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Abstract: For a graph G, two vertices x,y € G are said to be resolved by a vertex s € G if
d(x|s) # d(y|s), where d(x|s) denotes the distance between x and s. The minimum cardinality of
such a resolving set R in G is called the metric dimension. A resolving set R is said to be fault-
tolerant if, for every p € R, the set R — p preserves the property of being a resolving set. The
fault-tolerant metric dimension of G is the minimal possible order of a fault-tolerant resolving
set. The concept of metric dimension has wide applications in areas where connection, distance,
and network connectivity are critical. This includes understanding the structure and dynamics
of complex networks, as well as addressing problems in robotic network design, navigation,
optimization, and facility placement. By utilizing the concept of metric dimension, robots
can optimize their methods for localization and navigation using a limited number of reference
points. As a result, various applications in robotics, such as collaborative robotics, autonomous
navigation, and environment mapping, have become more precise, efficient, and resilient. The
arithmetic graph A; is defined as the graph where the vertex set is the set of all divisors of a
composite number [, where [ = p'p2* - - - p» and the p;’s are distinct primes with p; > 2. Two
distinct divisors x and y of [ are said to have the same parity if they share the same prime factors
(e.g., * = p1ps and y = pips have the same parity). Furthermore, two distinct vertices z,y € A,
are adjacent if and only if they have different parity and ged(x,y) = p; (greatest common
divisor) for some i € {1,2,...,t}. This article focuses on the investigation of the arithmetic
graph of a composite number [, referred to throughout as A;. In this study, we compute the
fault-tolerant resolving set and the fault-tolerant metric dimension of the arithmetic graph A;,
where [ is a composite number.

Keywords: Arithmetic graphs, Simple connected graphs, Fault-tolerant metric dimension,
Metric Dimension, Resolving set
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1. Introduction

Graph theory is the study of graphs, a type of mathematical structure used to depict inter-
actions between two entities. Graphs are one of the most ubiquitous data structures, used in
fields as diverse as physics, sociology, architecture, chemistry, genetics, electrical engineering,
operational research, and linguistics to model a wide range of linkages and processes. In this
paper, we study graph resolvability, an essential concept in metric graph theory that is used in
facility placement problems, networking, robot navigation, mathematical and pharmaceutical
chemistry, and Mastermind games.

Over 3000 problems have been identified as NP-complete. Many practical issues, such as
routing, fault tolerance, coding, embedding, resolvability, and coloring, lend themselves natu-
rally to modeling and explanation using graph theoretical language [1]. Studies of the metric
properties of graphs, such as the metric dimension and fault-tolerant metric dimension, have
become increasingly popular over the past few decades due to their practical applications.

In 1975, Slater (and, independently, Harary and Melter) introduced the concept of the
metric dimension. Recent progress has been made with the introduction of the fault-tolerant
metric dimension [2,3]. Censors are defined as metric base components in [4]. If some censors
fail, we may not have enough data to handle the threat (e.g., fire, intruder). Hernando et
al. developed the concept of the fault-tolerant metric dimension to address such issues [5]. A
fault-tolerant resolving set continues to provide accurate results even if one of the censors fails.
Consequently, the fault-tolerant metric dimension is useful in all scenarios where the traditional
metric dimension has found applications.

Raza et al. investigated the fault-tolerant metric dimension of some families of convex poly-
topes [6]. Fault-tolerant resolvability in specific crystal structures was explored in [7]. Sharma
and Bhat studied the fault-tolerant metric dimensions of a two-fold heptagonal-nonagonal cir-
cular ladder [8]. They demonstrated that such a ladder has the same metric dimension as a
ladder with the same number of rungs. Additionally, they explored its fault-tolerant metric
dimension, showing that the metric basis and the edge metric basis are distinct. For more
information on fault-tolerant metric dimensions, we encourage interested readers to consult the
literature [9-12]. In this paper, we only analyze basic graphs that are connected and undirected.

