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Abstract: Let G = (V, E) be a graph. A subset S ⊆ V of vertices is an efficient dominating set
if every vertex v ∈ V is adjacent to exactly one vertex in S, where a vertex u ∈ S is considered
to be adjacent to itself. Efficient domination is highly desirable in many real world applications,
and yet, in general, graphs are often not efficient. It is of value, therefore, to determine optimum
ways in which inefficient graphs can be changed in order to make them efficient. It is well known,
for example, that almost no m × n grid graphs have efficient dominating sets. In this paper we
consider the minimum number of vertices which can be removed from an m × n grid graph so
that the remaining graph has an efficient dominating set.
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1. Introduction

Let G = (V, E) = (V (G), E(G)) be a graph with vertex set V = {v1, v2, . . . , vn} and order
n = |V |. The open neighborhood of a vertex v is the set N(v) = {u|uv ∈ E} of vertices u that
are adjacent to v; the closed neighborhood of v is the set N [v] = N(v) ∪ {v}. Similarly, the
closed neighborhood of a set S is the set N [S] = ⋃

v∈S N [v]. A set S ⊆ V is a dominating set of
G if every vertex in V − S is adjacent to at least one vertex in S, or equivalently if N [S] = V .
The domination number γ(G) of G equals the minimum cardinality of a dominating set S of
G; we say that such a set S is a γ-set. For more on domination theory, we refer the reader
to [1–3].

A set S ⊆ V of vertices is called independent if no two vertices in S are adjacent. A
set S ⊆ V of vertices is called a 2-packing, or simply a packing, if for every vertex v ∈ V ,
|N [v] ∩ S| ≤ 1, that is, no vertex w ∈ V − S has two or more neighbors in S, and no vertex
u ∈ S has a neighbor v ∈ S. Let S ⊂ V be any set of vertices in a graph G, and let G − S

denote the graph obtained from G by deleting all vertices in S and deleting all edges uv ∈ E

which are incident with a vertex in S.

An m × n grid graph Gm,n has vertex set V = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n} with (i, j)
adjacent to (k, l) if i = k and |j − l| = 1 or j = l and |i − k| = 1. Several papers have been
published on the domination numbers of classes of grid graphs, including [4–9]. In [4, 7] the
authors prove an exact formula for the domination number of Gm,n, for all m, n ≥ 1. In [10,11]
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the authors give methods for constructing γ-sets of Gm,n.

2. Efficient and Total Efficient Domination

Let G = (V, E) be a graph. A subset S ⊆ V of vertices is an efficient dominating set if
every vertex v ∈ V is adjacent to exactly one vertex in S, where a vertex u ∈ S is considered
to be adjacent to itself. Thus, a set S is an efficient dominating set if for every vertex
v ∈ V , |N [v] ∩ S| = 1. A graph is said to be efficient if it has an efficient dominating set.
Notice that every efficient dominating set S in a graph G is both an independent set and a 2-
packing. Not every graph G has an efficient dominating set. Two simple examples are the cycles
C4 and C5, although it is easy to see that all cycles C3k, for k ≥ 1, have efficient dominating sets.

A dominating set S is called total efficient if for every vertex v ∈ V , |N(v) ∩ S| = 1, that
is, the open neighborhood N(v) of every vertex v ∈ V contains exactly one vertex in S. Not
every graph G has a total efficient dominating set. A simple example, again, is the cycle C5,
although it is easy to see that all cycles C4k, for k ≥ 1, have total efficient dominating sets. We
say that graphs having a total efficient dominating set are total efficient. Figure 1 illustrates
an efficient dominating set of the 2 × 7 grid graph G2,7. Figure 2 illustrates a total efficient
dominating set of the 4 × 7 grid graph G4,7.

Figure 1. An Efficient Dominating Set in the 2 × 7 Grid Graph G2,7

Efficient domination is of considerable importance in almost all real-world applications
of domination. Efficient dominating sets have minimum cardinality of all dominating sets
in a graph, but even more, they dominate the vertices of a graph with no redundancy or
overlap. And thus, they provide domination at absolute minimum cost. In coding theory
efficient dominating sets are called perfect codes, which means that they correspond to
single-error-correcting codes. This means that every vertex, or code word, is either a member
of a dominating set, or is adjacent to a unique member of the dominating set, which represents
the single-error-corrected code word.

