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Abstract: Let Pn and Kn respectively denote a path and complete graph on n vertices. By
a {pH1, qH2}-decomposition of a graph G, we mean a decomposition of G into p copies of H1
and q copies of H2 for any admissible pair of nonnegative integers p and q, where H1 and H2
are subgraphs of G. In this paper, we show that for any admissible pair of nonnegative integers
p and q, and positive integer n ≥ 4, there exists a {pP4, qS4}-decomposition of Kn if and only
if 3p + 4q =

(
n
2

)
, where S4 is a star with 4 edges.
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1. Introduction

All graphs considered here are finite. Let Kk denote a complete graph on k vertices. Let
Pk+1, Ck and Sk(� K1,k) respectively denote a path, cycle and star each having k edges. Further,
we denote a path on k+1 vertices x1, x2, . . . , xk+1, and edges x1x2, . . . , xkxk+1 by [x1 . . . xkxk+1].
If there are t ≥ 1 stars with same end vertices x1, x2, . . . , xk and different centers y1, y2, . . . , yt,
we denote it by (y1, y2, . . . , yt; x1, x2, . . . , xk). Let Z+ be the set of all positive integers. When
x, y ∈ Z, we define ⌊x⌋ = max{y|y ∈ Z, y ≤ x} and ⌈x⌉ = min{y|y ∈ Z, y ≥ x}.

A decomposition of a graph G is a partition of G into edge-disjoint subgraphs of G. If the
subgraphs in the decomposition are isomorphic to either a graph H1 or a graph H2, then it is
called a {H1, H2}-decomposition of G. We say that G has a {pH1, qH2}-decomposition of G if
the decomposition contains p copies of H1 and q copies of H2 for all possible choices of p and
q. Different problems on graph decomposition have been studied for a century. In particular,
the problem of decomposing a complete graph into cycles is the center of attraction of many of
these studies (e.g., the work of Alspach and Gavlas [1] and its references).

The study of {H1, H2}-decomposition has been introduced by Abueida and Daven [2, 3].
Moreover, Abueida and O’Neil [4] have settled the existence of {H1, H2}-decomposition of λKm,
when {H1, H2} = {K1,n−1, Cn} for n = 3, 4, 5. Priyadharsini and Muthusamy [5] gave necessary
and sufficient condition for the existence of {Gn, Hn}-factorization of λKn, where Gn, Hn ∈
{Cn, Pn, Sn−1}. Many other results on decomposition of graphs into distinct subgraphs involving
paths, cycles or stars have been proved in [6–9]. Recently, Fu, et al. [10] have found the necessary
and sufficient conditions for the existence of decomposition of Kn into cycles and stars on four
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vertices. In this paper, we obtain necessary and sufficient conditions for the existence of a
{pP4, qS4}-decomposition of Kn.

Let M(G) denote the set of all pairs (p, q) such that there exists a {pP4, qS4}-decomposition
of G and we define the set I(n) in Table 1 which help us to show that M(Kn) = I(n) for all
feasible values of n.

n I(n)
0, 1, 3, 4 (mod 6)

{
(p, q) | p = n(n−1)

6 − 4i, q = n(n−1)
8 − 3p

4 , 0 ≤ i ≤
⌊

n(n−1)
24

⌋ }
2, 5 (mod 6)

{
(p, q) | p = n(n−1)−8

6 − 4i, q = n(n−1)
8 − 3p

4 , 0 ≤ i ≤
⌊

n(n−1)−8
24

⌋ }
Table 1. The Set I(n)

Remark 1. Let A + B = {(x1 + y1, x2 + y2) | (x1, x2) ∈ A, (y1, y2) ∈ B} and rA be the sum
of r copies of A. If G = G1 ⊕ G2, where ⊕ denotes edge disjoint sum of the subgraphs G1 and
G2, then M(G) ⊇ M(G1) + M(G2).

To prove our main result we state some known results as follows.

Theorem 1. [11] Let k, n ∈ Z+. Then Kn has a Pk+1-decomposition if and only if n ≥ k + 1
and n(n − 1) ≡ 0 (mod 2k).

Theorem 2. [12, 13] Let n, k ∈ Z+. Then Kn has a Sk-decomposition if and only if 2k ≤ n
and n(n − 1) ≡ 0 (mod 2k).

Theorem 3. [13] Let m, n ∈ Z+ with m ≤ n. Then Km,n has an Sk-decomposition if and only
if one of the following holds:

1. m ≥ k and mn ≡ 0 (mod k);
2. m < k ≤ n and n ≡ 0 (mod k) .

2. Base Constructions

In this section, we provide some useful lemmas which are required in proving our main result.
The proof of the Lemmas 1 to 10, are given in the Appendix.

Lemma 1. There exists a {pP4, qS4}-decomposition of Km,6, when m = 2, 4, 6.

Proof. Case 1. For m = 2.
Let V (K2,6) = (X1, X2), where X1 = {x1,1, x1,2} and X2 = {x2,i | 1 ≤ i ≤ 6}. We exhibit

the {pP4, qS4}-decomposition of K2,6 for p = 4 and q = 0 as

[x1,1x2,1x1,2x2,2], [x1,1x2,3x1,2x2,4], [x2,2x1,1x2,6x1,2], [x1,2x2,5x1,1x2,4].

Hence, M(K2,6) = (4, 0).
Case 2. For m = 4.
Let V (K4,6) = (X1, X2), where X1 = {x1,i | 1 ≤ i ≤ 4} and X2 = {x2,i | 1 ≤ i ≤ 6}. We

exhibit the {pP4, qS4}-decomposition of K4,6 as follows:

1. For p = 0 and q = 6:
By Theorem 3, we get the required stars.

2. For p = 4 and q = 3:
[x1,1x2,1x1,2x2,2], [x1,2x2,3x1,1x2,2], [x1,3x2,1x1,4x2,2], [x1,4x2,2x1,3x2,3], (x2,4, x2,5, x2,6; x1,1, x1,2, x1,3, x1,4).
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3. For p = 8 and q = 0:

The 4P4 along with [x1,1x2,4x1,2x2,5], [x1,2x2,6x1,1x2,5], [x1,3x2,4x1,4x2,5], [x1,4x2,5x1,3x2,6] gives
the required paths.

Hence, M(K4,6) = {(0, 6), (4, 3), (8, 0)}.
Case 3. For m = 6.
We can write K6,6 = K2,6 ⊕ K4,6. Then M(K6,6) ⊇ M(K2,6) + M(K4,6) ⊇ (4, 0) +

{(0, 6), (4, 3), (8, 0)} = {(4, 6), (8, 3), (12, 0)}. By Theorem 3, we get 9S4. Hence M(K6,6) =
{(0, 9), (4, 6), (8, 3), (12, 0)}.

□

Lemma 2. There exists a {pP4, qS4}-decomposition of K5.

Proof. From the definition of I(n), we get I(5) = (2, 1). Let V (K5) = {xi | 1 ≤ i ≤
5}. We exhibit the {pP4, qS4}-decomposition of K5 for p = 2 and q = 1 as [x2x4x3x5],
[x3x2x5x4], (x1; x2, x3, x4, x5). Hence, M(K5) = I(5) = (2, 1). □

Lemma 3. There exists a {pP4, qS4}-decomposition of K6.

Proof. From the definition of I(n), we get I(6) = {(1, 3), (5, 0)}. Let V (K6) = {xi | 1 ≤ i ≤ 6}.
We exhibit the {pP4, qS4}-decomposition of K6 as follows:

1. (1, 3): Let D be an arbitrary {pP4, qS4}-decomposition of K6. Suppose that p = 1 and
let P 1

4 = [x1x2x3x4] be the only P4 in D. By our assumption H1 = K6 − E(P 1
4 ) has an

S4-decomposition. Let d(xi) is degree of xi. In H1 , d(x1) = d(x4) = 4, d(x2) = d(x3) = 3
and d(x5) = d(x6) = 5. It follows that, any three of {x1, x4, x5, x6} must be a center
vertex of stars in the decomposition D. Let S1

4 = (x1; x3, x4, x5, x6) be a star in H1. Then
H2 = H1 −E(S1

4), we have d(x1) = 0, d(x2) = d(x4) = 3, d(x5) = d(x6) = 4 and d(x3) = 2.
It follows that x5 and x6 must be center vertices of stars in the decomposition D. Let
S2

4 = (x5; x2, x3, x4, x6) in H2. Then H3 = H2 − E(S2
4), we have d(x1) = d(x5) = 0,

d(x2) = d(x4) = 2, d(x3) = 1 and d(x6) = 3. Hence H3 can not have a S4-decomposition,
which is a contradiction. Hence (p, q) , (1, 3).