2. Notations and Preliminary Results

A graph, denoted by the letter GG, consists of two sets: the vertex set, denoted V(G), and
the edge set, denoted E(G). The components of V(G) and E(G), known as the vertices and
edges of G, respectively, form the graph G. In a graph, the length of the path connecting two
vertices is called the distance between those vertices. The distances between two vertices p and
g with respect to the set R are represented by d(p|R) and d(gq|R), respectively. A vertex set
R C V(QG) is said to resolve the underlying graph G if, for any two vertices p,q € V(G), there
exists a vertex x € R that resolves p and ¢q. Two vertices x,y € G are resolved by a vertex
s € G if d(z|s) # d(y|s). There may be multiple resolving sets for a graph. The set V(G) is
trivially a resolving set. The minimum cardinality of a resolving set in G is called its metric
dimension, denoted by 5(G) [13].

A resolving set R is fault-tolerant if, for every p € R, R — p preserves the property of being
a resolving set. Analogous to the metric dimension, the fault-tolerant metric dimension is the
minimum number ['(G) such that there exists a fault-tolerant resolving set of order f'(G).
A fault-tolerant resolving set of minimal order is called the fault-tolerant metric dimension of
G [13]. The objective of this study is to classify arithmetic graphs according to their fault-
tolerant metric dimension. Arithmetic graphs are important in applications such as aircraft
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design, electronic circuit design, computer engineering, and transportation systems because of
their ability to model complex networks.

The arithmetic graph A; is defined as the graph whose vertex set is the set of all divisors
of a composite number [, where | = p{'p2*---p% and p;’s are distinct primes with p; > 2.
Two distinct divisors z and y of [ are said to have the same parity if they have the same prime
factors (e.g., x = pips and y = pip3 have the same parity). Furthermore, two distinct vertices
z,y € A; are adjacent if and only if they have different parity and ged(z,y) = p; (greatest

common divisor) for some i € {1,2,...,t} (see Figure 1) [14].

Figure 1. The arithmetic graph A;, where [ = p;p?p3.

3. Main Results

The main results of this paper are discussed in this section.

Theorem 1. Let A; be an arithmetic graph, where | is a composite number with the canonical
form 1 = plpl, and v,n > 1. Then:

1. B'(A) =2, fory=1,n=1.
2. B'(A) =2n, fory=1,n>1.
3. B'(A;) =6, fory=2,n=2.
4. 0 (A)=(y+1D(n+1)—2, forvy,n> 2.

Proof. The set of vertices for the arithmetic graph A is

Vi = {pl,p3, pip2, 1103, P1P3 }

where 1 < v, 17 < n. We will differentiate the proof into four cases.
Case 1. For v =1 and n = 1, we have

Vi = {p17p27p1p2}-
Consider the set R = {p1,p2} C V;. The distances are calculated as follows:

d(pl | R) = (072)7 d<p2 | R) = (270)7 d(p1p2 ’ R) = (17 1)'

Since all the distances are distinct, R is a resolving set.
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Next, we will prove that R — {v} = R’ is also a resolving set, where v is any vertex that is
a member of R. Let py € R. Then,

R—Ap2} ={m} = R

Now, the distances are:

d(pi | R)=(0), dp2| R) =2, d(pip2| R)=1.
Since all the distances are distinct, R’ is also a resolving set. Therefore, R is a fault-tolerant
resolving set with

B'(A) = 2.
Case 2. For v =1 and n > 2, the set of vertices is

‘/2 = {p17p27p§7 s 7pgap1p2ap1p§7 s 7p1p2}
Consider the set

R= {p17p27p§> s 7pgap1p§7 s 7p¥p727} g VE

Now, we calculate the distances:

dipy | R) =(0,2,2,...,2,1,...,1),
d(ps | R) = (2,0,2,...,2,1,...,1),
dps | R) = (2,2,0,2,...,2,3,....,3),
dpy | R) = (2,2,2,...,2,0,3,3,...,3),
dpip2 | R) = (1,1,...,1,2,...,2)
(p1p2|R) (1,1,3,...,3,0,2,...,2),
dipip? " | R) = (1,3,...,3,2,...,2,0,2),
dpips | R) = (1,1,3,...,3,2,...,2,0)

Since all the distances are distinct, R is a resolving set. Now we will prove that R—{v} = R’
is also a resolving set, where v is any vertex that is a member of R. Let p; € R. Then,

R — {pl} = R/ = {p27p37 s 7pgap1pg7 s ;plpg}

Now, we calculate the distances:

dipi | R) = (2,2,...,2,1,...,1),

ﬂm|Rq=( 2,1,...,1),

d@ﬂRﬁ:@Oﬂwwz3 ,3),
dppe | R =(1,...,1,2,...,2),
d(pp3 | R) = (1,3,.. 302 )
dipips" | R) = (1,3, .. .wzam
dipips | R') = (1,3,.. o3 2,0).

