1, the graph K_{6s+5} can not have a P_4 -decomposition. Sufficiency: We have to prove $M(K_{6s+5}) \supseteq I(6s+5)$. The proof is by induction on s. If s = 0, then $M(K_5) = I(5)$, by Lemma 2. Since $K_{6k+11} = K_{6k+5} \oplus K_7 \oplus K_{6k+4,6}$. From the definition of I(n), we have

$$\begin{split} I(24r+5) &= \left\{ (p,q) \middle| p = \frac{(24r+5)(24r+4)-8}{6} - 4i, \ q = \frac{(24r+5)(24r+4)}{8} \\ &- \frac{3p}{4}, \ 0 \le i \le \left\lfloor \frac{(24r+5)(24r+4)-8}{24} \right\rfloor \right\}, \\ &= \left\{ (4x+2,3y+1) \middle| 0 \le x \le 24r^2 + 9r, \ y = (24r^2+9r) - x \right\}, \\ I(24r+11) &= \left\{ (p,q) \middle| p = \frac{(24r+11)(24r+10)-8}{6} - 4i, \ q = \frac{(24r+11)(24r+10)}{8} \right\} \end{split}$$

$$\begin{split} & -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+11)(24r+10)-8}{24} \right\rfloor \right\}, \\ & = \left\{ (4x+1,3y+1)|0 \leq x \leq 24r^2+21r+4, \ y = (24r^2+21r+4)-x \right\}, \\ & I(24r+17) = \left\{ (p,q) \middle| p = \frac{(24r+17)(24r+16)-8}{6} - 4i, \ q = \frac{(24r+17)(24r+16)}{8} \right\}, \\ & -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+17)(24r+16)-8}{24} \right\rfloor \right\}, \\ & = \left\{ (4x,3y+1)|0 \leq x \leq 24r^2+33r+11, \ y = (24r^2+33r+11)-x \right\}, \\ & I(24r+23) = \left\{ (p,q) \middle| p = \frac{(24r+23)(24r+22)-8}{6} - 4i, \ q = \frac{(24r+23)(24r+22)}{8} \\ & -\frac{3p}{4}, \ 0 \leq i \leq \left\lfloor \frac{(24r+23)(24r+22)-8}{24} \right\rfloor \right\}, \\ & = \left\{ (4x+3,3y+1)|0 \leq x \leq 24r^2+45r+20, \ y = (24r^2+45r+20)-x \right\}, \\ & I(24r+29) = \left\{ (p,q) \middle| p = \frac{(24r+29)(24r+28)-8}{6} - 4i, \ q = \frac{(24r+29)(24r+28)}{8} \right\} \end{split}$$

6

Journal of Combinatorial Mathematics and Combinatorial Computing

$$-\frac{3p}{4}, \ 0 \le i \le \left\lfloor \frac{(24r+29)(24r+28)-8}{24} \right\rfloor \bigg\},$$

= $\{(4x+2,3y+1)|0 \le x \le 24r^2+57r+33, \ y = (24r^2+57r+33)-x\}.$

Case 1. If k = 4r, then we can write $K_{24r+11} = K_{24r+5} \oplus K_7 \oplus K_{24r+4,6}$. Since $K_{24r+4,6} = (6r+1)K_{4,6}$. Then $K_{24r+11} = K_{24r+5} \oplus K_7 \oplus (6r+1)K_{4,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have $M(K_{24r+11}) \supseteq M(K_{24r+5}) + M(K_7) + (6r+1)M(K_{4,6}) = \{(4x+2,3y+1)|0 \le x \le 24r^2 + 9r, y = (24r^2 + 9r) - x\} + \{(3,3),(7,0)\} + (6r+1)\{(0,6),(4,3),(8,0)\} = \{(4u+1,3v+1)|1 \le u \le 24r^2 + 21r + 4, v = (24r^2 + 21r + 4) - u\} = I(24r+11) - (1,3(24r^2 + 21r + 4))$. Let $K_{24r+11} = K_{24r} \oplus K_{11} \oplus K_{24r,11}$. Then by Lemma 8, the graph K_{11} can be decomposed into $1P_4$ and $13S_4$, and by Theorems 2 and 3, the graphs K_{24r} and $K_{24r,11}$ have an S_4 -decomposition. Hence the graph K_{24r+11} has a decomposition into $1P_4$ and $3(24r^2 + 21r + 4)S_4$. Therefore $M(K_{24r+11}) = \{(4x+1,3y+1)|0 \le x \le 24r^2 + 21r + 4, y = (24r^2 + 21r + 4) - x\} = I(24r + 11)$.

