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Abstract: To fulfil the requirements of task scheduling for processing massive amounts of
graph data in cloud computing environments, this thesis offers the LGPPSO method, which is
based on Particle Swarm Optimisation. The LGPPSO algorithm considers the task’s overall
structure when initialising numerous particles in order to broaden the search range and raise the
likelihood of finding an approximation optimal solution. We evaluated it in large-scale simula-
tion trials with 100 performance-heterogeneous virtual machines (VMs) using both randomly
generated and real application graphs, and evaluated its effectiveness against the CCSH and
HEFT algorithms. The experimental findings demonstrate that, in both randomly generated
graphs and real graph structure applications, significantly reducing the scheduling duration of
large-scale graph data is the LGPPSO algorithm. For randomly generated 200 and 400 node
tasks, respectively, the scheduling length is shortened by approximately 8.3% and 9.7% on aver-
age when compared to the HEFT algorithm. The LGPPSO technique minimises the scheduling
length for actual graphical structure applications by an average of 14.6% and 16.9% for the
Gaussian 100 and 200 node examples, respectively.

Keywords: Cloud Computing, Large-scale Graph Data, Task Scheduling, Particle Swarm
Optimization, Efficiency Optimization

1. Introduction

The study and use of large-scale graph data processing techniques in cloud computing envi-
ronments has drawn more attention as the information era progresses. Graph data is a naturally
occurring, complex data structure that is widely used in traffic management, bioinformatics,
social networks, and other domains. Processing graph data efficiently and in real time has
become a major challenge for both commercial and scientific applications and research [1, 2].

While cloud computing offers numerous benefits for managing huge amounts of graph data,
as a generic processing framework, since cloud computing is still in its infancy, processing
large amounts of graph data involves a number of important technological challenges [3]. It
is challenging to directly apply traditional techniques to graph data processing, particularly
for applications like online transaction processing, because graph computation and distributed
parallel processing involve intricate processes that call for numerous iterations and data commu-
nications.There are two primary obstacles for large-scale graph processing in cloud computing
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settings:

First off, processing huge graphs computationally takes a while. For example, computing
PageRank takes roughly thirty processing iterations, which can be very time- and resource-
consuming [4,5]. Common PCs are used as cloud computing nodes, and because of the lengthy
processing durations, individual node failures are unavoidable. Thus, in order to lower the fault
recovery overhead during large-scale graph processing and to increase computing stability and
efficiency, efficient fault-tolerance management techniques are required [6].

Secondly, because graph computing subtasks are strongly coupled, the failure of one subtask
might cause other subtasks to fail as well, adding to the complexity of recovery processing [7].
Thus, in order to minimise the overhead associated with fault recovery during large-scale graph
processing, minimise the need for repetitive calculation, and enhance the computing stability
and efficiency of large-scale graph processing, an efficient fault tolerance management method
must be taken into consideration [8].

By adding several particle initializations, the LGPPSO algorithm broadens the scope of the
solution space search and raises the probability that the algorithm will find a nearly optimum
solution [9]. Using both real application graphs and randomly generated graphs in a large-
scale simulation experiment with 100 performance-heterogeneous virtual machines, we verify
the efficacy of the LGPPSO algorithm in scheduling large-scale graph data processing tasks.
The LGPPSO algorithm successfully lowers the resource leasing cost and schedule duration,
as demonstrated by the experimental findings [10]. The advantage of the LGPPSO algorithm
in increasing task scheduling efficiency and decreasing resource overhead is demonstrated by
comparison with the HEFT and CCSH algorithms. This provides a workable solution for cloud
computing environments’ scheduling of large-scale graph data processing activities.

2. Storage Management and Graph Data Models

2.1. Graphical Data Models

Graph theory is a significant area of mathematics that uses a graph as its research topic.
Supergraph theory, polar graph theory, topological graph theory, and other ideas that aid in
the graph’s ability to depict the real world from a number of perspectives can all be built
from a basic graph [11]. Large-scale graph data management nowadays uses a wide variety
of data models. For example, simple and complex node graph models are categorised based
on the complexity of the nodes in the graph, while hypergraph and simple graph models are
categorised based on the number of vertices that can connect to an edge. The vertices and
edges of any model, be it a simple graph model, hypergraph model, simple node model, or
sophisticated node model, may have properties [12].