Since all the distances are distinct, R’ is also a resolving set. Therefore, the fault-tolerant
metric dimension of A4; is 27.
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Next, we will prove the minimality of the fault-tolerant resolving set R. Consider the set
—{v} = R”, where v is any vertex that is a member of R'. Let po € R’. Then,

R/ - {pQ} = R” = {pgv s 7pg>p1p%7 <. ap’lyp;]}

Now, we calculate the distances:

dip1 | R") =(2,2,...,2,1,...,1),
d(po | R") =(2,2,...,2,1,...,1).
Since the distances are the same, the set R is a minimal fault-tolerant resolving set. Hence,

the minimum cardinality of the fault-tolerant resolving set is 27.

Case 3. For v, n =2, Vi = {p1, p2. P}, P}, p1p2, p1p3, Pip2, pip3}. Consider the resolving
set

R ={p, p2, D3, P3, p1P3, Pip2} C Vi

Now, we compute the distances:

d(p1|R) = (0,2,2,2,1,1),
d(po|R) = (2,0,2,2,1,1),
d(p?|R) = (2.2,0,2,1,3),
d(p3|R) = (2,2,2,0,3,1),
d(pipa|R) = (1,1,1,1,2,2),
d(p2palR) = (1,1,3,1,2,0),
d(pp3|R) = (1,1,1,3,0,2),
d(pip3|R) = (1,1,3,3,2,2).

Since all the distances are distinct, R is a resolving set. Now we will prove that R—{v} = R’
is also a resolving set, where v is any vertex that is a member of R. Let p; € R. Then,

R — {Pl} =R

R = {p2, 13, 5, p1p5, Pip2}-

d(pi|R") = (2,2,2,1,1),
d(ps|R') = (0,2,2,1,1),
d(pi|R') = (2,0,2,1,3),
d<p2‘R/) = (272’()’ 3, 1)7
d(pip2| ') = (1,1,1,2,2),
d(pips|R) = (1,3,1,2,0),
d(p1p2‘R/) = (17 1,3, 0:2)>
d(pip3|R) = (1,3,3,2,2).

Since all the distances are distinct, R’ is also a resolving set. Thus, the fault-tolerant metric
dimension of A; = 6.
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Now we will prove the minimality of the fault-tolerant resolving set R. Consider the set
R' — {v} = R", where v is any vertex that is a member of R'. Let po € R’. Then, R' — {p,} =

R" = {p}, p3, pip3, Pipa}-
Now, we compute the distances:

d(p1|R”) =(2,2,1,1),
d(ps|R") = (2,2,1,1).

Since the distances are the same, the set R is a minimal fault-tolerant resolving set. Hence,
the minimum cardinality of the fault-tolerant resolving set is 6.
Case 4. For v,n > 2, let

W = {plyp%p%v s ap’lyvpgv cee ap7277p1p27p%p27 <o 7p¥p2} )

{pd. . ppd. 003, pins )
Counsider the set

R={p1,p2, D3, DY, D3s - D3 DD« oo DYD2: PLDS, - s PADS, DEDE, ..., DIPE} C VA

Now, we compute the distances:

d(p1|R) = (0,2,2,...,2,2,...,2,1,...,1,1,...,1,1,...,1,1),

d(ps|R) = (2,0,2,...,2,2,...,2,1,...,1,1,...,1,1,...,1),

d(pi|R) = (2,2,0,2,...,2,3,...,3,1,...,1,3,...,3,3,...,3),
d(p]|R) = (2,2,2,...,2,0,3,...,3,1,...,1,3,...,3,3,...,3),
d(pa|R) = (2,2,2,...,2,0,2,...,2,1,...,1,3,...,3,3,....3),