Although efficiency in graphs is highly desirable, in general, graphs are usually not efficient.
It is of value, therefore, to determine optimum ways in which inefficient graphs can be changed
in order to make them efficient. One way to make an inefficient graph efficient is to remove
a minimum number S of vertices such that the remaining graph G − S is efficient. Thus, in

Figure 2. A Total Efficient Dominating Set in the 4 × 7 Grid G4,7
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this paper we will consider the following efficiency parameter. The (vertex) efficiency deletion
number, ε−

v (G), equals the minimum number of vertices in a set S such that the graph G − S
is efficient.

2.1. Efficiency in Grid Graphs and Generalized Grid Graphs

As discussed in Chapter 9 of [3], the current theory of efficiency in graphs is not very
extensive and has focused primarily on families of graphs such as circulants, also called Cayley
graphs, vertex-transitive graphs, and cube-connected cycles (cf. [3]). In 1990 Livingston and
Stout [12] showed that very few grid graphs are efficient.

Theorem 1 ( [12]). A grid graph Gm,n, for m, n ≥ 2, has an efficient domination set if and
only if either (i) m = n = 4, or (ii) m = 2 and n = 2k + 1, for any k ≥ 1.

Although Theorem 1 points out that there are very few efficient grid graphs, this family of
graphs is but a small subfamily of a much larger family of grid-like graphs we can call semigrid
graphs, which can be defined as 2-connected, plane graphs, every interior face of which is a
4-cycle, as illustrated in Figure 3. It is easy to see that there are far more efficient semigrid
graphs than rectangular grid graphs, as in Figure 3.

Figure 3. An Efficient Dominating Set in a Semigrid Graph

Notice in Figure 4 that the 5 × 5 grid graph G5,5, which is not an efficient graph, is an
induced subgraph of an efficient semigrid graph.

From Figure 4, the following result can easily be proved.

Figure 4. A 5 × 5 Grid G5,5 as an Induced Subgraph of an Efficient Semigrid
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Theorem 2. Every m × n grid graph Gm,n is an induced subgraph of an efficient semigrid
graph.

Proof sketch. As illustrated in Figure 4, given an m × n grid graph Gm,n, select a set of
vertices which creates what is called a star pattern, in which vertices are distanced from each
other according to a knight’s move in chess. This pattern will efficiently dominate all vertices
inside the grid, with the exception of a few vertices on the exterior which are not dominated.
But these vertices can easily be efficiently dominated by augmenting the grid as indicated in
Figure 4, the result of which is an efficient semigrid graph. □

Notice in Figure 5 that the 10 × 10 grid graph G10,10 is an induced subgraph of an efficient
semigrid graph. However, in comparison to the semigrid which has G5,5 as an induced
subgraph, there are twice as many vertices exterior to the grid in Figure 5 to create an efficient
domination. Further, these exterior vertices occur either five columns or five rows away from
the previous set of exterior vertices. This indicates that the star pattern repeats every five
rows or five columns.

Figure 5. The 10 × 10 Grid G10,10 as an Induced Subgraph of an Efficient Semigrid

3. Slant Grids

As previously defined, an m × n grid graph Gm,n has vertex set V = {(i, j)|1 ≤ i ≤ m, 1 ≤
j ≤ n} with (i, j) adjacent to (k, l) if i = k and |j − l| = 1 or j = l and |i − k| = 1. We define
the rectilinear distance, dist, between vertices (i, j) and (k, l) as

dist((i, j), (k, l)) = |i − k| + |j − l|.

We note that dist equals the number of edges in a shortest path in Gm,n between (i, j) and (k, l).

We extend the idea of a semigrid to look at the star pattern created on a minimally larger
grid to Gm,n formed by adding one row to both the top and bottom and one column to both the
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left and right. Let Gm+2,n+2 be an (m + 2) × (n + 2) grid graph, where (i, j) ∈ V (Gm+2,n+2) if
0 ≤ i ≤ m+1 and 0 ≤ j ≤ n+1, and Gm,n is a subgraph of Gm+2,n+2, such that the (i, j) entry
of Gm,n is the (i + 1, j + 1) entry of Gm+2,n+2. We call any vertex in V (Gm+2,n+2) − V (Gm,n)
an exterior vertex.