1. basic graph models. We refer to simple graphs as hypergraphs, not the simple graphs of
graph theory. An edge in a basic graph can only join two vertices, which makes loops
possible. Processing and storing simple graphs is comparatively simple, and for general
applications like PageRank computation and shortest path queries, the expression capa-
bilities of the simple graph are perfectly capable of handling them. Large-scale graph
data processing and storage have been organised using the simple graph model by Pregel,
Hama, and other systems [13].

2. Model of hypergraph. A graph’s edges can link any number of vertices. In this approach,
the graph’s edges are referred to as hyperedges. Hypergraphs are more useful and hold
more data than the straightforward graphs shown above because of this characteristic.
An article, for instance, is represented by a graph vertex, and two articles with the same
author are represented by each edge. A is the author of three different articles: v1 (authors
A and B), v2 (authors A and C), and v3 (authors A and D).
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The basic graph storage model is shown in Figure 1, where three independent edges e1, e2, e3 =
{v1, v2} , {v1, v3} , {v2, v3} , cannot immediately remember that author A is the writer of three
articles v1,v2 ,v3 at the same time. The hypergraph storage concept is shown in Figure 1,
where the hyperedge e1 = {v1, v2, v3} directly preserves the information that A is the author
of 3 articles v1,v2 ,v3. Hypergraph models can be used to model applications with complex
connections, such as social networks, bioinformatics networks, etc. Hypergraph models are
supported by graph database systems like Trinity to handle massive amounts of graph data.

Figure 1. Simple and Hypergraphs

2.2. How the Graph Data Is Stored

Currently, simple graph and hypergraph, two primary data models with somewhat different
organisational storage formats, are employed in large-scale graph data management systems.
Both models are capable of handling directed and undirected graphs; directed graphs are the
default. An undirected graph is a kind of directed graph since its edges are equivalent to two
directed edges [14]. The orientation of edges in a graph will not be the subject of the discussion
that follows.

The data models used by NoSQL databases mostly fall into the following categories: graph
storage, key-value storage, document storage (Document Store), column family storage (Col-
umn Family Store), and additional categories [15]. CouchDB and MongoDB are two common
systems that use this store architecture. The document storage model in the storage format is
more versatile and better suited for storing system logs and other unstructured data [16]. On
the other hand, graph data arranged according to adjacency tables or adjacency matrices is less
well-suited for the document storage approach. Furthermore, the document storage model’s
reduced processing efficiency, which is intended to facilitate flexibility, may potentially impede
large-scale graph data management operations. While the standard row-oriented storage model
performs better for exhaustive traversal, the column family storage model is better suited for
processing random queries on a column. This storage model is commonly used by BigTable,
Hbase, Cassandra, and other systems. Only a few distributed graph databases, like [17], employ
the associated research on graph storage model, which is still not ideal, to store graph data.

Large-scale graph data storage is better suited for the Key-Value storage paradigm when
compared to the other three storage formats. While the Key-Value storage architecture is ideal
for querying or traversing through primary keys, it is not well suited for complicated condi-
tional queries. Its basic storage model allows enormous data storage and high concurrency
query execution. Systems like as SimpleDB and Dynamo are typical users of this paradigm.
The Key-Value paradigm is ideal from the perspective of graph processing, such as PageRank
computation, which doesn’t require intricate queries. If the graph data is organised in an adja-
cency table, the source vertices of the graph can be used as the Key and the source vertex values,
outgoing edges and edge information can be used as the Value. The Key-Key-Value storage
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model was proposed in literature [18] by fusing the standard Key-Value storage architecture
with the Semantic Web. The Key-Key-Value model arranges Alice and Bob’s friendship into a
ternary connection, ¡Alice, Bob, FriendShip¿, using the social network as an example. Because
this architecture stores richer data than the conventional Key-Value model, it is possible to
increase spatial locality by performing data migration and merging in a way that minimises the
number of remote reads required for query processing, hence increasing the efficiency of data
reading.

Additionally, in order to address the consistency control issue in a distributed context when
the graph data is modified, distributed graph databases must have a transaction function.
Trinity, HyperGraphDB, and other entities assert that they facilitate consistency control and
transaction mechanisms . There is no consistency maintenance issue if the graph data is kept on
an HDFS-type distributed file system because it does not permit update and random insertion
operations .