dps|R) = (2,2,2,...,2,2,0,2,...,2),

dpi|R) = (2,2,2,...,2,2,...,2,0,1,...,1,3,...,3,3,...,3),
dpipo|R) = (1,1,...,1,1,...,1,2,...,2,2,...,2,2,...,2),
d(p’pe|R) = (1,1,3,...,3,1,...,1,0,2,...,2,2,...,2,2,...,2),
d(pps|R) = (1,1,3,...,3,1,...,1,2,...,2,0,2,...,2,2,...,2),
dpp3|R) = (1,1,1,...,1,3,...,3,2,...,2,0,2,...,2,2,...,2),
dipips|R) = (1,1,1,...,1,3,...,3,2,...,2,2,0,2,...,2,2,...,2),
d(pip3|R) = (1,1,1,...,1,3,...,3,2,...,2,2,2,...,2,0,2,...,2),

d(pips|R) = (1,1,3,...,3,3,...,3,2,...,2,2,...,2,0,2,...,2),
d(pips|R) = (1,1,3,...,3,3,...,3,2,...,2,2,...,2,2,0,2,...,2),

dpIpl|R) = (1,1,3,...,3,3,...,3,2,...,2,2,...,2,2,...,2,0).

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 13-32



Muhammad Shoaib Sardar et al. 18

Since all distances are distinct, R’ is a resolving set. This concludes the proof for this
case. O

Theorem 2. Let | be a composite number expressed in its canonical form as | = p?pgpg, where
v,n,& > 1. Then the following holds:

1. B'(A) =4 fory=1,n=1,¢=1.

2. B'(A) =6 fory=2,n=1,{=1.

3. B'(A) =4(y—=1) fory>2,n=1,£=1.

4. B'(A)) =9 fory=2,n=2,{=1.

5. 0(A)=2(v+1)(n+1) =8 fory>2,n>2¢E=1.

6. B'(A) =15 fory=2,n=2,§ =2.

7. 8(A) = (v+ D+ 1D)(E+1) =8 fory>2,n>2,6>2

Proof. The set of vertices for the arithmetic graph A, is given by

Vi = {p1, P4, 15, D12, D13, D118, o, prs, p1D3, 115, D3PS, Ppaps, D1PEPs, Prpaps, p1D3Ps,
DY P2, pioips, pivips |
where 1 < v,n,& < n. We will proceed with the proof by considering seven distinct cases.

Case 1. Fory=1,n=1,£ =1, we have

Vi = {p1, P2, D3, P12, P1P3, D23, P1D2D3 }-

Let us consider the subset

R = {p1p2, p1p3, p2ps, ;ip2ps} C V.

The distances from the vertices to the set R are calculated as follows:

d(p|R) = (1,1,2,1),
d(pe|R) = (1,2,1,1),
d(ps|R) = (2,1,1,1),
d(pip2|R) = (0,1,1,2),

d (pips|R) = (1,0,1,2),

d (paps|R) = (1,1,0,2),
d (p1paps|R) = (2,2,2,0).

Since all the distances are distinct, the set R is a resolving set. Now, we will show that the
set R = R\ {v} is also a resolving set, where v is any vertex in R.
Assume pip, € R. Then,

R' = {p1ps, p2ps, prpaps}-

Calculating the distances for the vertices with respect to R':

d(p|R) = (1,2,1),
d(pe|R') = (2,1,1),
d (ps|R') = (1,1,1),
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d(MPzW) =(1,1,2),
d (pips| ') = (0,1,2),
d (p2ps| ') = (1,0,2),
d<p1p2P3’R> =(2,2,0).

Since all the distances are distinct, R’ is also a resolving set.
Next, we will establish the minimality of the fault-tolerant resolving set R. Consider the set
R" = R'\ {v}, where v is any vertex in R'. Let p;p3 € R'. Then,

R" = {p2p3ap1p2?93}-

Calculating the distances gives us:

d(p1p2|R//) = (17 2)7
d (p1ps|R") = (1,2).
Since the distances are not distinct, R” is not a resolving set. Therefore, the minimum

cardinality of the fault-tolerant resolving set is 4.
Case 2. Fory =2, n, £ =1,

Vi = {p1, D2, D3, P}, P1P2, PiD2, P1D3, D1D3, P2P3; PLP2D3, Py DaD3 b

Let the set R = {pips, p1ps, P13, paps, D1paps, pipaps} C Vi.
Now, we calculate the distances:

d(p|R) = (1,1,1,2,1,1),
d(pa|R) = (1,2,2,1,1,1),
d(ps|R) = (2,1,1,1,1,1),
d(pi|R) = (2,1,2,2,1,3),
d(pip2|R) = (2,1,1,1,2,2),
d(pips2|R) = (0,1,2,2,2,2),
d(pips|R) = (1,0,2,1,2,2),
d(pips|R) = (2,2,0,1,2,2),
d(paps|R) = (1,1,1,0,2,2),
d(p1p2p3|R) (2 272727072)7
d(pipaps|R) = (2,2,2,2,2,0).