To mimic the star pattern created by an efficient dominating set on a semigrid,
as in [11], we define a (2,1)-slant grid S(2, 1) as an infinite graph with vertex set
V (S(2, 1)) = {(i, j) : i ∈ Z, j ∈ Z with the property that if (i, j) ∈ V (S(2, 1)) then so
are (i + 2, j + 1), (i + 1, j − 2), (i − 2, j − 1), and (i − 1, j + 2)}. The edges that connect
vertices (i + 2, j + 1), (i + 1, j − 2), (i − 2, j − 1), and (i − 1, j + 2) to (i, j) are in the edge
set E(S(2, 1)). Figure 6 shows a slant grid overlayed on Gm+2,n+2 so that the coordinate
system created by Gm+2,n+2 is consistent with the slant grid. To highlight Gm,n as a
subgraph of Gm+2,n+2, we have removed the edges connecting exterior vertices of Gm+2,n+2
to vertices in Gm,n. We note that there are 5 isomorphic graphs of S(2, 1) depending on
the smallest value of k, 0 ≤ k ≤ 4 for which the vertex (0, k) of Gm+2,n+2 is a vertex of
S(2, 1). We denote these five slant grids as Sk(2, 1), 0 ≤ k ≤ 4. Figure 6 shows a partial
slant grid with k = 0, because the slant grid intersects with vertex (0, 0) in the upper left corner.

(0,0)

(11,3)

Figure 6. Gm+2,n+2 and S0(2, 1) when m = 10, n = 10, k = 0

Let V k = V (Sk(2, 1)) ∩ V (Gm+2,n+2). In [11] the following theorem is shown.

Theorem 3. For all 0 ≤ k ≤ 4 and all m, n ≥ 1, V k = V (Sk(2, 1)) ∩ V (Gm+2,n+2) is a
dominating set of V (Gm,n).

Proof. Let (x, y) ∈ V (Gm,n), and let k ∈ {0, 1, 2, 3, 4}. Let (i, j) ∈ V k so that (i, j) minimizes
the rectilinear distance dist to (x, y). If dist((i, j), (x, y)) = 0, then (x, y) = (i, j) ∈ V k.
Otherwise, we wish to show that dist((i, j), (x, y)) = 1. Assume that dist((i, j), (x, y)) ≥ 2. By
definition of Sk(2, 1), if (i, j) ∈ V (Sk(2, 1)) then so are (i + 2, j + 1), (i + 1, j − 2), (i − 2, j − 1),
and (i − 1, j + 2). Note that each of these 4 vertices are rectilinear distance 3 from (i, j).
Further, any vertex of rectilinear distance 2 to (i, j) is adjacent to one of these four vertices.
Hence, if dist((i, j), (x, y)) ≥ 2, (x, y) is closer to one of (i+2, j +1), (i+1, j −2), (i−2, j −1),
and (i − 1, j + 2) than it is to (i, j), a contradiction. Hence, dist((i, j), (x, y)) ≤ 1 and (x, y) is
dominated by (i, j) ∈ V k. □

Corollary 1. V k dominates Gm,n so that no vertex in V (Gm,n) is dominated more than once.
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Proof. Suppose (x, y) ∈ V (Gm,n) is dominated by v = (i, j) ∈ V k and w = (k, l) ∈ V k. Then
dist(v, w) = 2, contradicting the fact that vertices in Sk(2, 1) have minimum dist of 3. □

This corollary implies that vertices in V k ∩ V (Gm,n) efficiently dominate some subgraph of
Gm,n. The only vertices not dominated are on the boundary of Gm,n. These vertices could be
removed in order to form an efficient dominating set for a new graph G′

m,n, the subgraph of Gm,n

efficiently dominated by V k ∩V (Gm,n). Since there are five possible slant grids, k = 0, . . . , 4, we
seek the value of k which minimizes the number of vertices that we need to remove to form G′

m,n.

4. Exterior Domination Adjustments

In [11], the authors show that we can move the exterior vertices in V k to an adjacent vertex
in Gm,n to construct a minimum dominating set for Gm,n composed entirely of vertices in
V (Gm,n). However, moving such vertices to Gm,n could create a dominating set that is not
efficient because a vertex is dominated more than once. Consider the vertex at location (11, 3)
in Figure 6. If we move the exterior vertex in V k, (11, 3), to the vertex it is dominating in
Gm,n, (10, 3), we will create double-dominated vertices at locations (9, 3) and (10, 4). Hence,
it is more efficient just to remove vertex (10, 3) from the grid in creating G′

10,10. This is also
true for (0, 5), (5, 0), (7, 12) ∈ V k. In fact, noncorner adjustments will always create two or
more double-dominated vertices when moved to Gm,n by the nature of the slant grid. However,
there are cases that occur at the corners of the grid graph where we actually can remove more
exterior vertices than the number of double-dominated vertices created by moving the exterior
vertex to Gm,n.