The four primary storage models for NoSQL databases were covered above. Figure 2 shows
how these four fundamental storage models are compared in literature [19] based on the amount
of data to be managed and the two-dimensional model’s complexity.

Figure 2. Comparison of the 4 Main Storage Models for NOSQL Databases

As can be seen from Figure 2, the graph database based on the graph storage model has
the highest complexity and stores the graph data at a lower size, although it can also manage
more than 1 billion vertices and their corresponding edges. In contrast, Key-Value storage has
the lowest complexity and can store data in very large sizes.

2.3. Index Structure of Graph Data

In traditional relational databases, indexing is a crucial technology. It includes bitmap, hash,
and B + tree indexes, among others. As the technology matures, it can increase the efficiency
of processing data queries, particularly when the amount of data returned by the query is
significantly less than the original data. If the query results in a larger amount of data, the
processing performance is better; however, if the query results in a very small number of access
to a lot of useless data, resulting in a waste of computational resources and query inefficiency,
you can traverse all the subgraph data according to the query conditions. Therefore, by creating
the appropriate indexes, you can effectively solve Appropriate index creation is a good way to
tackle this problem.

In a cloud computing environment, the source data of a large-scale graph is kept on a dis-
tributed storage system, and the created indexes likewise need to be distributed. The graph’s
index file will be very massive if the graph’s original data set was very large. The remote en-
vironment and data update latency further compound the problem of index maintenance. As
a result, maintaining and storing graph data indexing in a cloud computing environment is a
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highly challenging task. Based on intended use and actual impact, the index can be divided into
two main groups: In cloud computing environments, the first is to make generic queries and
index construction easier,which helps to enhance the effectiveness of data search, primarily in
distributed graph databases; the second is to expedite computation and index creation, primar-
ily in the context of computational processing of the application’s graph, including clustering
analysis, shortest path computation, and PageRank computation.

Graph data is not particularly well-suited to many of the indexing strategies now in use
in cloud computing settings. Nevertheless, graph data storage can make use of the majority
of these indexing strategies. There are two categories within the existing indexing structure
for cloud data management: sharing-nothing cluster structure and indexing for P2P network
structure. A secondary indexing method called CG-index was proposed in literature [20] for
handling large-scale data queries in cloud computing environments. In order to create a global
index, or CG-index, it first creates a local B +tree on each data slice to serve as an index slice.
Next, it arranges the computing nodes into an Overlay structure and publishes each computing
node’s B + tree slices to the Overlay in accordance with the Overlay’s routing protocol. This
index is both scalable and adaptable. A multidimensional indexing system called RT-CAN was
developed by literature [21] to offer effective query services in cloud computing environments
by combining the capabilities of R-tree and the CAN protocol. A multidimensional index called
MIDAS, which is built on distributed KD-tree, was also proposed in literature [22] to handle
range, multidimensional, and k-nearest-neighbor queries in P2P environments. A distributed
B-tree index structure that is scalable, adaptable, fault-tolerant, and general is suggested in
literature [23]. The literature [24] suggests EMINC, a multidimensional index for cloud data
management that offers quick query processing and effective index maintenance, along with
using R-tree and KD-tree to arrange data records.

The impact of the generic indexing method in the cloud computing environment is not
immediately apparent while processing graph queries since it does not take the graph structure’s
properties into account. The distributed graph database is optimised for graph data, whether it
is used for indexing or data storage.Neo4j indexes fall into two kinds [18]: full-text indexing and
indexing hit rate sorting are provided by a standalone Lucene index, which can also be used in
conjunction with the database’s tree-structured index to increase query efficiency. Neo4j may
be set up on the graph’s edges and vertices, and by using the cache’s index, you can quicken the
search even more. The transaction management method must be used for index maintenance
activities like deletion and updating. Prior to adding a new index value for the update, the old
index value must be deleted.

Similar to Neo4j, InfiniteGraph offers Lucene indexing as well as built-in indexing. at the
two-tier storage architecture of HyperGraphDB, the index is an essential component of the
storage layer; at the model layer, the Key is sorted and numbered by UUID and an index is
constructed upon it. A Key can correspond to many sorted Values and supports Value sharing.
The index file contains a caching mechanism that can offer persistent metadata information for
querying and other operations. It is stored in B-tree format. In order to retrieve the names
of graph vertices, edges, and other associated information, Trinity database offers two index
structures: Hash and Trie tree. This can help to narrow down the number of matches for
strings that share prefixes.