Since all the distances are distinct, R is a resolving set.

Next, we will prove that R' = R — {v} is also a resolving set, where v is any vertex in R.

Let p1paps € R. Then, R’ = R — {p1p2ps}-

Now, R’ = {p3pa, p1p3, pips, Pop3, Pepaps}- The distances with respect to R’ are:

d(pi|R') =
d(pz\R/)
d(ps|R') =
)
) =

(pl‘R/ =

d(p1p2 \ R’

1,1,1,2,1

? Y Y

1,2,2,1,1

Y

( )
( )
(2,1,1,1,1),
( 3)
( )

Y

Y

2,1,2,2,
2,1,1,1,2

? Y Y

Y

?
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d(pip2| R) = (0,1,2,2,2),
d(pips|R") = (1,0,2,1,2),
d(pips|R') = (2,2,0,1,2),
(png‘R/) (1,1,1,0,2),
d(pipaps| R) = (2,2,2,2,2),
d(pipaps|R') = (2,2,2,2,0).

Since all the distances are distinct, R’ is also a resolving set.
Finally, we will prove the minimality of the fault-tolerant resolving set R. Consider the set
R" = R — {v}, where v is any vertex in R'. Let pipops € R'. Then, R" = R’ — {p? pap3}.
Now, R" = {p2pa2, p1ps3, pips, pop3}. The distances with respect to R” are:

d<p1p2p3’R//) = (27 27 27 2)7 d(p%p2p3|R//) = (27 27 27 2)

Since the distances are not distinct, R” is not a resolving set. Thus, the minimum cardinality
of the fault-tolerant resolving set is 6.
Case 3. For v > 2, n, £ =1, the set V] is defined as:

Vi ={p1,p2. s, %, - D1, 0112, DAP2, -, P12, P13, DD,
-+, D1D3, Pap3, p1p2p3,p%p2p3, e 7PYP2P3} .

Let the set

R={p,....p0,pip2, ..., PIP2, DiD3, - ., DID3, DiD2D3, - - -, DIP2P3} C Vi

be the resolving set.
Now we compute the distances:

dip|R) = (2,...,2,1,...,1,1,...,1,1,...,1),
dpo|R) = (2,...,2,1,...,1,2,...,2,1,...,1),
dps|R) = (2,...,2,2,...,2,1,...,1,1,...,1),
d(pi|R) = (0,2,...,2,2,...,2,2,...,2,2,3,...,3),
d(p}|R) = (2,0,2,...,2,2,...,2,2,...,2,2,3,...,3),
dp]|R) = (2,...,2,0,2,...,2,2,...,2,2,3,...,3),
dpipo|R) = (1,...,1,2,...,2,1,...,1,2,...,2),
d(pips|R) = (2,...,2,0,2,...,2,2,...,2,2,...,2),
d(pipe|R) = (2,...,2,2,0,2,...,2,2,...,2),

d(plpe|R) = (2,...,2,2,...,2,0,2,...,2),
LL1,001,2,..,2,2,00,2),
=(2,...,2,2,...,2,0,2,....,2),
Pips|R) = (2,...,2,2,...,2,0,2,...,2),

d(plps|R) = (2,...,2,2,...,2,2,...,2,0,2,...,2),
d(paps|R) = (2,...,2,1,...,1,2,...,2,2,...,2),
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d(pipaps|R) = (1,...,1,2,...,2,2,...,2,2,...,2),
d(pipaps|R) = (3,...,3,2,...,2,2,2,0,2,...,2),

d(pIpips|R) = (3,...,3,2,...,2,2,...,2,2,...,2,0).

Since all distances are unique, R is a resolving set.
Now, we will prove that R — {v} = R’ is also a resolving set, where v is any vertex that is a
member of R. Let p? € R. Then, R — {p}} = R'.