2. (5, 0): By Theorem 1, we get the required paths.

Hence, M(K6) = I(6) = (5, 0). □

Lemma 4. There exists a {pP4, qS4}-decomposition of K7.

Proof. From the definition of I(n), we get I(7) = {(3, 3), (7, 0)}. Let V (K7) = {xi | 1 ≤ i ≤ 7}.
We exhibit the {pP4, qS4}-decomposition of K7 as follows:

1. For p = 3 and q = 3:
[x1x2x3x4], [x4x5x6x7], [x5x7x4x6], (x3; x1, x5, x6, x7), (x1, x2; x4, x5, x6, x7).

2. For p = 7 and q = 0:
By Theorem 1, we get the required paths.

Hence, M(K7) = I(7) = {(3, 3), (7, 0)}. □

Lemma 5. There exists a {pP4, qS4}-decomposition of K8.

Proof. From the definition of I(n), we get I(8) = {(0, 7), (4, 4), (8, 1)}. Let V (K8) = {xi | 1 ≤
i ≤ 8}. We exhibit the {pP4, qS4}-decomposition of K8 as follows:

1. For p = 0 and q = 7:
By Theorem 2, we get the required stars.
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2. p = 4 and q = 4:

[x1x2x8x3], [x2x5x3x4], [x6x3x1x8], [x1x4x2x3], (x4; x5, x6, x7, x8), (x5; x1, x6, x7, x8), (x6; x1, x2, x7,
x8), (x7; x1, x2, x3, x8).

3. For p = 8 and q = 1:
The 4P4 along with [x1x5x4x8], [x2x6x7x4], [x1x6x5x7], [x4x6x8x5] gives the required paths
and the 1S4 is (x7; x1, x2, x3, x8).

Hence, M(K8) = I(8) = {(0, 7), (4, 4), (8, 1)}. □

Lemma 6. There exists a {pP4, qS4}-decomposition of K9.

Proof. From the definition of I(n), we get I(9) = {(0, 9), (4, 6), (8, 3), (12, 0)}. Let V (K9) =
{xi | 1 ≤ i ≤ 9}. We exhibit the {pP4, qS4}-decomposition of K9 as follows:

1. For p = 0 and q = 9:
By Theorem 2, we get the required stars.

2. For p = 4 and q = 6:
[x1x2x5x4], [x2x4x1x5], [x6x8x7x9], [x7x6x9x8], (x3; x1, x2, x4, x5),
(x1, x2, x3, x4, x5; x6, x7, x8, x9).

3. For p = 8 and q = 3:
The 4P4 with [x1x6x2x9], [x1x7x3x6], [x3x9x1x8], [x3x8x2x7] gives the required paths and
3S4 are (x3; x1, x2, x4, x5), (x4, x5; x6, x7, x8, x9).

4. p = 12 and q = 0:
By Theorem 1, we get the required paths.

Hence, M(K9) = I(9) = {(0, 9), (4, 6), (8, 3), (12, 0)}. □

Lemma 7. There exists a {pP4, qS4}-decomposition of K10.

Proof. From the definition of I(n), we get I(10) = {(3, 9), (7, 6), (11, 3), (15, 0)}. Let V (K10) =
{xi | 1 ≤ i ≤ 10}. We exhibit the {pP4, qS4}-decomposition of K10 as follows:

1. For p = 3 and q = 9:
[x1x2x3x4], [x2x4x1x3], [x4x5x6x7], (x5; x1, x2, x3, x7), (x6, x7, x8, x9, x10; x1, x2, x3, x4), (x8; x5, x6, x7,
x9), (x9; x5, x6, x7, x10), (x10; x5, x6, x7, x8).

2. For p = 7 and q = 6:
The 3P4 along with [x1x10x2x8], [x3x9x1x8], [x2x9x4x10], [x4x8x3x10]
gives the required paths and 6S4 are (x6, x7; x1, x2, x3, x4),
(x5; x1, x2, x3, x7), (x8; x5, x6, x7, x9), (x9; x5, x6, x7, x10), (x10; x5, x6, x7, x8).

3. For p = 11 and q = 3:
The 7P4 along with [x1x5x2x6], [x1x7x3x6], [x1x6x4x7], [x2x7x5x3] gives the required paths
and 3S4 are (x8; x5, x6, x7, x9), (x9; x5, x6, x7, x10), (x10; x5, x6, x7, x8).

4. For p = 15 and q = 0:
By Theorem 1, we get the required paths.

Hence, M(K10) = I(10) = {(3, 9), (7, 6), (11, 3), (15, 0)}. □

Lemma 8. There exists a {pP4, qS4}-decomposition of K11.

Proof. From the definition of I(n), we get I(11) = {(1, 13), (5, 10), (9, 7), (13, 4), (17, 1)}. Let
V (K11) = {xi | 1 ≤ i ≤ 11}. We exhibit the {pP4, qS4}-decomposition of K11 as follows:

1. For p = 1 and q = 13:
[x3x1x10x9], (x1, x2; x4, x5, x6, x7), (x3, x4, x5, x7; x8, x9, x10, x11), (x1; x2, x8, x9, x11), (x2; x3, x9, x10,
x11), (x3; x1, x5, x6, x7), (x4; x1, x2, x3, x5), (x6; x5, x7, x9, x10), (x8; x2, x6, x9, x10), (x11; x6, x8, x9, x10).

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 301–316



Decomposition of Complete Graphs into Paths and Stars with Different Number of Edges 305
2. For p = 5 and q = 10:

[x1x2x3x4], [x4x5x6x7], [x5x7x4x6], [x8x9x10x11], [x9x11x8x10], (x1, x2, x3, x4, x5, x6, x7; x8, x9, x10,
x11), (x1, x2; x4, x5, x6, x7), (x3; x1, x5, x6, x7).

3. For p = 9 and q = 7:
The 5P4 along with [x2x8x3x9], [x2x10x3x11], [x2x11x1x10], [x2x9x1x8] gives the required
paths and last 7S4 gives the required stars.

4. For p = 13 and q = 4:
The 9P4 along with [x5x8x6x9], [x5x10x6x11], [x5x9x4x8], [x5x11x4x10] gives the required
paths and 4S4 are (x1, x2; x4, x5, x6, x7), (x3; x1, x5, x6, x7), (x7; x8, x9, x10, x11).

5. For p = 17 and q = 1:
The 13P4 along with [x5x1x3x7], [x1x7x2x6], [x3x5x2x4], [x3x6x1x4] gives the required paths
and the 1S4 is (x7; x8, x9, x10, x11).

Hence, M(K11) = I(11) = {(1, 13), (5, 10), (9, 7), (13, 4), (17, 1)}. □

Lemma 9. There exists a {pP4, qS4}-decomposition of K12.
Proof. From the definition of I(n), we get I(12) =
{(2, 15), (6, 12), (10, 9), (14, 6), (18, 3), (22, 0)}. We can write K12 = 2K6 ⊕
K6,6. By Remark 1, and Lemmas 1, 3, we have M(K12) ⊇ 2M(K6) +
M(K6,6) ⊇ (10, 0) + {(0, 9), (4, 6), (8, 3), (12, 0)} = {(10, 9), (14, 6), (18, 3),
(22, 0)} = I(12) − {(2, 15), (6, 12)}. We can write K12 = K4 ⊕ K8 ⊕ K4,8. Then by
Theorems 1 and 3, the graphs K4 and K4,8 have 2P4 and 8S4 respectively, and by
Lemma 5 the graph K8 has a decomposition for the case (p, q) ∈ {(0, 7), (4, 4)}. Hence
M(K12) = I(12) = {(2, 15), (6, 12), (10, 9), (14, 6), (18, 3), (22, 0)}. □

Lemma 10. There exists a {pP4, qS4}-decomposition of K14.
Proof. From the definition of I(n), we get I(14) = {(1, 22), (5, 19), . . . , (29, 1)}. We
can write K14 = K8 ⊕ K6 ⊕ 2K4,6. Then by Remark 1, and Lemmas 1, 3 and 5, we have
M(K14) ⊇ M(K8)+M(K6)+2M(K4,6) = {(0, 7), (4, 4), (8, 1)}+(5, 0)+2{(0, 6), (4, 3), (8, 0)} =
{(5, 19), (9, 16), . . . , (29, 1)} = I(14) − (1, 22). Let V (K14) = {xi | 1 ≤ i ≤ 14}.
Then the required decomposition for the case (p, q) = (1, 22) is given as follows:
[x7, x6, x14, x11], (x1; x2, x11, x12, x14), (x3; x1, x2, x11, x14), (x4; x1, x2, x3, x5), (x5; x1, x2, x3, x7), (x6; x5,

x11, x12, x13), (x8; x5, x6, x7, x9), (x9; x5, x6, x7, x10), (x10; x5, x6, x7, x8), (x12; x3, x11, x13, x14), (x13; x1, x3,
x11, x14), (x2, x4, x5, x7, x8, x9, x10; x11, x12, x13, x14), (x6, x7, x8, x9, x10; x1, x2, x3, x4).