Cloud computing platforms are the primary implementation of indexing to facilitate graph
computation processing. The Hadoop system’s Shuffle process and Reduce process are discussed
in literature [14]. These processes improve dynamic incremental hash indexing and caching
technology to lower disc IO costs during the Shuffle process and increase CPU utilisation. In
contrast, HaLoop increases the performance of Hadoop iterative processing by indexing and
caching the inputs and outputs of the Map task as well as the Reduce operation. In the

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 135–148



Rui Shang 140
literature [20], a Trojan indexing technique for MapReduce connection operations is proposed.
This technique establishes an index by reconstructing the slice information and Key value,
ensuring that the data that needs to be connected is located in the same slice. The goal is to
reduce the amount of network communication required for the connection operation. Since the
MapReduce model is a general computing paradigm, the Hadoop processing platform’s index
is likewise general and not particularly tailored to the large-scale graph iterative processing.

3. Segmentation Strategies for Graph Data

Large-scale graph processing in cloud computing environments requires distributed parallel
processing. Reducing the coupling between the subgraphs of distributed processing is crucial
to accomplishing effective parallel processing because of the inherent connectivity of graph
data and the strong coupling of graph computing. Effective graph splitting is a key tactic for
establishing decoupling. A logically complete graph is first divided into multiple pieces, one
of which is installed on each distributed storage system node that is in operation. The next
step in processing the graph is to begin a compute task for each subgraph that has been saved
in the distributed storage system. Once each subgraph has undergone the identical processing
procedure, the processing of the entire large graph is finished.

3.1. Graph Partitioning Principle

Even though parallel processing can boost efficiency, message transmission between jobs
during or after task execution is required due to the connection between subgraphs. This mes-
sage communication is costly and a bottleneck in the efficiency of graph processing. Before the
large graph is stored or processed, it can be divided into multiple subgraphs of manageable
sizes using a good graph partitioning algorithm, provided that the subgraphs have low connec-
tivity between each other and high connectivity within the subgraphs. This way, a significant
portion of the messages can be processed locally and directly, saving on communication costs
and increasing the system’s overall operational efficiency.

Achieving greater partitioning impact and realising massive graph partitioning is a difficult
task in cloud computing environments. When dividing a large graph into multiple subgraphs,
it is crucial to follow two basic principles: the first is to reduce connectivity between subgraphs
and increase connectivity within subgraphs, which is particularly appropriate for the distributed
parallel processing method used in cloud computing; the second step involves considering the
subgraph scale balance, ensuring that each subgraph’s data scale is balanced and free from
significant skewness. This will help to reduce the impact of the ”bucket effect” during task
synchronisation control and prevent an excessive difference in the execution times of the parallel
tasks from the data scale perspective. Minimise the ”bucket effect”’s influence on the task
synchronisation control procedure. It is, of course, necessary to manage the time complexity
of large-image segmentation within a tolerable range. The outcomes of three distinct graph
partitioning methods are contrasted in Figure 3. The effect is not optimal if one only takes into
account the connectivity or data balance of subgraphs; however, by taking these two factors
into account simultaneously, the efficiency of distributed parallel processing can be greatly
increased.

3.2. Single-indicator Splitting Technique

The simplest graph partitioning method, if we limit our analysis to data load balancing
as a single measure, is the hash approach. In this method, the graph vertex IDs are hashed
to divide the data into a predetermined number of slices once the number of slices is set.
This segmentation technique is particularly effective; its time complexity is O(n), and it can
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Figure 3. Three Image Segmentation Effects

be finished before the slice operation is finished in the graph processing or graph data loading
process. A well-thought-out hash algorithm can, in some cases, prevent data skewness and bring
each subgraph’s data size very close to the same. The locality of the graph data is not taken
into consideration by Hash, and even the original data’s locality cannot be maintained. The
frequent message exchanges between the jobs processing subgraphs will result in a significant
network communication overhead, notwithstanding the Hash approach’s ease of implementation
in cloud computing environments.