R ={p,....p0.pip2, ... D1D2. PiD3s - - ., DID3, DID2D3, - - -, DID2D3 }-

Now we compute the distances in R’

(m|R) =(2,...,2,1,...,1,1,...,1,1,...,1),
(| R) = (2,...,2,1,...,1,2,...,2,1,...,1),
dps|R) = (2,...,2,2,...,2,1,...,1,1,...,1),
(pi|R) = (
(pi|R) = (

PIR)=(2,...,2,2,...,2,2,...,2,2,3,...,3),
dp}|R) =(0,2,...,2,2,...,2,2,...,2,2,3,...,3),

dp]|R) =(2,...,2,0,2,...,2,2,...,2,2,3,...,3),
L 12,000,2,1,.00.,1,2,...,2),
2,...,2,0,2,...,2,2,...,2,2,...,2),
d(pips|R) = (2,...,2,2,0,2,...,2,2,...,2),

dpip|R) = (2,...,2,2,...,2,0,2,...,2),
(p1 L1 1,2,000,2,2,...,2),
d(pips|R) = (2,...,2,2,...,2,0,2,...,2),
(Pips|R) = (2,...,2,2,...,2,0,2,...,2),

dipips|R) = (2,...,2,2,...,2,2,...,2,0,2,...,2),
2,...,2,1,...,1,2,...,2,2,...,2),

L 1,2,00.,2,2,...,2,2,...,2)
d(pipops|R) = (3,...,3,2,...,2,2,2,0,2,...,2),

Y

dpipipSIR) = (3,...,3,2,...,2,2,...,2,2,...,2,0).

Thus, since R’ generates unique distances, it is also a resolving set.
Case 4. For v,n =2, = 1.
Let

Vi = {p1, P2, ps, D1, D3, D12, P02, P13, Pips, D3, P13, paps,
D3Ps, D1P2Ps, PipaDs, PrDaps, DiPaDs | -

Let the set
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R = {pip2, Dip3, PiD5, P1D5, DoD3, P1D2D3, DiDabs, P1PaPs, PiPaps} C Vi

Now, we compute the distances:

d(p1p2p3 ’R
d(pipaps|R) =

=(1,1,1,1,2,1,1,1,1),
=(1,2,1,1,1,1,1,1,1),
=(2,1,2,2,1,1,1,1,1),
=(1,1,2,2,2,1,3,1,3),
=(1,2,2,2,2,1,1,3,3),
=1(2,1,2,2,1,2,2,2,2),
=(0,2,2,2,1,2,2,2,2),
=(1,2,1,1,1,2,2,2,2),
=(2,0,2,1,1,2,2,2,2),
=(2,2,0,2,2,2,2,2,2),
=(2,1,2,0,2,2,2,2,2),
=(1,1,1,1,2,2,2,2,2),
=(1,1,2,2,0,2,2,2,2),
(2,2,2,2,0,2,2,2,2),
(2,2,2,2,2,2,0,2,2).

Since all the distances are distinct, R is a resolving set.
Now, we will prove that R — {v} = R’ is also a resolving set, where v is any vertex that is a

member of R.

Let p1paps € R. Then R — {p1pap3} = R’ such that

Now, we compute the distances for R’

R = {pips, pips, DiD5, D1D3, PaD3; PLD2D3, DiD2D3, PLPaD3, PaDap3 }-
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Since all the distances are distinct, R’ is also a resolving set.
Next, we will prove the minimality of the fault-tolerant resolving set R. Consider the set
— {v} = R” which is also a resolving set, where v is any vertex that is a member of R'. Let
pipaps € R'. Then

= {p3pa, PiP3, PID3, P1D5, DaD3, P1D2D3, DiDaP3 }-

Now we compute the distances for R”:

d(pm|R") = (1,1,1,1,2,1,1),
d(po|R") = (1,2,1,1,1,1,1),
d(ps|R") = (2,1,2,2,1,1,1),
d(pi|R") = (1,1,2,2,2,2,1),
d(p3|R") = (1,2,2,2,2,1,1),
d(pip2|R") = (2,1,2,2,1,2,2),
d(pip2| R") = (0,2,2,2,1,2,2),
d(pips|R") = (1,2,1,1,1,2,2),
d(pips|R") = (2,0,2,1,1,2,2),
d(p1p2|R") =(2,2,0,2,2,2,2),
d(pip3| R") = (2,1,2,0,2,2,2),
d(paps|R") = (1,1,1,1,2,2,2),
d(p3ps|R") = (1,1,2,2,0,2,2),
(p1p2p3|R/) (2,2,2,2,2,2,2),
d(pipaps|R") = (2,2,2,2,2,2,0).