The corner adjustment procedures in [11] will create minimum dominating sets for Gm,n, but
those dominating sets will not be efficient since they create possibly multiple double-dominated
vertices which would need to be removed from the grid. Below, we look at how these corner
adjustments lead to grid vertex removals so that there is an efficient dominating set of the
resulting graph. We break the cases into whether k is even or odd.

We begin with the odd cases. Figure 7 shows that when k = 1, there are dominators on the
boundary at locations (0, 1) and (3, 0). To move these dominators to Gm,n in locations (1, 1)
and (3, 1) creates double-dominated vertices at (1, 2), (2, 1), and (3, 2). It is more efficient just
to remove vertices (1, 1) and (3, 1), shown in gray, from Gm,n to create efficient domination
around that corner. When k = 3, Figure 7 shows that there are boundary dominators at (0, 3)
and (4, 0). As before moving those vertices to Gm,n creates double-dominated vertices at (1, 2),
(1, 4), (3, 1) and (4, 2). It is more efficient to just remove the vertices (4, 1) and (1, 3), shown
in gray, to create an efficient domination of the resulting graph.

When k is even, Figure 8 shows that some efficiencies can be realized by moving boundary
dominators to Gm,n. When k = 0 we simply remove the boundary dominator at (0, 0) and
Gm,n is still efficiently dominated around that corner. When k = 2, we combine the boundary
dominators (1, 0) and (0, 2) to form a dominator at (1, 1) to create one double-dominated
vertex (2, 1). Hence we remove two boundary dominators and only have to remove one vertex
(2, 1) from the Gm,n to have efficient domination around that corner. Finally, when k = 4,
we have two boundary dominators at (2, 0) and (0, 4). In making the adjustment from [11] to
form a minimum dominating set, we move dominators at (2, 0) and (1, 2) to (2, 1) and (1, 3)
respectively while removing the dominator at (0, 4). This removes two boundary dominators,
(2, 0) and (0, 4), while creating a dominating set in Gm,n that double-dominates the vertices
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(0,1)

(3,0)

(0,3)

(4,0)

Figure 7. Corner Adjustments for Cases Where k = 1 and k = 3

(3, 1) and (2, 3). Hence, we remove vertices (3, 1) and (2, 3) from Gm,n to create efficient corner
domination. Note that we could just as well have removed vertices (2, 1) and (1, 4) and achieved
the same net result.

(0,0)

(0,2)

(1,0)

(0,4)

(2,0)

Figure 8. Corner Adjustments for Cases where k = 0, 2, 4

5. Upper Bounds for ε−
v (Gm,n) using Slant Grids

In this section we use the results from the previous section to determine an upper bound for
the minimum number of vertex removals from Gm,n needed to achieve an efficient dominating
set of G′

m,n. Given Gm,n, we overlay a slant grid Sk(2, 1), for some k, over Gm+2,n+2 to form a
set of vertices that dominate the vertices in Gm,n, but not all of them are contained in Gm,n.
Any vertex in v ∈ V (Gm,n) that is dominated by an exterior vertex in V (Gm+2,n+2) − V (Gm,n)
will be a potential vertex to be removed from Gm.n. In fact, if v is not located around a corner
of Gm,n, then it is most efficient to remove v from V (Gm,n) (along with its incident edges).
Around the corners of Gm,n, when k is odd or k = 4, we will also just remove the vertex v.
However, when k = 0 or k = 2, we actually remove more vertices from the boundary for every
double-dominated vertex created. Hence, we would like to maximize the number of times we
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have the opportunity to create the scenarios at a corner where k = 0 or k = 2.