Hence, M(K14) = I(14) = {(1, 22), . . . , (29, 1)}. □

3. Main Result

In this section, we prove that Kn can be decomposed into p copies of P4 and q copies of S4
for all positive integer n ≥ 4.
Lemma 11. Let p, q ∈ Z+ ∪ {0} and n ≡ 0 (mod 6). There exists a {pP4, qS4}-decomposition
of Kn if and only if 3p + 4q =

(
n
2

)
, and n ≥ 6. That is, M(K6s) = I(6s), where s ∈ Z+.

Proof. Necessity: The conditions 3p+4q =
(

n
2

)
and n ≥ 6 are trivial. That is, M(K6s) ⊆ I(6s).

Sufficiency: We have to prove M(K6s) ⊇ I(6s). The proof is by induction on s. If s = 1, then
M(K6) = I(6), by Lemma 3. Since K6k+6 = K6k ⊕ K6 ⊕ K6k,6 = K6k ⊕ K6 ⊕ kK6,6. From the
definition of I(n), we have

I(24r) =
(p, q)

∣∣∣∣p = (24r)(24r − 1)
6 − 4i, q = (24r)(24r − 1)

8 − 3p

4 ,
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0 ≤ i ≤
⌊

(24r)(24r − 1)
24

⌋,

= {(4x, 3y)|0 ≤ x ≤ 24r2 − r, y = (24r2 − r) − x},

I(24r + 6) =
(p, q)

∣∣∣∣p = (24r + 6)(24r + 5)
6 − 4i, q = (24r + 6)(24r + 5)

8 − 3p

4 ,

0 ≤ i ≤
⌊

(24r + 6)(24r + 5)
24

⌋ ,

= {(4x + 1, 3y)|0 ≤ x ≤ 24r2 + 11r + 1, y = (24r2 + 11r + 1) − x},

I(24r + 12) =
(p, q)

∣∣∣∣p = (24r + 12)(24r + 11)
6 − 4i, q = (24r + 12)(24r + 11)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 12)(24r + 11)
24

⌋ ,

= {(4x + 2, 3y)|0 ≤ x ≤ 24r2 + 23r + 5, y = (24r2 + 23r + 5) − x},

I(24r + 18) =
(p, q)

∣∣∣∣p = (24r + 18)(24r + 17)
6 − 4i, q = (24r + 18)(24r + 17)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 18)(24r + 17)
24

⌋ ,

= {(4x + 3, 3y)|0 ≤ x ≤ 24r2 + 35r + 12, y = (24r2 + 35r + 12) − x},

I(24r + 24) =
(p, q)

∣∣∣∣p = (24r + 24)(24r + 23)
6 − 4i, q = (24r + 24)(24r + 23)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 24)(24r + 23)
24

⌋ ,

= {(4x, 3y)|0 ≤ x ≤ 24r2 + 47r + 23, y = (24r2 + 47r + 23) − x}.

Case 1. If k = 4r, then we can write K24r+6 = K24r ⊕ K6 ⊕ (4r)K6,6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M(K24r+6) ⊇ M(K24r) +
M(K6) + (4r)M(K6,6)= {(4x, 3y)|0 ≤ x ≤ 24r2 − r, y = (24r2 − r) − x} + (5, 0) +
(4r){(0, 9), (4, 6), (8, 3), (12, 0)} = {(4u+1, 3v)|1 ≤ u ≤ 24r2+11r+1, v = (24r2+11r+1)−u}=
I(24r + 6) −

(
1, 3(24r2 + 11r + 1)

)
. If r = 1, then K30 = K16 ⊕ K14 ⊕ K16,14. The graph K14

can be decomposed into 1P4 and 22S4, by Lemma 10, and the graphs K16 and K16,14 have an
S4-decomposition, by Theorems 2 and 3. Hence the graph K30 has a decomposition into 1P4
and 108S4. For r ≥ 2, we can write K24r+6 = K24r−8 ⊕K14 ⊕K24r−8,14. Then by Lemma 10, the
graph K14 can be decomposed into 1P4 and 22S4, and by Theorems 2 and 3, the graphs K24r−8
and K24r−8,14 have an S4-decomposition. Hence the graph K24r+6 has a decomposition into 1P4
and 3(24r2 + 11r + 1)S4. Therefore M(K24r+6) = {(4x + 1, 3y)|0 ≤ x ≤ 24r2 + 11r + 1, y =
(24r2 + 11r + 1) − x} = I(24r + 6).

Case 2. If k = 4r + 1, then we can write K24r+12 = K24r+6 ⊕ K6 ⊕ (4r + 1)K6,6. By
the induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M(K24r+12) ⊇ M(K24r+6) +
M(K6) + (4r + 1)M(K6,6) = {(4x + 1, 3y)|0 ≤ x ≤ 24r2 + 11r + 1, y = (24r2 + 11r + 1) −
x} + (5, 0) + (4r + 1){(0, 9), (4, 6), (8, 3), (12, 0)} = {(4u + 2, 3v)|1 ≤ u ≤ 24r2 + 23r + 5, v =
(24r2 +23r +5)−u} = I(24r +12)−

(
2, 3(24r2 +23r +5)

)
. Let K24r+12 = K24r ⊕K12 ⊕K24r,12.

The graph K12 can be decomposed into 2P4 and 15S4, by Lemma 9, and by Theorems 2 and
3, the graphs K24r and K24r,12 have an S4-decomposition. Hence the graph K24r+12 has a
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decomposition into 2P4 and 3(24r2 + 23r + 5)S4. Therefore M(K24r+12) = {(4x + 2, 3y)|0 ≤
x ≤ 24r2 + 23r + 5, y = (24r2 + 23r + 5) − x} = I(24r + 12).

Case 3. If k = 4r + 2, then we can write K24r+18 = K24r+12 ⊕ K6 ⊕ (4r + 2)K6,6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M(K24r+18) ⊇ M(K24r+12) +
M(K6) + (4r + 2)M(K6,6) = {(4x + 2, 3y)|0 ≤ x ≤ 24r2 + 23r + 5, y = (24r2 + 23r + 5) − x} +
(5, 0)+(4r +2){(0, 9), (4, 6), (8, 3), (12, 0)} = {(4u+3, 3v)|1 ≤ u ≤ 24r2 +35r +12, v = (24r2 +
35r + 12) − u} = I(24r + 18) −

(
3, 3(24r2 + 35r + 12)

)
. Let K24r+18 = K24r+8 ⊕ K10 ⊕ K24r+8,10.

The graph K10 can be decomposed into 3P4 and 9S4, by Lemma 7, and by Theorems 2 and
3, the graphs K24r+8 and K24r+8,10 have an S4-decomposition. Hence the graph K24r+18 has a
decomposition into 3P4 and 3(24r2 + 35r + 12)S4. Therefore M(K24r+18) = {(4x + 3, 3y)|0 ≤
x ≤ 24r2 + 35r + 12, y = (24r2 + 35r + 12) − x} = I(24r + 18).

Case 4. If k = 4r + 3, then we can write K24r+24 = K24r+18 ⊕ K6 ⊕ (4r + 3)K6,6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M(K24r+24) ⊇ M(K24r+18) +
M(K6)+(4r +3)M(K6,6) = {(4x+3, 3y)|0 ≤ x ≤ 24r2 +35r +12, y = (24r2 +35r +12)−x}+
(5, 0)+(4r+3){(0, 9), (4, 6), (8, 3), (12, 0)} = {(4u, 3v)|2 ≤ u ≤ 24r2+47r+23, v = (24r2+47r+
23)−u} = I(24r+24)−

{(
0, 3(24r2+47r+23)

)
,
(
4, 3(24r2+47r+22)

)}
. The graph K24r+24 has

3(24r2 +47r+23)S4, by Theorem 3, and hence M(K24r+24) = I(24r+24)−
(
4, 324r2 +47r+23).