Case 2. If k = 4r + 1, then we can write $K_{24r+17} = K_{24r+11} \oplus K_7 \oplus K_{24r+10,6}$. Since $K_{24r+10,6} = (6r+1)K_{4,6} \oplus K_{6,6}$. Then $K_{24r+17} = K_{24r+11} \oplus K_7 \oplus (6r+1)K_{4,6} \oplus K_{6,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have $M(K_{24r+17}) \supseteq M(K_{24r+11}) + M(K_7) + (6r+1)M(K_{4,6}) + M(K_{6,6}) = \{(4x+1,3y+1)|0 \le x \le 24r^2 + 21r + 4, y = (24r^2 + 21r + 4) - x\} + \{(3,3),(7,0)\} + (6r+1)\{(0,6),(4,3),(8,0)\} + \{(0,9),(4,6),(8,3),(12,0)\} = \{(4u,3v+1)|1 \le u \le 24r^2 + 33r + 11, v = (24r^2 + 33r + 11) - u\} = I(24r + 17) - (0,3(24r^2 + 33r + 11))$. The graph K_{24r+17} has an S_4 -decomposition, by Theorem 2. Hence $M(K_{24r+17}) = \{(4x,3y+1)|0 \le x \le 24r^2 + 33r + 11, y = (24r^2 + 33r + 11) - x\} = I(24r + 17)$

Case 3. If k = 4r + 2, then we can write $K_{24r+23} = K_{24r+17} \oplus K_7 \oplus K_{24r+16,6}$. Since $K_{24r+16,6} = (6r + 4)K_{4,6}$. Then $K_{24r+23} = K_{24r+17} \oplus K_7 \oplus (6r + 4)K_{4,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have $M(K_{24r+23}) \supseteq M(K_{24r+17}) + M(K_7) + (6r + 4)M(K_{4,6}) = \{(4x, 3y + 1)|0 \le x \le 24r^2 + 33r + 11, y = (24r^2 + 33r + 11) - x\} + \{(3, 3), (7, 0)\} + (6r + 4)\{(0, 6), (4, 3), (8, 0)\} = \{(4u + 3, 3v + 1)|0 \le u \le 24r^2 + 45r + 20, v = (24r^2 + 45r + 20) - u\} = I(24r + 23).$

Case 4. If k = 4r + 3, then we can write $K_{24r+29} = K_{24r+23} \oplus K_7 \oplus K_{24r+22,6}$. Since $K_{24r+22,6} = (6r+4)K_{4,6} \oplus K_{6,6}$. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have $M(K_{24r+29}) \supseteq M(K_{24r+23}) + M(K_7) + (6r+4)M(K_{4,6}) + M(K_{6,6}) = \{(4x+3,3y+1)|0 \le x \le 24r^2 + 45r + 20, y = (24r^2 + 45r + 20) - x\} + \{(3,3),(7,0)\} + (6r+4)\{(0,6),(4,3),(8,0)\} + \{(0,9),(4,6),(8,3),(12,0)\} = \{(4u+2,3v+1)|1 \le u \le 24r^2 + 57r + 33, v = (24r^2 + 57r + 33) - u\} = I(24r + 29) - (2,3(24r^2 + 57r + 33)).$ Let $K_{24r+29} = K_{24r+25} \oplus K_4 \oplus K_{24r+25,4}$. Then by Theorems 2 and 3, the graphs K_{24r+25} and $K_{24r+25,4}$ have an S_4 -decomposition, the graph K_4 has $2P_4$. Hence the graph K_{24r+29} has a decomposition into $2P_4$ and $3(24r^2 + 57r + 33)S_4$. Therefore $M(K_{24r+29}) = \{(4u+2,3v+1)|0 \le u \le 24r^2 + 57r + 33, v = (24r^2 + 57r + 33)S_4$. Therefore $M(K_{24r+29}) = \{(4u+2,3v+1)|0 \le u \le 24r^2 + 57r + 33, v = (24r^2 + 57r + 33) - u\} = I(24r + 29)$. Thus $M(K_{6s+5}) = I(6s+5)$, for each $s \in \mathbb{Z}_+ \cup \{0\}$.