We can see that the distance d(pips|R") = (0,2,2,2,1,2) implies that R” is not a resolving set.
Thus, R is minimal and m(R) = 9.
In the case of v, 7 = 2,£ = 1, we find that the fault-tolerant resolving set R is indeed minimal
with m(R) = 9.
Case 5. For v,n > 2, & =1,

Vi = {p1, D2, D3, DTy - - - s P13 Doy - - - s D3y D1D2, DiD2s - - - » D1 D2, P1D3: DD - - - » PP,
DiD2s -+ D1D2, D1D3s - - s DID3s D2D3s DoD3s - - -  D3D3, D1D2D3s DiD2D3s - - -  P1D2D3,

DID3D3, - - - D1DID3, PIDAD3, - - - D1 PAD3}
Let the set

R= {pia s 7p¥7pga s 7pgap%p27 s 7piyp27p%p37 e 7p’1yp3ap%pga )

DIDY, DiD3s - - - DIDS, D2D3, D3D3s - - -  DAD3, P1D2D3, DID2D3s - - - » D1D2P3s PLDoD3s - - - » DIDID3, DID3D3s - - -
pipaps}t € V.

Now, the distance sets are defined as follows:

dm|R) = (2,...,2,1,...,1),
d(ps|R) = (2,...,2,1,...,1,2,...,2),
d(ps|R) = (2,...,2,1,...,1),
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d(pi|R) = (0,2,...,2,2,...,2,3, ...
d(p?|R) = (2,0,2,...,2,3,...,3),
d(p]|R) = (2,...,2,0,2,...,2),
d(p3|R) = (2,...,2,0,2,...,2),
d(ps|R) = (2,...,2,0,2,...,2),
d(pj|R) = (2,...,2,0,2,...,2),
d(pip2|R) = (1,...,1,2,...,2),
d(pips|R) = (2,...,2,1,...,1,0,2
d(pips|R) = (1,...,1,2,...,2),
d(pips|R) = (2,...,2,0,2,...,2),
d(p2p3|R) = (2,...,2,0,2,...,2),
d(p3p3|R) = (2,...,2,0,2,...,2),
d(pip3|R) = (1,...,1,2,...,2),
dipips|R) = (1,...,1,2,...,2),
(pgpg,]R) (2,...,2,1,...,1),
d(p2ps|R) = (2,...,2,1,...,1,0,2, ...
d(pipaps|R) = (1,...,1,2,...,2),
d(pipaps|R) = (3,...,3,1,...,1,2,...,
(plpgpglR) (3,...,3,1,...,1,2,...,

Since all the distances are unique, R is a resolving set. Now we will prove R — {v} = R’ is
also a resolving set, where v is any vertex that is a member of R. Let p? € R. Then,

R - {p%} = R, = {p% cee 7p’1y7p§7 v 7p1277p1p27p%p27 v

PIDY, P1p3s - -

, D1D3, P2D3, DoD3s - - -

,pgpg, P1p2p3, p%pgpg, -

Pipaps}-

Now, the distances are defined as follows:

d(p1|R') = (2,
d(p2|R) = (

d(p3|R/) = (2,
d(pi|R') = (2,
d(pi|R") = (0,

2.1,
2.1,
2.1,
2.1,

2,...,2,3,. ..

.,2,0,2,. ..
.,2,0,2,. ..
,2,0,2,...
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dpi|R) = (2,...,2,0,2,...,2),

(pipo| R =(1,...,1,2,...,2),

(P2p|R) = (2,...,2,1,...,1,0,2,...,2),
dipips|R) = (1,...,1,2,...,2),

(Pips|R) = (2,...,2,0,2,...,2),

(Pip3|R) = (2,...,2,0,2,...,2),
(P2p3IR) = (2,...,2,0,2,...,2),
dpip3|R) =(1,...,1,2,...,2),
( )=(1,.. )

d(P2P3|R) =

(2,...,2,1,...,1),
dpsps|R) = (2,...,2,1,...,1,0,2,...,2),
d(pipeps|R) = (1,...,1,2,...,2),
d(pipaps|R) = (3,...,3,1,...,1,2,...,2),
d(pipaps|R) = (3,...,3,1,...,1,2,...,2).