Before that discussion, if we could count the number of dominators that are on the exterior
and subtract off the number of dominators not on the exterior, this would give us an upper
bound on the number of vertices needed to be removed from Gm,n in order for the dominators
in V k ∩ V (Gm,n) to form an efficient dominating set. This upper bound can be lowered by four
vertices if each corner adjustment results in cases where k = 0 or k = 2. In [11], we show that

⌊
(m + 2)(n + 2)

5

⌋
≤ |V k| ≤

⌊
(m + 2)(n + 2)

5

⌋
+ 1.

By extension of this idea, it follows that
⌊

(m)(n)
5

⌋
≤ |V k ∩ V (Gm,n)| ≤

⌊
(m)(n)

5

⌋
+ 1.

Combining these two ideas above, we have the following.

Lemma 1. If ε−
v (Gm,n) is the minimum number of vertices that need to be removed from

V (Gm,n) in order to create an efficient graph, then

ε−
v (Gm,n) ≤

( ⌊
(m + 2)(n + 2)

5

⌋
+ 1 −

⌊
(m)(n)

5

⌋ )
.

This bound can be improved further by maximizing the number of adjustments at the
corners that lead to more removals from the boundary of Gm+2,n+2 than would need to be
removed from Gm,n, i.e. cases where the corners have an abundance of k = 0 or k = 2 cases.
In what follows, we show, for each 4 ≤ m ≤ 8 and n ≥ m, the configuration of the slant grid
(choice of k) that allows for the minimum number of vertices to be removed from the grid
graph to create an efficient subgraph in this way.

When m = 4, in Figure 9, we show that k = 0 allows for the same case to show up in the
lower left portion of the grid as well. For the grid graph G4,4 this scenario shows up in all four
corners. By inspecting all five possibilities (k = 0, 1, 2, 3, 4), we can see that this case minimizes
the number of grid vertices needed to be removed in order to achieve efficient domination in
the resulting graph. When n = 4, we note that we remove zero vertices to achieve efficient
domination, as was noted in [12]. As n progresses from 4 to 8, we see that the corners on
the right-hand-side of the figures have different configurations. Upon removing the vertices as
dictated by the specific type of corner adjustment, we create efficient augmented grids.

Note that in the 4 × 9 case (not shown), that the corner removals present in the 4 × 4 case
reappear, allowing for only the removal of two vertices (those present in the interior of the 4×7
and 4×8 cases). Likewise, the 4×10 case will have the same corner removal pattern as the 4×5
case, and so on. However, the 4 × 10 case will have two more vertices removed compared to the
4 × 5 case, namely vertices at locations (1, 5) and (4, 5). So, the same corner removal pattern
will appear from these five starting positions for every increase in n by 5. For each increase
in n by 5, we will need to remove two extra interior vertices of the grid graph as compared
to 4 × (n − 5). To illustrate this more concretely, compare the removal pattern for G4,12 in
Figure 10 to the removal pattern of G4,7 in Figure 9 to see that the corner adjustments are the
same but two extra vertices at (1, 10) and (4, 10) must be removed in forming G′

4,12 because
of the cyclical pattern in slant grids. We have indicated the vertices (1, 5), (4, 5), (1, 10), and
(4, 10) in gray.
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4x4

4x5

4x6

4x7

4x8

Figure 9. Augmented Grid Graphs with Efficient Domination for 4 × k Grids, where
4 ≤ k ≤ 8

When m = 5, the corner configuration in the upper left corner that works best for n =
5, 6, 7, 8 is when k = 2 as shown in Figure 11. By inspection, every other value of k either
removes the same number of vertices or more.

Figure 10. Removal Pattern for G4,12

It is interesting to note that we do not show the ideal case for G5,9. This is because a
dimension of nine is five units more than a dimension of four. If we look at G9,5 the corner
configurations that works best are the same as the case for G4,5. To get the best corner
configuration for G5,9 we would flip the grid along the m = n axis. We show this in Figure 12.

When m = 6, we only show the best corner configurations for G6,6, G6,7, and G6,8 as
configurations of G6,9 and G6,10 are the same as G4,6 and G5,6, respectively. Further, corner
configurations for G6,11, G6,12, and G6,13 are the same as G6,6, G6,7, and G6,8 respectively. The
patterns then repeat for an increase in m or n by five. The minimum number of vertex removals
from these corner configurations are shown in Figure 13.

Finally, as before, we only need to show the optimal corner configurations for G7,7,, G7,8 and
G8,8, since other configurations for these values of m can be found as extensions of cases where
m = 4, 5, 6. These corner configurations inspire vertex removals as shown in Figure 14.