Let K24r+24 = K24r+16 ⊕ K8 ⊕ K24r+16,8. Then by Lemma 5, the graph K8 can be decomposed
into 4P4 and 4S4, and by Theorems 2 and 3, the graphs K24r+16 and K24r+16,8 have an S4-
decomposition. Hence the graph K24r+24 has a decomposition into 4P4 and 3(24r2+47r+22)S4.
Therefore M(K24r+24) = {(4x, 3y)|0 ≤ x ≤ 24r2 + 47r + 23, y = (24r2 + 47r + 23) − x} =
I(24r + 24).

Thus M(K6s) = I(6s), for each s ∈ Z+. □

Lemma 12. Let p, q ∈ Z+ ∪ {0} and n ≡ 1 (mod 6). There exists a {pP4, qS4}-decomposition
of Kn if and only if 3p + 4q =

(
n
2

)
and n ≥ 7. That is, M(K6s+1) = I(6s + 1), where s ∈ Z+.

Proof. Necessity: The conditions 3p + 4q =
(

n
2

)
and n ≥ 6 are trivial. That is, M(K6s+1) ⊆

I(6s+1). Sufficiency: We have to prove M(K6s+1) ⊇ I(6s+1). The proof is by induction on s. If
s = 1, then M(K7) = I(7), by Lemma 4. Since K6k+7 = K6k+1⊕K7⊕K6k,6 = K6k+1⊕K7⊕kK6,6.
From the definition of I(n), we have

I(24r + 1) =
(p, q)

∣∣∣∣p = (24r + 1)(24r)
6 − 4i, q = (24r + 1)(24r)

8 − 3p

4 ,

0 ≤ i ≤
⌊

(24r + 1)(24r)
24

⌋,

= {(4x, 3y)|0 ≤ x ≤ 24r2 + r, y = (24r2 + r) − x},

I(24r + 7) =
(p, q)

∣∣∣∣p = (24r + 7)(24r + 6)
6 − 4i, q = (24r + 7)(24r + 6)

8 − 3p

4 ,

0 ≤ i ≤
⌊

(24r + 7)(24r + 6)
24

⌋ ,

= {(4x + 3, 3y)|0 ≤ x ≤ 24r2 + 13r + 1, y = (24r2 + 13r + 1) − x},

I(24r + 13) =
(p, q)

∣∣∣∣p = (24r + 13)(24r + 12)
6 − 4i, q = (24r + 13)(24r + 12)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 13)(24r + 12)
24

⌋ ,
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= {(4x + 2, 3y)|0 ≤ x ≤ 24r2 + 25r + 6, y = (24r2 + 25r + 6) − x},

I(24r + 19) =
(p, q)

∣∣∣∣p = (24r + 19)(24r + 18)
6 − 4i, q = (24r + 19)(24r + 18)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 19)(24r + 18)
24

⌋ ,

= {(4x + 1, 3y)|0 ≤ x ≤ 24r2 + 37r + 14, y = (24r2 + 37r + 14) − x},

I(24r + 25) =
(p, q)

∣∣∣∣p = (24r + 25)(24r + 24)
6 − 4i, q = (24r + 25)(24r + 24)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 25)(24r + 24)
24

⌋ ,

= {(4x, 3y)|0 ≤ x ≤ 24r2 + 49r + 25, y = (24r2 + 49r + 25) − x}.

Case 1. If k = 4r, then we can write K24r+7 = K24r+1 ⊕ K7 ⊕ (4r)K6,6. By the in-
duction hypothesis, Remark 1.1, and Lemmas 1, 4, we have M(K24r+7) ⊇ M(K24r+1) +
M(K7) + (4r)M(K6,6) = {(4x, 3y)|0 ≤ x ≤ 24r2 + r, y = (24r2 + r) − x} + {(3, 3), (7, 0)} +
(4r){(0, 9), (4, 6), (8, 3), (12, 0)}
={(4u + 3, 3v)|0 ≤ u ≤ 24r2 + 13r + 1, v = (24r2 + 13r + 1) − u} = I(24r + 7).

Case 2. If k = 4r + 1, then we can write K24r+13 = K24r+7 ⊕ K7 ⊕ (4r + 1)K6,6. By
the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have M(K24r+13) ⊇ M(K24r+7) +
M(K7) + (4r + 1)M(K6,6) = {(4x + 3, 3y)|0 ≤ x ≤ 24r2 + 13r + 1, y = (24r2 + 13r + 1) − x} +
{(3, 3), (7, 0)}+(4r +1){(0, 9), (4, 6), (8, 3), (12, 0)} = {(4u+2, 3v)|1 ≤ u ≤ 24r2 +25r +6, v =
(24r2 + 25r + 6) − u} = I(24r + 13) −

(
2, 3(24r2 + 25r + 6)

)
. Let K24r+13 = K24r+9 ⊕ K4 ⊕

(8r + 3)K3,4. Then the graphs K24r+9 and K3,4 have an S4-decomposition, by Theorems 2
and 3, the graph K4 has 2P4. Hence the graph K24r+13 has a decomposition into 2P4 and
3(24r2 + 25r + 6)S4. Therefore M(K24r+13) = {(4x + 2, 3y)|0 ≤ x ≤ 24r2 + 25r + 6, y =
(24r2 + 25r + 6) − x} = I(24r + 13).

Case 3. If k = 4r + 2, then we can write K24r+19 = K24r+13 ⊕ K7 ⊕ (4r + 2)K6,6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have M(K24r+19) ⊇ M(K24r+13) +
M(K7) + (4r + 2)M(K6,6) = {(4x + 2, 3y)|0 ≤ x ≤ 24r2 + 25r + 6, y = (24r2 + 25r + 6) −
x} + {(3, 3), (7, 0)} + (4r + 2){(0, 9), (4, 6), (8, 3), (12, 0)} = {(4u + 1, 3v)|1 ≤ u ≤ 24r2 + 37r +
14, v = (24r2 + 37r + 14) − u} = I(24r + 19) −

(
1, 3(24r2 + 37r + 14)

)
. Let K24r+19 =

K24r+8 ⊕ K11 ⊕ K24r+8,11. Then the graph K11 can be decomposed into 1P4 and 13S4, by
Lemma 8, and Theorems 2 and 3, the graphs K24r+8 and K24r+8,11 have an S4-decomposition.
Hence the graph K24r+19 has a decomposition into 1P4 and 3(24r2 + 37r + 14)S4. Therefore
M(K24r+19) = {(4x + 1, 3y)|0 ≤ x ≤ 24r2 + 37r + 14, y = (24r2 + 37r + 14) − x} = I(24r + 19).

Case 4. If k = 4r + 3, then we can write K24r+25 = K24r+19 ⊕ K7 ⊕ (4r + 3)K6,6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have M(K24r+25) ⊇ M(K24r+19) +
M(K7)+(4r +3)M(K6,6) = {(4x+1, 3y)|0 ≤ x ≤ 24r2 +37r +14, y = (24r2 +37r +14)−x}+
{(3, 3), (7, 0)} + (4r + 3){(0, 9), (4, 6), (8, 3), (12, 0)} = {(4u, 3v)|1 ≤ u ≤ 24r2 + 49r + 25, v =
(24r2 + 49r + 25) − u} = I(24r + 25) −

(
0, 3(24r2 + 49r + 25)

)
. The graph K24r+25 has

3(24r2+49r+25)S4, by Theorem 3. Hence M(K24r+25) = {(4x, 3y)|0 ≤ x ≤ 24r2+49r+25, y =
(24r2 + 49r + 25) − x} = I(24r + 25).

Thus M(K6s+1) = I(6s + 1), for each s ∈ Z+. □
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Lemma 13. Let p, q ∈ Z+ ∪ {0} and n ≡ 2 (mod 6). There exists a {pP4, qS4}-decomposition
of Kn if and only if 3p + 4q =

(
n
2

)
, n ≥ 8 and q ≥ 1. That is, M(K6s+2) = I(6s + 2), where

s ∈ Z+.