You may employ clustering techniques to minimise the correlation between subgraphs and
raise the correlation within them, if you see the convergence of subgraphs as a single indication.
The impact is rather evident. Mahout, an open-source project from Apache, provides a detailed
explanation of the distributed clustering technique in a cloud computing environment. However,
time costs are a crucial factor to take into account because clustering is usually an iterative
process. Furthermore, the skewness of the data size between the clusters is typically ignored
by clustering techniques, which increases the ”bucket effect” in graph processing by potentially
causing a significant disparity in the data size of the partitioned subgraphs. Yahoo Research
revealed that even if the initial size of the graph data is quite vast, the final clusters are still
significantly smaller, It reduces the subgraph segmentation’s temporal complexity. This finding
led Yahoo Research to develop the ”Local Partition” technique, whose running time is directly
proportional to the size of the cluster in the final output and independent of the size of the
graph’s initial input data, enabling the division of larger networks.

3.3. Multi-Indicator Splitting Technique

Several researchers have also attempted to take into account multiple indexes, such as sub-
graph data size balance and subgraph convergence simultaneously. A k-graph partitioning
technique for distributed P2P networks was published in the literature [18]. A three-step pro-
cedure is used in the literature [19] to accomplish large-scale graph segmentation: (1) create
a weighted depth-first search tree; (2) divide the big graph into a number of equal subgraphs;
and (3) use iterative processing to reduce the correlation between subgraphs.By rearranging
rows and columns and aligning the rows and columns of a big graph in a consistent manner,
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the GBASE system clusters the adjacency matrix of the stored graph data by utilising seg-
mentation methods that are already in use, such as METIS and Disco. Rearranging a large
matrix into several uniform regions, forming chunks, and assigning each block to a processing
task helps to partially solve the data balancing problem by ensuring that the subgraphs within
the block are closely linked and the link between the blocks is loose.

4. Performance Evaluation and Analysis

The HEFT algorithm, which was introduced in [20], is a well-liked option since it might
result in a shorter scheduling period for large-scale graphical data processing task scheduling
algorithms. The large-scale graphical data processing scheduling length and resource leasing
cost can be balanced for the characteristics of on-demand resource leasing in a cloud computing
environment by using the CCSH algorithm, which was first presented by [21]. Therefore, in
order to verify the effectiveness of the LGPPSO algorithm, the heuristics found in [20] and [21]
are chosen as the baseline algorithms for comparison. The main metrics for evaluation are the
scheduling time of the activity and the resource leasing cost.

4.1. Experimental Set-up

One hundred virtual machines with varying processor performance and a fully connected
mesh topology make up the cloud computing simulation environment. There is a uniform
distribution of CPU frequencies between 1.33GHz and 4.0GHz, and there is a 100Mb/s network
bandwidth. The cheapest virtual machine costs $0.5 per compute unit. Real application
graphs and randomly generated graphs were the test data utilised in this paper to analyse
the performance of the algorithms. Every graph’s node computational demands are created at
random between the range of 200–1000 nodes. For experimental testing, the transmission-to-
computation load ratio (RCC) is assumed to be 0.1, 0.3, 0.5, or 1.5. The Gaussian elimination
graph model, which is frequently used in network topology analysis and picture clustering
analysis, is the actual application graph that has been chosen.

The LPGPSO method has two parameters: the maximum number of algorithm iterations
(30) and the initial population size (8) of the particle swarm. The average of all experimental
outcomes is calculated across multiple runs. The experimental results of the LGPPSO algorithm
for randomly generating graphs and the real graph structure with the dispatch length as the
fitness function are shown in Figure 4 to Figure 7. Figure 4 through Figure 7 display the
experimental results of the LGPPSO method for randomly generated graphs and real graphical
structures, using scheduling length and resource leasing cost as the fitness function. Figure 8
to Figure 11 display the experimental outcomes of the LGPPSO algorithm using scheduling
length and resource leasing cost as the fitness function.