From the base cases shown in Figures 9 through 14 we can show how vertex removals grow
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5x5

5x6

5x7

5x8

Figure 11. Augmented Grid Graphs with Efficient Domination for 5×k Grids, where
5 ≤ k ≤ 8

9x5

Rotate

5x9

Figure 12. Example Showing that Corner Adjustments for G9,5 are the Same as for
G5,9
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6x6 6x7

6x8

Figure 13. Augmented Grid Graphs with Efficient Domination for 6×k Grids, where
6 ≤ k ≤ 8

7x8

7x7

8x8

Figure 14. Augmented Grid Graphs with Efficient Domination for 7 × 7, 7 × 8, and
8 × 8 Grids
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as m and n increase by five. Table 1 shows the minimum number of vertices which need to
be removed from Gm,n using this slant grid method. This will serve as an upper bound for
ε−

v (Gm,n) in these cases.

Grid Graph No. Vertices Removed Grid Graph No. Vertices Removed
G4,4 0 G5,8 4
G4,5 2 G6,6 4
G4,6 2 G6,7 4
G4,7 3 G6,8 4
G4,8 3 G7,7 4
G5,5 3 G7,8 4
G5,6 2 G8,8 5
G5,7 3

Table 1. Bounds on Minimum Number of Vertices to Remove (Base Cases)

For every increase of m or n by five we will have to remove two vertices from the grid graph
since slant grid dominators appear on the boundary of Gm+2,n+2 every five columns or rows.
Hence, we can summarize the upper bounds on vertex removals for Gm,n with the following
result.

Theorem 4. Given m, n ≥ 4, Table 2 gives upper bounds on the minimum number of vertices
to be removed from Gm,n so that the resulting graph has an efficient dominating set. This table
assumes that i and j are non-negative integers.

Grid Graph UB for ε−
v (Gm,n)

G5i+4,5j+4 0 + 2i + 2j

G5i+4,5j+5 2 + 2i + 2j

G5i+4,5j+6 2 + 2i + 2j

G5i+4,5j+7 3 + 2i + 2j

G5i+4,5j+8 3 + 2i + 2j

G5i+5,5j+5 3 + 2i + 2j

G5i+5,5j+6 2 + 2i + 2j

G5i+5,5j+7 3 + 2i + 2j

G5i+5,5j+8 4 + 2i + 2j

G5i+6,5j+6 4 + 2i + 2j

G5i+6,5j+7 4 + 2i + 2j

G5i+6,5j+8 4 + 2i + 2j

G5i+7,5j+7 4 + 2i + 2j

G5i+7,5j+8 4 + 2i + 2j

G5i+8,5j+8 5 + 2i + 2j

Table 2. Bounds on Minimum Number of Vertices to Remove

6. Case by Case Improvements to Upper Bounds

While Theorem 4 provides general upper bounds for cases when m, n ≥ 4, we can improve
those bounds in specific cases. As the authors in [11] point out, for some values of m, minimum
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dominating sets are found by repeatedly flipping the dominating structure of a γ-set. For
example, Figure 9 shows the minimum dominating set for a 4 × 4 grid. This γ-set is also
efficient. In [11] the authors show that the optimal γ-set for a 4 × 7 grid is the γ-set for a G4,4
reflected over column four of the grid, producing the γ-set seen in Figure 15. Note that this
γ-set can be made efficient by removing the vertex (1, 4) shown in gray in the figure.

4x6

4x7

4x8

4x9

4x10

4x11

Figure 15. Efficient Domination of G4,k, 6 ≤ k ≤ 11

In fact, this idea of repeatedly flipping/reflecting the γ-set for G4,4 creates an optimal γ-set
for G4,4+3k, k ≥ 0. These γ-sets have a double-dominated vertex that needs to be removed for
each reflection in order to make the γ-set produce an efficient dominating set. This is shown
for G4,7 and G4,10 in Figure 15 and G4,13 in Figure 16.