Proof. Necessity: The conditions 3p + 4q =
(

n
2

)
and n ≥ 6 are trivial. That is, M(K6s+2) ⊆

I(6s + 2). Then q ≥ 1, since by Theorem 1, the graph K6s+2 can not have a P4-decomposition.
Sufficiency: We have to prove M(K6s+2) ⊇ I(6s + 2). The proof is by induction on s. If s = 1,
then M(K8) = I(8), by Lemma 5. Since K6k+8 = K6k+2 ⊕ K6 ⊕ K6k+2,6. From the definition
of I(n), we have

I(24r + 2) =
(p, q)

∣∣∣∣p = (24r + 2)(24r + 1) − 8
6 − 4i, q = (24r + 2)(24r + 1)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 2)(24r + 1) − 8
24

⌋,

= {(4x + 3, 3y + 1)|0 ≤ x ≤ 24r2 + 3r − 1, y = (24r2 + 3r − 1) − x},

I(24r + 8) =
(p, q)

∣∣∣∣p = (24r + 8)(24r + 7) − 8
6 − 4i, q = (24r + 8)(24r + 7)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 8)(24r + 7) − 8
24

⌋ ,

= {(4x, 3y + 1)|0 ≤ x ≤ 24r2 + 15r + 2, y = (24r2 + 15r + 2) − x},

I(24r + 14) =
(p, q)

∣∣∣∣p = (24r + 14)(24r + 13) − 8
6 − 4i, q = (24r + 14)(24r + 13)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 14)(24r + 13) − 8
24

⌋ ,

= {(4x + 1, 3y + 1)|0 ≤ x ≤ 24r2 + 27r + 7, y = (24r2 + 27r + 7) − x},

I(24r + 20) =
(p, q)

∣∣∣∣p = (24r + 20)(24r + 19) − 8
6 − 4i, q = (24r + 20)(24r + 19)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 20)(24r + 19) − 8
24

⌋ ,

= {(4x + 2, 3y + 1)|0 ≤ x ≤ 24r2 + 39r + 15, y = (24r2 + 39r + 15) − x},

I(24r + 26) =
(p, q)

∣∣∣∣p = (24r + 26)(24r + 25) − 8
6 − 4i, q = (24r + 26)(24r + 25)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 26)(24r + 25) − 8
24

⌋ ,

= {(4x + 3, 3y + 1)|0 ≤ x ≤ 24r2 + 51r + 26, y = (24r2 + 51r + 26) − x}.

Case 1. If k = 4r, then we can write K24r+8 = K24r+2 ⊕ K6 ⊕ K24r+2,6. Since K24r+2,6 =
K24r,6 ⊕ K2,6 = (4r)K6,6 ⊕ K2,6. Then K24r+8 = K24r+2 ⊕ K6 ⊕ (4r)K6,6 ⊕ K2,6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M(K24r+8) ⊇ M(K24r+2) +
M(K6) + (4r)M(K6,6) + M(K2,6) = {(4x + 3, 3y + 1)|0 ≤ x ≤ 24r2 + 3r − 1, y = (24r2 +
3r − 1) − x} + (5, 0) + (4r){(0, 9), (4, 6), (8, 3), (12, 0)} + (4, 0) = {(4u, 3v + 1)|3 ≤ u ≤ 24r2 +
15r + 2, v = (24r2 + 15r + 2) − u} = I(24r + 8) −

{(
0, 3(24r2 + 15r + 2)

)
,
(
4, 3(24r2 +
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15r + 1)

)
,
(
8, 3(24r2 + 15r)

)}
. The graph K24r+8 has 3(24r2 + 15r + 2)S4, by Theorem 2, we

have M(K24r+8) = I(24r + 8) −
{(

4, 3(24r2 + 15r + 1)
)
,
(
8, 3(24r2 + 15r)

)}
. Let K24r+8 =

K24r ⊕ K8 ⊕ K24r,8. Then by Lemma 5, the graph K8 can be decomposed into 8P4 or 4P4
and 4S4, and by Theorems 2 and 3, the graphs K24r and K24r,8 have an S4-decomposition.
Hence the graph K24r+8 has a decomposition into p copies of P4 and q copies of S4, where
(p, q) ∈

{(
0, 3(24r2+15r+2)

)
,
(
4, 3(24r2+15r+1)

)
,
(
8, 3(24r2+15r)

)}
. Therefore M(K24r+8) =

{(4x, 3y + 1)|0 ≤ x ≤ 24r2 + 15r + 2, y = (24r2 + 15r + 2) − x} = I(24r + 8).
Case 2. If k = 4r + 1, then we can write K24r+14 = K24r+8 ⊕ K6 ⊕ K24r+8,6. Since

K24r+8,6 = (6r + 2)K4,6. Then K24r+14 = K24r+8 ⊕ K6 ⊕ (6r + 2)K4,6. By the induction
hypothesis, Remark 1.1, and Lemmas 1, 3, we have M(K24r+14) ⊇ M(K24r+8) + M(K6) + (6r +
2)M(K4,6) = {(4x, 3y + 1)|0 ≤ x ≤ 24r2 + 15r + 2, y = (24r2 + 15r + 2) − x} + (5, 0) +
(6r + 2){(0, 6), (4, 3), (8, 0)} = {(4u + 1, 3v + 1)|1 ≤ u ≤ 24r2 + 27r + 7, v = (24r2 + 27r +
7) − u} = I(24r + 14) −

(
1, 3(24r2 + 27r + 7)

)
. If r = 0, then M(K14) = I(14), by Lemma

10 . If r ≥ 1, we can write K24r+14 = K24r ⊕ K14 ⊕ K24r,14. Then by Lemma 10, the graph
K14 can be decomposed into 1P4 and 22S4, and by Theorems 2 and 3, the graphs K24r and
K24r,14 have an S4-decomposition. Hence the graph K24r+14 has a decomposition into 1P4 and
3(24r2 + 27r + 7)S4. Therefore M(K24r+14) = {(4x + 1, 3y + 1)|0 ≤ x ≤ 24r2 + 27r + 7, y =
(24r2 + 27r + 7) − x} = I(24r + 14).

Case 3. If k = 4r+2, then we can write K24r+20 = K24r+14⊕K6⊕K24r+14,6. Since K24r+14,6 =
(6r + 2)K4,6 ⊕ K6,6. Then K24r+20 = K24r+14 ⊕ K6 ⊕ (6r + 2)K4,6 ⊕ K6,6. By the induction
hypothesis, Remark 1.1, and Lemmas 1, 3, we have M(K24r+20) ⊇ M(K24r+14)+M(K6)+(6r+
2)M(K4,6) = {(4x + 1, 3y + 1)|0 ≤ x ≤ 24r2 + 27r + 7, y = (24r2 + 27r + 7) − x} + (5, 0) + (6r +
2){(0, 6), (4, 3), (8, 0)} = {(4u+2, 3v +1)|1 ≤ u ≤ 24r2 +39r +15, v = (24r2 +39r +15)−u} =
I(24r+20)−

(
2, 3(24r2+39r+15)

)
. Let K24r+20 = K24r+16⊕K4⊕K24r+16,4. Then by Theorems

2 and 3, the graphs K24r+16 and K24r+16,4 have an S4-decomposition, and the graph K4 has 2P4.
Hence the graph K24r+20 has a decomposition into 2P4 and 3(24r2 + 39r + 15)S4. Therefore
M(K24r+20) = {(4x+2, 3y+1)|0 ≤ x ≤ 24r2+39r+15, y = (24r2+39r+15)−x} = I(24r+20).

Case 4. If k = 4r + 3, then we can write K24r+26 = K24r+20 ⊕ K6 ⊕ K24r+16,4. Since
K24r+20,6 = (6r + 5)K4,6. Then K24r+26 = K24r+20 ⊕ K6 ⊕ (6r + 5)K4,6. By the induction
hypothesis, Remark 1.1, and Lemmas 1, 3, we have M(K24r+26) ⊇ M(K24r+20)+M(K6)+(6r+
5)M(K4,6) = {(4x+2, 3y+1)|0 ≤ x ≤ 24r2 +39r+15, y = (24r2 +39r+15)−x}+(5, 0)+(6r+
5){(0, 6), (4, 3), (8, 0)} = {(4u+3, 3v +1)|1 ≤ u ≤ 24r2 +51r +26, v = (24r2 +51r +26)−u} =
I(24r + 26) −

(
3, 3(24r2 + 51r + 26)

)
. Let K24r+26 = K24r+16 ⊕ K10 ⊕ K24r+16,10. Then by

Lemma 7, the graph K10 can be decomposed into 3P4 and 7S4, and by Theorems 2 and 3,
the graphs K24r+16 and K24r+16,10 have an S4-decomposition. Hence the graph K24r+26 has a
decomposition into 3P4 and 3(24r2 +51r+26)S4. Therefore M(K24r+26) = {(4x+3, 3y +1)|0 ≤
x ≤ 24r2 + 51r + 26, y = (24r2 + 51r + 26) − x} = I(24r + 26).

Thus M(K6s+2) = I(6s + 2), for each s ∈ Z+. □

Lemma 14. Let p, q ∈ Z+ ∪ {0} and n ≡ 3 (mod 6). There exists a {pP4, qS4}-decomposition
of Kn if and only if 3p + 4q =

(
n
2

)
and n ≥ 9. That is, M(K6s+3) = I(6s + 3), where s ∈ Z+.