4.2. Simulation Experiment Results and Analysis

Comparing the LGPPSO algorithm against the HEFT algorithm, Figure 4 and Figure 5
demonstrate how much shorter the scheduling length is for randomly generated large-scale
graph data. For random 200 and 400 node tasks, the average scheduling length decrease is
around 8.3% and 9.7%, respectively. The real graph structure application can also use the
LGPPSO algorithm developed in this paper, as demonstrated by Figure 6 and Figure 7, which
also show that the scheduling duration is decreased by an average of 14.6% and 16.9% for the
Gaussian 100 nodes and 200 nodes examples, This is primarily because the LGPPSO algorithm
suggested in this paper is not appropriate for the large-scale graph structure, and the HEFT only
schedules the tasks with the highest priority to the earliest machine to execute them. It does
not take the graph data structure as a whole into consideration. The approach for scheduling
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tasks based on particle swarm optimisation presented in this study initialises many particles,
this increases the possibility of discovering a nearly perfect solution and widens the search area
in the solution space. On the other hand, the job scheduling technique based on particle swarm
optimisation presented in this study initialises numerous particles, expands the range of the
solution space search, and raises the probability of finding a close to optimal solution. The
task with the highest priority is scheduled to be executed by the earliest completed machine
without taking the graphical data structure as a whole into consideration.

Figure 4. Comparison of Scheduling Lengths for Random 200 Nodes

Figure 5. Comparison of Scheduling Lengths for Random 400 Nodes

Figure 6. Comparison of Scheduling Lengths for Gaussian 100 Nodes
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Figure 7. Comparison of Scheduling Lengths for Gaussian 200 Nodes

Figure 8. Comparison of Resource Rental Costs and Scheduling Lengths for Random
200 Nodes

Figure 9. Comparison of Resource Leasing Costs and Scheduling Lengths for Random
400 Nodes

The objective function designed in this paper using Pareto optimality theory is able to solve
this problem effectively, while the CCSH algorithm is able to save about 40% of the resource
leasing cost but extends the scheduling length by about 10% when compared with the HEFT
algorithm designed in the literature . Figures 8 and 9 demonstrate how the algorithm in this
study reduces the resource leasing cost by about 0.16% and 0.28% and the scheduling length
by approximately 9.3% and 5.6% on average, respectively, when compared to the CCSH algo-
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Figure 10. Comparison of Resource Leasing Cost and Scheduling Length for Gaus-
sian 100 Nodes

Figure 11. Comparison of Resource Leasing Cost and Scheduling Length for Gaus-
sian 200 Nodes

rithm with RCC = 1 and randomly generated nodes of 200 and 400. The LGPPSO technique
developed in this paper can also be used to real-world graphical structures, as Figures 10 and
11 demonstrate. The approach reduces the resource leasing cost by approximately 0.13 percent
and 0.27 percent for RCC = 1 and the scheduling length by 11.14 percent and 13.85 percent
on average for Gaussian elimination graph nodes 200 and 100.

In order to address the issue of effective scheduling and resource leasing for large-scale graph-
ical data processing jobs in a cloud computing environment, we suggest LGPPSO in this work.
By initialising many particles and broadening the solution space search range, the LGPPSO
method increases the likelihood of obtaining a near-optimal solution when compared to classical
heuristics. Based on experimental results, the LGPPSO method efficiently lowers the resource
leasing cost while reducing the scheduling length in applications including real and randomly
generated graphical structures.The LGPPSO algorithm outperforms the HEFT and CCSH al-
gorithms in terms of reducing resource leasing costs and finding a better balance between job
scheduling duration. This demonstrates the efficiency and superiority of the LGPPSO algo-
rithm for handling large-scale graphical data processing jobs and offers a workable optimisation
plan for cloud computing environments’ task scheduling. Prospective avenues for investigation
may encompass additional refinement of the algorithm and its verification over an expanded
array of use cases.
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5. Conclusion

In order to address the issue of effective scheduling and resource leasing for large-scale graph-
ical data processing jobs in a cloud computing environment, we suggest LGPPSO in this work.
By initialising many particles and broadening the solution space search range, the LGPPSO
method increases the likelihood of obtaining a near-optimal solution when compared to classical
heuristics. Based on experimental results, the LGPPSO method efficiently lowers the resource
leasing cost while reducing the scheduling length in applications including real and randomly
generated graphical structures.The LGPPSO algorithm outperforms the HEFT and CCSH al-
gorithms in terms of reducing resource leasing costs and finding a better balance between job
scheduling duration. This demonstrates the efficiency and superiority of the LGPPSO algo-
rithm for handling large-scale graphical data processing jobs and offers a workable optimisation
plan for cloud computing environments’ task scheduling. Prospective avenues for investigation
may encompass additional refinement of the algorithm and its verification over an expanded
array of use cases.
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