4x12

4x13

4x14

Figure 16. Efficient Domination of G4,k, 12 ≤ k ≤ 14

There is a simple pattern that emerges for creating efficient domination from G4,k when k is
not of the form 4 + 3i. Note that for G4,3k we see the same pattern of reflected dominators as
with G4,3k−2 with the last two columns the same as the last two columns of G4,6. For G4,3k+2,
k ≥ 1, while G4,8 has a slightly different pattern, G4,11’s domination pattern is to take the
pattern for G4,6 and reflect the pattern over the sixth column and then flip this pattern (the
last five columns) again vertically. For G4,14 we take the dominating pattern for G4,6 and attach
a reflected and flipped pattern from G4,6 to account for the last five columns (as we did for
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G4,11). We can continue to do this for each of of the grids G4,3k+2. Note that the gray dots
dominate the vertices that would need to be removed for efficient domination in these grids.
Note that the removed vertices grow at a rate of one removal for every pattern “flip” and thus is
a rate of one removal for every three columns, which is lower than the rate of 2

5 as in Theorem 2.
Table 3 summarizes these upper bound improvements.

Grid Graph k UB for ε−
v (Gm,n)

G4,4+(3k−1) k ≥ 1 k

G4,4+(3k) k ≥ 1 k

G4,4+(3k+1) k ≥ 1 k + 1

Table 3. Bounds on Minimum Number of Vertices to Remove for Grids where m = 4
and n ≥ 6

When m = 5, there are several cases where we can improve upon the bounds given in
Theorem 4, namely when n = 5k or n = 5k + 3. While G5,5 is a special case, considerthe
dominating set for G5,8 in Figure 17. This dominating set creates the need to only remove
three vertices from the grid instead of four given by Theorem 4. Notice that in creating a
dominating set from G5,10, we take the dominating set for G5,8 and attach two extra columns
with a flipped dominating pattern of the first two columns of the dominating set of G5,8. To
create the dominating set for G5,13, we take the dominating set for G5,8 and flip columns three
through seven over column eight to create the dominating pattern for columns nine through
thirteen. In each of these we create dominating sets which become efficient when removing the
gray vertices and require fewer vertex removals than Theorem 4 requires.

5x5

5x8

5x10

5x13

Figure 17. Efficient Domination of G5,k, k = 5, 8, 10, 13

In Figure 18, the creation of a minimum dominating set for G5,15 involves taking the domi-
nating pattern for G5,8 and reflecting the first seven columns over column eight. Further, the
dominating set for G5,18 takes the dominating set for G5,13 and reflects columns eight through
twelve over column thirteen to create the dominating pattern for G5,18. This reflecting pattern
continues for all grids of the form G5,5k and G5,5k+3.

Note that the number of vertices that need to be removed grows at the same rate that is
described in Theorem 4, which is two removals for every five columns. However, G5,5 and G5,8
has a dominating set which requires fewer removals than described by Theorem 4, namely two
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5x18

5x15

Figure 18. Efficient Domination of G5,k, k = 15, 18

and three respectively rather than three and four. Table 4 describes the number of vertex
removals needed per value of k when m = 5.

Grid Graph k UB for ε−
v (Gm,n)

G5,5k k ≥ 1 2k

G5,5k+3 k ≥ 1 2k + 1

Table 4. Bounds on Minimum Number of Vertices to Remove for Grids where m = 5
and n = 5k or n = 5k + 3

When m = 6, Figure 19 shows that we can do better than the bounds described in Theorem 4
for the cases where n = 6 and n = 7. For each of these two, we can create efficient dominating
sets for that only require removing three vertices instead of four. Then, using a similar slant
grid approach, we must remove two vertices for every five column we add from that point. So,
in creating an efficient domination for G6,11 and G6,12, Figure 19 shows what those dominating
sets would look like. This pattern will continue for grids of the form G6,6+5k and G6,7+5k.

6x6 6x11

6x7 6x12

Figure 19. Efficient Domination of G6,k, k = 6, 7, 11, 12
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Table 5 summarizes these improvements to the upper bounds for ε−

v (Gm,n) for certain cases
where m = 6.

Grid Graph k UB for ε−
v (Gm,n)

G6,6+5k k ≥ 1 3 + 2k

G6,7+5k k ≥ 1 3 + 2k

Table 5. Bounds on Minimum Number of Vertices to Remove for Grids where m = 6
and n = 6 + 5k or n = 7 + 5k

Finally, when m = 7, there is one case where we can achieve a better upper bound on
ε−

v (G7,k) than described in Theorem 4. It is the case when k = 7. Figure 20 shows that we can
flip the optimal domination pattern for G4,7 over row four and create a γ-set for G7,7 which
requires only three vertices to be removed to achieve efficient domination.