Proof. Necessity: The conditions 3p + 4q =
(

n
2

)
and n ≥ 6 are trivial. That is, M(K6s+3) ⊆

I(6s + 3). Sufficiency: We have to prove M(K6s+3) ⊇ I(6s + 3). The proof is by induction on
s. If s = 1, then M(K9) = I(9), by Lemma 6. Since K6k+9 = K6k+3 ⊕ K7 ⊕ K6k+2,6. From the
definition of I(n), we have

I(24r + 3) =
(p, q)

∣∣∣∣p = (24r + 3)(24r + 2)
6 − 4i, q = (24r + 3)(24r + 2)

8 − 3p

4 ,
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0 ≤ i ≤
⌊

(24r + 3)(24r + 2)
24

⌋,

= {(4x + 1, 3y)|0 ≤ x ≤ 24r2 + 5r, y = (24r2 + 5r) − x},

I(24r + 9) =
(p, q)

∣∣∣∣p = (24r + 9)(24r + 8)
6 − 4i, q = (24r + 9)(24r + 8)

8 − 3p

4 ,

0 ≤ i ≤
⌊

(24r + 9)(24r + 8)
24

⌋ ,

= {(4x, 3y)|0 ≤ x ≤ 24r2 + 17r + 3, y = (24r2 + 17r + 3) − x},

I(24r + 15) =
(p, q)

∣∣∣∣p = (24r + 15)(24r + 14)
6 − 4i, q = (24r + 15)(24r + 14)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 15)(24r + 14)
24

⌋ ,

= {(4x + 3, 3y)|0 ≤ x ≤ 24r2 + 29r + 8, y = (24r2 + 29r + 8) − x},

I(24r + 21) =
(p, q)

∣∣∣∣p = (24r + 21)(24r + 20)
6 − 4i, q = (24r + 21)(24r + 20)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 21)(24r + 20)
24

⌋ ,

= {(4x + 2, 3y)|0 ≤ x ≤ 24r2 + 41r + 17, y = (24r2 + 41r + 17) − x},

I(24r + 27) =
(p, q)

∣∣∣∣p = (24r + 27)(24r + 26)
6 − 4i, q = (24r + 27)(24r + 26)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 27)(24r + 26)
24

⌋ ,

= {(4x + 1, 3y)|0 ≤ x ≤ 24r2 + 53r + 29, y = (24r2 + 53r + 29) − x}.

Case 1. If k = 4r, then we can write K24r+9 = K24r+3 ⊕ K7 ⊕ K24r+2,6. Since
K24r+2,6 = (6r)K4,6 ⊕ K2,6. Then K24r+9 = K24r+3 ⊕ K7 ⊕ (6r)K4,6 ⊕ K2,6. By the induc-
tion hypothesis, Remark 1.1, and Lemmas 1, 4, we have M(K24r+9) ⊇ M(K24r+3) + M(K7) +
(6r)M(K4,6)+M(K2,6) = {(4x+1, 3y)|0 ≤ x ≤ 24r2+5r, y = (24r2+5r)−x}+{(3, 3), (7, 0)}+
(6r){(0, 6), (4, 3), (8, 0)} + (4, 0) = {(4u, 3v)|2 ≤ u ≤ 24r2 + 17r + 3, v = (24r2 + 17r + 3) −
u} = I(24r + 9) −

{(
0, 3(24r2 + 17r + 3)

)
,
(
4, 3(24r2 + 17r + 2)

)}
. The graph K24r+9 has

3(24r2 + 17r + 3)S4, by Theorem 2, we have M(K24r+8) = I(24r + 8) −
(
4, 3(24r2 + 17r + 2)

)
.

Let K24r+9 = K24r+1 ⊕ K8 ⊕ K24r+1,8. Then by Lemma 5, the graph K8 can be decomposed
into 4P4 and 4S4, and by Theorems 2 and 3, the graphs K24r+1 and K24r+1,8 have an S4-
decomposition. Hence the graph K24r+9 has a decomposition into 4P4 and 3(24r2 + 17r + 2)S4.
Therefore M(K24r+9) = {(4x, 3y)|0 ≤ x ≤ 24r2 +17r+3, y = (24r2 +17r+3)−x} = I(24r+9).

Case 2. If k = 4r + 1, then we can write K24r+15 = K24r+9 ⊕ K7 ⊕ K24r+8,6. Since
K24r+8,6 = (6r + 2)K4,6. Then K24r+15 = K24r+9 ⊕ K7 ⊕ (6r + 2)K4,6. By the induction
hypothesis, Remark 1.1, and Lemmas 1, 4, we have M(K24r+15) ⊇ M(K24r+9) + M(K7) + (6r +
2)M(K4,6) = {(4x, 3y)|0 ≤ x ≤ 24r2 + 17r + 3, y = (24r2 + 17r + 3) − x} + {(3, 3), (7, 0)} +
(6r +2){(0, 6), (4, 3), (8, 0)} = {(4u+3, 3v)|0 ≤ u ≤ 24r2 +29r +8, v = (24r2 +29r +8)−u} =
I(24r + 15).
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Case 3. If k = 4r + 2, then we can write K24r+21 = K24r+15 ⊕ K7 ⊕ K24r+15,6. Since

K24r+15,6 = (6r + 2)K4,6 ⊕ K6,6, we have K24r+21 = K24r+15 ⊕ K7 ⊕ (6r + 2)K4,6 ⊕ K6,6. By
the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have M(K24r+21) ⊇ M(K24r+15) +
M(K7)+(6r+2)M(K4,6)+M(K6,6) = {(4x+3, 3y)|0 ≤ x ≤ 24r2+29r+8, y = (24r2+29r+8)−
x}+{(3, 3), (7, 0)}+(6r+2){(0, 6), (4, 3), (8, 0)}+{(0, 9), (4, 6), (8, 3), (12, 0)} = {(4u+2, 3v)|1 ≤
u ≤ 24r2 + 41r + 17, v = (24r2 + 41r + 17) − u} = I(24r + 21) −

(
2, 3(24r2 + 41r + 17)

)
.

Let K24r+21 = K24r+17 ⊕ K4 ⊕ K24r+17,4. Then the graphs K24r+17 and K24r+17,4 have an S4-
decomposition, by Theorems 2 and 3, the graph K4 has 2P4. Hence the graph K24r+21 has a
decomposition into 2P4 and 3(24r2 + 41r + 17)S4. Therefore M(K24r+21) = {(4x + 2, 3y)|0 ≤
x ≤ 24r2 + 41r + 17, y = (24r2 + 41r + 17) − x} = I(24r + 21).

Case 4. If k = 4r + 3, then we can write K24r+27 = K24r+21 ⊕ K7 ⊕ K24r+20,6. Since
K24r+20,6 = (6r + 5)K4,6. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have
M(K24r+27) ⊇ M(K24r+21) + M(K7) + (6r + 5)M(K4,6) = {(4x + 2, 3y)|0 ≤ x ≤ 24r2 + 41r +
17, y = (24r2 +41r+17)−x}+{(3, 3), (7, 0)}+(6r+5){(0, 6), (4, 3), (8, 0)} = {(4u+1, 3v)|1 ≤
u ≤ 24r2 + 53r + 29, v = (24r2 + 53r + 29) − u} = I(24r + 27) −

(
1, 3(24r2 + 53r + 29)

)
. Let

K24r+27 = K24r+16 ⊕ K11 ⊕ K24r+16,11. Then by Lemma 8, the graph K11 can be decomposed
into 1P4 and 13S4, and by Theorems 2 and 3, the graphs K24r+16 and K24r+16,11 have an S4-
decomposition. Hence the graph K24r+27 has a decomposition into 1P4 and 3(24r2+53r+29)S4.
Therefore M(K24r+27) = {(4x + 1, 3y)|0 ≤ x ≤ 24r2 + 53r + 29, y = (24r2 + 53r + 29) − x} =
I(24r + 27).

Thus M(K6s+3) = I(6s + 3), for each s ∈ Z+. □

Lemma 15. Let p, q ∈ Z+ ∪ {0} and n ≡ 4 (mod 6). There exists a {pP4, qS4}-decomposition
of Kn if and only if 3p + 4q =

(
n
2

)
and n ≥ 4. That is, M(K6s+4) = I(6s + 4), where s ∈ Z+.