The consequences of Lemmas 11 to 16 implies our main result as follows.

Theorem 4. Let p and q are nonnegative integers, and $n \ge 4$ be a positive integer. There exists a $\{pP_4, qS_4\}$ -decomposition of K_n if and only if $3p + 4q = \binom{n}{2}$. That is, $M(K_n) = I(n)$, where $4 \le n \in \mathbb{Z}_+$.

4. Acknowledgments

Author's thank the University Grants Commission, Government of India, New Delhi for its support through the Grant No.F.510/7/DRS-I/2016(SAP-I) and the anonymous referees whose suggestion improved the presentation of the paper.

References

- 1. Alspach, B. and Gavlas, H., 2001. Cycle decompositions of K_n and $K_n I$. Journal of Combinatorial Theory, Series B,81, pp.77–99.
- 2. Abueida, A. and Daven, M., 2003. Multidesigns for graph-pairs of order 4 and 5. *Graphs and Combinatorics*, 19, pp.433–447.
- 3. Abueida, A. and Daven, M., 2004. Multidecomposition of the complete graph. Ars Combinatoria, 72, pp.17–22.
- 4. Abueida, A. and O'Neil, T., 2007. Multidecomposition of λK_m into small cycles and claws. Bulletin of the Institute of Combinatorics and its Applications, 49, pp.32–40.
- 5. Priyadharsini, H. M. and Muthusamy, A., 2009. (G_m, H_m) -Multifactorization of λK_m . Journal of Combinatorial Mathematics and Combinatorial Computing, 69, pp.145–150.
- 6. Fu, C.-M., Hsu, Y.-F., Lo, S.-W. and Husu, Y.-F., 2014. Decomposition of complete graphs into triangles and claws. *Taiwanese Journal of Mathematics*, 18, pp.1563–1581.
- 7. Shyu, T.W., 2010. Decomposition of complete graphs into paths and stars. *Discrete Mathematics*, 310, pp.2164–2169.
- Shyu, T.W., 2013. Decomposition of complete graphs into cycles and stars. Graphs and Combinatorics, 29, pp.301–313.
- Shyu, T.W., 2010. Decomposition of complete graphs into cycles and paths. Ars Combinatoria, 97, pp.257–270.
- 10. Fu, C.M., Hsu, Y.F. and Lee, M.F., 2018. Decomposition of complete graphs into 4-cycles and 3-stars. *Utilitas Mathematica*, 106, pp.271–288.
- 11. Tarsi, M., 1983. Decomposition of complete multigraph into simple paths: Nonbalanced Handcuffed designs. *Journal of Combinatorial Theory, Series A*,34, pp.60–70.
- Tarsi, M., 1979. Decomposition of complete multigraph into stars. Discrete Mathematics, 26, pp.273–278.
- Yamamoto, S., Ikeda, H., Shige-ede, S., Ushio, K. and Hamada, N., 1975. On claw decomposition of complete graphs and complete bipartite graphs. *Hiroshima Mathematical Journal*, 5, pp.33–42.

 $\odot 2024$ the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)