Figure 20. Efficient Domination of G7,7

To check the optimality of these results, we created the following integer programming
model and ran it through a solver (glpk) to find the minimum number of vertices which would
need to be removed to achieve efficient domination for Gm,m, for all values of 4 ≤ m, n ≤ 16.
It verified that the upper bound either achieved by Theorem 4 or the tables in this section
were indeed optimal. However, we do not currently have an approach to prove this result.

in formulating the integer program, we set up three types of decision variables. We let
x(i, j) be a binary variable indicating whether or not the vertex at (i, j) will be selected as a
dominator for G′

m,n. We let y(i, j) be a binary variable indicating whether or not the vertex
at (i, j) will be removed because it is not being dominated. Finally, we let z(i, j) be an integer
variable indicating how many times the vertex at (i, j) will be dominated. If z(i, j) > 1 in the
optimal solution, then we reduce the solution to one, since it could not be removed more than
once. For each of these variables, 1 ≤ i ≤ m and 1 ≤ i ≤ n.

Integer Programming Model for ε−
v (Gm,n)

min ∑m
i=1

∑n
j=1(y(i, j) + z(i, j))

s.t.
Constraints for the Corners
x(1, 1) + x(2, 1) + x(1, 2) = 1 − y(1, 1) + z(1, 1),
x(1, n) + x(1, n − 1) + x(2, n) = 1 − y(1, n) + z(1, n),
x(m, 1) + x(m − 1, 1) + x(m, 2) = 1 − y(m, 1) + z(m, 1),
x(m, n) + x(m − 1, n) + x(m, n − 1) = 1 − y(m, n) + z(m, n),
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Constraints for the Non-Corner Sides of the Grids
x(i, 1) + x(i − 1, 1) + x(i + 1, 1) + x(i, 2) = 1 − y(i, 1) + z(i, 1), 2 ≤ i ≤ m − 1,
x(i, n) + x(i − 1, n) + x(i + 1, n) + x(i, n − 1) = 1 − y(i, n) + z(i, n), 2 ≤ i ≤ m − 1,
x(1, j) + x(1, j − 1) + x(1, j + 1) + x(2, j) = 1 − y(1, j) + z(1, j), 2 ≤ j ≤ n − 1,
x(m, j) + x(m, j − 1) + x(m, j + 1) + x(m − 1, j) = 1 − y(m, j) + z(m, j), 2 ≤ j ≤ n − 1,
Constraints for the Interior of the Grid
x(i, j) + x(i − 1, j) + x(i + 1, j) + x(i, j − 1) + x(i, j + 1) = 1 − y(i, j) + z(i, j), 2 ≤ i ≤
m − 1, 2 ≤ j ≤ n − 1,
x(i, j), y(i, j) ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ j ≤ n,
z(i, j) integer, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

7. Conclusions and Future Work

In this paper, we have established upper bounds on the vertex efficiency deletion number
for grid graphs. These bounds were found using a construction approach in [11] designed to
create γ-sets for grids. These approaches were modified to indicate which vertices in a grid
graph need to be removed in order to create efficient domination from vertices that appear in a
slant grid pattern within the grid. Although there are multiple slant grid overlays, we indicate
the one for each value of m ≥ 4 leading to the minimum number of vertices which need to be
removed from Gm,n, for each n ≥ 4, that leaves an efficient resulting graph.

For certain values of m and n, the bounds given in Theorem 4 could be improved. Using
an integer programming model as a guide, we found improvements to the upper bounds listed
in Theorem 4. Although we believe the bounds listed in this paper are the exact value for
ε−

v (Gm,n) for m, n ≥ 4, it is still an open question to find proofs for this.
Further, we have focused on removing vertices from the grid to produce efficient domination

in the resulting graph. However, we could ask what is the smallest efficient semigrid, one having
no leaves, that contains a given grid Gm,n as an induced subgraph. In other words, what is the
minimum addition to the grid that results in an efficient semigrid. In addition, our approach
to create the upper bounds in Theorem 4 removed vertices on the exterior boundary of Gm,n.
However, we found improvements for certain cases that allowed interior vertices to be removed.
We might ask if there are ways to achieve efficient domination for grids where only interior
vertices are removed. As a quick example, G3,5 has an efficient domination when the interior
vertex at location (2, 3) is removed.
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