Proof. Necessity: The conditions 3p + 4q =
(

n
2

)
and n ≥ 4 are trivial. That is, M(K6s+4) ⊆

I(6s + 4). Sufficiency: We have to prove M(K6s+4) ⊇ I(6s + 4). The proof is by induction on
s. If s = 0, then M(K4) = I(4), by Theorem 1. If s = 1, then M(K10) = I(10), by Lemma 7.
Since K6k+10 = K6k+4 ⊕ K6 ⊕ K6k+4,6. From the definition of I(n), we have

I(24r + 4) =
(p, q)

∣∣∣∣p = (24r + 4)(24r + 3)
6 − 4i, q = (24r + 4)(24r + 3)

8 − 3p

4 ,

0 ≤ i ≤
⌊

(24r + 4)(24r + 3)
24

⌋,

= {(4x + 2, 3y)|0 ≤ x ≤ 24r2 + 7r, y = (24r2 + 7r) − x},

I(24r + 10) =
(p, q)

∣∣∣∣p = (24r + 10)(24r + 9)
6 − 4i, q = (24r + 10)(24r + 9)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 10)(24r + 9)
24

⌋ ,

= {(4x + 3, 3y)|0 ≤ x ≤ 24r2 + 19r + 3, y = (24r2 + 19r + 3) − x},

I(24r + 16) =
(p, q)

∣∣∣∣p = (24r + 16)(24r + 15)
6 − 4i, q = (24r + 16)(24r + 15)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 16)(24r + 15)
24

⌋ ,
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= {(4x, 3y)|0 ≤ x ≤ 24r2 + 31r + 10, y = (24r2 + 31r + 10) − x},

I(24r + 22) =
(p, q)

∣∣∣∣p = (24r + 22)(24r + 21)
6 − 4i, q = (24r + 22)(24r + 21)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 22)(24r + 21)
24

⌋ ,

= {(4x + 1, 3y)|0 ≤ x ≤ 24r2 + 43r + 19, y = (24r2 + 43r + 19) − x},

I(24r + 28) =
(p, q)

∣∣∣∣p = (24r + 28)(24r + 27)
6 − 4i, q = (24r + 28)(24r + 27)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 28)(24r + 27)
24

⌋ ,

= {(4x + 2, 3y)|0 ≤ x ≤ 24r2 + 55r + 31, y = (24r2 + 55r + 31) − x}.

Case 1. If k = 4r, then we can write K24r+10 = K24r+4 ⊕ K6 ⊕ K24r+4,6. Since K24r+4,6 =
4rK6,6 ⊕ K4,6. Then K24r+10 = K24r+4 ⊕ K6 ⊕ 4rK6,6 ⊕ K4,6. By the induction hypothesis,
Remark 1.1, and Lemmas 1, 3, we have M(K24r+10) ⊇ M(K24r+4) + M(K6) + (4r)M(K6,6) +
M(K4,6) = {(4x + 2, 3y)|0 ≤ x ≤ 24r2 + 7r, y = (24r2 + 7r) − x} + (5, 0) + (4r){(0, 9), (4, 6),
(8, 3), (12, 0)} + {(0, 6), (4, 3), (8, 0)} = {(4u + 3, 3v)|1 ≤ u ≤ 24r2 + 19r + 3, v = (24r2 +
19r + 3) − u} = I(24r + 10) −

(
3, 3(24r2 + 19r + 3)

)
. Let K24r+10 = K24r ⊕ K10 ⊕ K24r,10.

Then by Lemma 7, the graph K10 can be decomposed into 3P4 and 9S4, and by Theorems 2
and 3, the graphs K24r and K24r,10 have an S4-decomposition. Hence the graph K24r+10 has a
decomposition into 3P4 and 3(24r2 + 19r + 3)S4. Therefore M(K24r+10) = {(4x + 3, 3y)|0 ≤
x ≤ 24r2 + 19r + 3, y = (24r2 + 19r + 3) − x} = I(24r + 10).

Case 2. If k = 4r + 1, then we can write K24r+16 = K24r+10 ⊕ K6 ⊕ K24r+10,6. Since
K24r+10,6 = (4r + 1)K6,6 ⊕ K4,6. Then K24r+16 = K24r+10 ⊕ K6 ⊕ (4r + 1)K6,6 ⊕ K4,6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M(K24r+16) ⊇ M(K24r+10) +
M(K6) + (4r + 1)M(K6,6) + M(K4,6) = {(4x + 3, 3y)|0 ≤ x ≤ 24r2 + 19r + 3, y = (24r2 + 19r +
3) − x} + (5, 0) + (4r + 1){(0, 9), (4, 6), (8, 3), (12, 0)} + {(0, 6), (4, 3), (8, 0)} = {(4u, 3v)|2 ≤
u ≤ 24r2 + 31r + 10, v = (24r2 + 31r + 10) − u} = I(24r + 16) −

{(
0, 3(24r2 + 31r +

10)
)
,
(
4, 3(24r2 + 31r + 9)

)}
. The graph K24r+16 has 3(24r2 + 31r + 10)S4, by Theorem 2.

Hence K24r+16 = I(24r + 16) −
(
4, 3(24r2 + 31r + 9)

)
. Let K24r+16 = K24r+8 ⊕ K8 ⊕ K24r+8,8.

Then by Lemma 5, graph K8 can be decomposed into 4P4 and 6S4, and by Theorems 2 and
3, the graphs K24r+8 and K24r+8,8 have an S4-decomposition. Hence the graph K24r+16 has a
decomposition into 4P4 and 3(24r2 + 31r + 9)S4. Therefore M(K24r+16) = {(4x, 3y)|0 ≤ x ≤
24r2 + 31r + 10, y = (24r2 + 31r + 10) − x} = I(24r + 16).

Case 3. If k = 4r + 2, then we can write K24r+22 = K24r+16 ⊕ K6 ⊕ K24r+16,6. Since
K24r+16,6 = (4r + 2)K6,6 ⊕ K4,6. Then K24r+22 = K24r+16 ⊕ K6 ⊕ (4r + 2)K6,6 ⊕ K4,6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M(K24r+22) ⊇ M(K24r+16) +
M(K6) + (4r + 2)M(K6,6) + M(K4,6) = {(4x, 3y)|0 ≤ x ≤ 24r2 + 31r + 10, y = (24r2 + 31r +
10)−x}+(5, 0)+(4r +2){(0, 9), (4, 6), (8, 3), (12, 0)}+{(0, 6), (4, 3), (8, 0)} = {(4u+1, 3v)|1 ≤
u ≤ 24r2 + 43r + 19, v = (24r2 + 43r + 19) − u} = I(24r + 22) −

(
1, 3(24r2 + 43r + 19)

)
.

Let K24r+22 = K24r+8 ⊕ K14 ⊕ K24r+8,14. Then by Lemma 10, the graph K14 can be decom-
posed into 1P4 and 22S4, and by Theorems 2 and 3, the graphs K24r+8 and K24r+8,14 have an S4-
decomposition. Hence the graph K24r+22 has a decomposition into 1P4 and 3(24r2+43r+19)S4.
Therefore M(K24r+22) = {(4x + 1, 3y)|0 ≤ x ≤ 24r2 + 43r + 19, y = (24r2 + 43r + 19) − x} =
I(24r + 22).

Case 4. If k = 4r + 3, then we can write K24r+28 = K24r+22 ⊕ K6 ⊕ K24r+22,6. Since
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K24r+22,6 = (4r + 3)K6,6 ⊕ K4,6. Then K24r+28 = K24r+22 ⊕ K6 ⊕ (4r + 3)K6,6 ⊕ K4,6. By the
induction hypothesis, Remark 1.1, and Lemmas 1, 3, we have M(K24r+28) ⊇ M(K24r+22) +
M(K6)+(4r +3)M(K6,6)+M(K4,6) = {(4x+1, 3y)|0 ≤ x ≤ 24r2 +43r +19, y = (24r2 +43r +
19)−x}+(5, 0)+(4r +3){(0, 9), (4, 6), (8, 3), (12, 0)}+{(0, 6), (4, 3), (8, 0)} = {(4u+2, 3v)|1 ≤
u ≤ 24r2 + 55r + 31, v = (24r2 + 55r + 31) − u} = I(24r + 28) −

(
2, 3(24r2 + 55r + 31)

)
.

Let K24r+28 = K24r+24 ⊕ K4 ⊕ K24r+24,4. Then by Theorems 2 and 3, the graphs K24r+24 and
K24r+24,4 have an S4-decomposition, the graph K4 has 2P4. Hence the graph K24r+28 has a
decomposition into 2P4 and 3(24r2 + 55r + 31)S4. Therefore M(K24r+28) = {(4x + 2, 3y)|0 ≤
x ≤ 24r2 + 55r + 31, y = (24r2 + 55r + 31) − x} = I(24r + 28).

Thus M(K6s+4) = I(6s + 4), for each s ∈ Z+. □

Lemma 16. Let p, q ∈ Z+ ∪ {0} and n ≡ 5 (mod 6). There exists a {pP4, qS4}-decomposition
of Kn if and only if 3p + 4q =

(
n
2

)
, n ≥ 5 and q ≥ 1. That is, M(K6s+5) = I(6s + 5), where

s ∈ Z+ ∪ {0}.

Proof. Necessity: The conditions 3p + 4q =
(

n
2

)
and n ≥ 5 are trivial. That is, M(K6s+5) ⊆

I(6s + 5). Then q ≥ 1, since by Theorem 1, the graph K6s+5 can not have a P4-decomposition.
Sufficiency: We have to prove M(K6s+5) ⊇ I(6s + 5). The proof is by induction on s. If s = 0,
then M(K5) = I(5), by Lemma 2. Since K6k+11 = K6k+5 ⊕ K7 ⊕ K6k+4,6. From the definition
of I(n), we have

I(24r + 5) =
(p, q)

∣∣∣∣p = (24r + 5)(24r + 4) − 8
6 − 4i, q = (24r + 5)(24r + 4)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 5)(24r + 4) − 8
24

⌋,

= {(4x + 2, 3y + 1)|0 ≤ x ≤ 24r2 + 9r, y = (24r2 + 9r) − x},

I(24r + 11) =
(p, q)

∣∣∣∣p = (24r + 11)(24r + 10) − 8
6 − 4i, q = (24r + 11)(24r + 10)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 11)(24r + 10) − 8
24

⌋ ,

= {(4x + 1, 3y + 1)|0 ≤ x ≤ 24r2 + 21r + 4, y = (24r2 + 21r + 4) − x},

I(24r + 17) =
(p, q)

∣∣∣∣p = (24r + 17)(24r + 16) − 8
6 − 4i, q = (24r + 17)(24r + 16)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 17)(24r + 16) − 8
24

⌋ ,

= {(4x, 3y + 1)|0 ≤ x ≤ 24r2 + 33r + 11, y = (24r2 + 33r + 11) − x},

I(24r + 23) =
(p, q)

∣∣∣∣p = (24r + 23)(24r + 22) − 8
6 − 4i, q = (24r + 23)(24r + 22)

8

−3p

4 , 0 ≤ i ≤
⌊

(24r + 23)(24r + 22) − 8
24

⌋ ,

= {(4x + 3, 3y + 1)|0 ≤ x ≤ 24r2 + 45r + 20, y = (24r2 + 45r + 20) − x},

I(24r + 29) =
(p, q)

∣∣∣∣p = (24r + 29)(24r + 28) − 8
6 − 4i, q = (24r + 29)(24r + 28)

8
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−3p

4 , 0 ≤ i ≤
⌊

(24r + 29)(24r + 28) − 8
24

⌋ ,

= {(4x + 2, 3y + 1)|0 ≤ x ≤ 24r2 + 57r + 33, y = (24r2 + 57r + 33) − x}.

Case 1. If k = 4r, then we can write K24r+11 = K24r+5⊕K7⊕K24r+4,6. Since K24r+4,6 = (6r+
1)K4,6. Then K24r+11 = K24r+5 ⊕ K7 ⊕ (6r + 1)K4,6. By the induction hypothesis, Remark 1.1,
and Lemmas 1, 4, we have M(K24r+11) ⊇ M(K24r+5)+M(K7)+(6r+1)M(K4,6) = {(4x+2, 3y+
1)|0 ≤ x ≤ 24r2+9r, y = (24r2+9r)−x}+{(3, 3), (7, 0)}+(6r+1){(0, 6), (4, 3), (8, 0)} = {(4u+
1, 3v+1)|1 ≤ u ≤ 24r2 +21r+4, v = (24r2 +21r+4)−u} = I(24r+11)−

(
1, 3(24r2 +21r+4)

)
.

Let K24r+11 = K24r ⊕ K11 ⊕ K24r,11. Then by Lemma 8, the graph K11 can be decomposed into
1P4 and 13S4, and by Theorems 2 and 3, the graphs K24r and K24r,11 have an S4-decomposition.
Hence the graph K24r+11 has a decomposition into 1P4 and 3(24r2 + 21r + 4)S4. Therefore
M(K24r+11) = {(4x+1, 3y +1)|0 ≤ x ≤ 24r2 +21r +4, y = (24r2 +21r +4)−x} = I(24r +11).

Case 2. If k = 4r + 1, then we can write K24r+17 = K24r+11 ⊕ K7 ⊕ K24r+10,6. Since
K24r+10,6 = (6r + 1)K4,6 ⊕ K6,6. Then K24r+17 = K24r+11 ⊕ K7 ⊕ (6r + 1)K4,6 ⊕ K6,6. By
the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we have M(K24r+17) ⊇ M(K24r+11) +
M(K7)+(6r+1)M(K4,6)+M(K6,6) = {(4x+1, 3y+1)|0 ≤ x ≤ 24r2+21r+4, y = (24r2+21r+
4)−x}+{(3, 3), (7, 0)}+(6r+1){(0, 6), (4, 3), (8, 0)}+{(0, 9), (4, 6), (8, 3), (12, 0)} = {(4u, 3v +
1)|1 ≤ u ≤ 24r2+33r+11, v = (24r2+33r+11)−u} = I(24r+17)−

(
0, 3(24r2+33r+11)

)
. The

graph K24r+17 has an S4-decomposition, by Theorem 2. Hence M(K24r+17) = {(4x, 3y + 1)|0 ≤
x ≤ 24r2 + 33r + 11, y = (24r2 + 33r + 11) − x} = I(24r + 17)

Case 3. If k = 4r + 2, then we can write K24r+23 = K24r+17 ⊕ K7 ⊕ K24r+16,6. Since
K24r+16,6 = (6r + 4)K4,6. Then K24r+23 = K24r+17 ⊕ K7 ⊕ (6r + 4)K4,6. By the induction
hypothesis, Remark 1.1, and Lemmas 1, 4, we have M(K24r+23) ⊇ M(K24r+17) + M(K7) +
(6r + 4)M(K4,6) = {(4x, 3y + 1)|0 ≤ x ≤ 24r2 + 33r + 11, y = (24r2 + 33r + 11) − x} +
{(3, 3), (7, 0)} + (6r + 4){(0, 6), (4, 3), (8, 0)} = {(4u + 3, 3v + 1)|0 ≤ u ≤ 24r2 + 45r + 20, v =
(24r2 + 45r + 20) − u} = I(24r + 23).

Case 4. If k = 4r + 3, then we can write K24r+29 = K24r+23 ⊕ K7 ⊕ K24r+22,6. Since
K24r+22,6 = (6r +4)K4,6 ⊕K6,6. By the induction hypothesis, Remark 1.1, and Lemmas 1, 4, we
have M(K24r+29) ⊇ M(K24r+23) + M(K7) + (6r + 4)M(K4,6) + M(K6,6) = {(4x + 3, 3y + 1)|0 ≤
x ≤ 24r2 +45r +20, y = (24r2 +45r +20)−x}+{(3, 3), (7, 0)}+(6r +4){(0, 6), (4, 3), (8, 0)}+
{(0, 9), (4, 6), (8, 3), (12, 0)} = {(4u+2, 3v +1)|1 ≤ u ≤ 24r2 +57r +33, v = (24r2 +57r +33)−
u} = I(24r + 29) −

(
2, 3(24r2 + 57r + 33)

)
. Let K24r+29 = K24r+25 ⊕ K4 ⊕ K24r+25,4. Then by

Theorems 2 and 3, the graphs K24r+25 and K24r+25,4 have an S4-decomposition, the graph K4 has
2P4. Hence the graph K24r+29 has a decomposition into 2P4 and 3(24r2 +57r+33)S4. Therefore
M(K24r+29) = {(4u+2, 3v+1)|0 ≤ u ≤ 24r2+57r+33, v = (24r2+57r+33)−u} = I(24r+29).

Thus M(K6s+5) = I(6s + 5), for each s ∈ Z+ ∪ {0}. □

The consequences of Lemmas 11 to 16 implies our main result as follows.

Theorem 4. Let p and q are nonnegative integers, and n ≥ 4 be a positive integer. There
exists a {pP4, qS4}-decomposition of Kn if and only if 3p + 4q =

(
n
2

)
. That is, M(Kn) = I(n),

where 4 ≤ n ∈ Z+.
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