Since all the distances are unique, R’ is also a resolving set.
Case 6. For v,n,& = 2, we have:

Vi = {p1, 3, p2, 93, D3, 3, 102, D113, D102, D13, D113, PIDs, Dops, PaD3, 3Ds,

D3P}, Dipaps, rD3Ds, pipap}, DiPAPs, Pipaph, pivips, DipAPE) -

Let the set

R = {p1p3, ip2, 1D, PP, PP, Dip2Ds, 3Ds, Prpaps, Pipaps, D1piDPs,
P1Dap3, DID3Ps, Pipaph, PPIDS, Dpep; | C Vi

Now we calculate the distances:

dp | R)=(1,1,1,1,1,1,2,1,1,1,1,1,1,1, 1),
dip | R) = (1,2,1,2,2,2,2,1,3,1,1,3,3,1,3),
dlp2 | R)=(1,1,2,2,1,2,1,1,1,1,1,1,1,1, 1),
dips | R) = (2,1,2,2,2,2,2,1,1,3,1,3,1,3,3),
dlps | R) =(2,2,1,1,2,1,1,1,1,1,1,1,1,1, 1),
dips | R) = (2,2,2,1,2,2,2,1,1,1,3,1,3,3,3),
dipip2 | R) =(2,2,1,1,2,1,1,2,2,2,2,2,2,2),
d(pip3 | R) = (0,2,1,1,2,1,2,2,2,2,2,2,2,2),
d(pip2 | R) = (2,0,1,2,2,2,1,2,2,2,2,2,2,2),
dipips | R) =(1,1,2,2,1,2,1,2,2,2,2,2,2,2),

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 13-32



Muhammad Shoaib Sardar et al.

26

=

d

dpip? | R) = (1,1,0,2,1,2,2,2,2,2,2,2,2,2,2),
d(p’ps | R) = (1,2,1,0,2,2,1,2,2,2,2,2,2,2),
d(pops | R) = (1,1,1,1,1,1,2,2,2,2,2,2,2,2,2),
d(pep? | R) = (1,1,2,1,1,2,2,2,2,2,2,2,2,2),
d(p?ps | R) = (2,1,1,1,2,1,2,2,2,2,2,2,2,2),
dp?p? | R) = (2,2,1,2,0,2,2,2,2,2,2,2,2,2),
(

(

pops | R) =1(2,1,2,1,2,2,0,2,2,2,2,2,2),

dpp2p3|R = 27272a2727272a0727272a27272)7
2,2,2,2,2,2,2,2,0,2,2,2,2,2),
2,2,2,2,2,2,2,2,2,0,2,2,2,2),

)

2,2,2,2,2,2,2,2,2,2,2,0,2,2).

) = (
) = (
)= (
) = (
> ) = (
i ) = (
2 —
pips | R) = (1,2,1,2,2,0,2,2,2,2,2,2),
2
> ) = (
(p1 ) = (
d(pipaps | R) = (
d(pipaps | R) = (
d(piveps | R) = (
Since all the distances are distinct, R is a resolving set.
Now we will prove that R — {v} = R’ is also a resolving set, where v is any vertex that is a

member of R.
Let pipaps € R. Then R — {pipaps} = R'. Thus,

R' = {p1p3, pip2, 0113, Dps, D3, Dip2ps, D3ps, D1paps, PiDaps, DiP3Ds,
D1P2D3, PiD3Ps, Pipap}, DIPAPE PID3DE | -

To show that R’ is a resolving set, we must demonstrate that for any two distinct vertices
z,y €V}, there exists at least one vertex v € R’ such that d(x | R') # d(y | R').

Assume x,y are any two vertices from V; and not equal. Because R is a resolving set, we
know there is at least one vertex v € R such that d(z | R) # d(y | R).

If v is one of the vertices that distinguishes x and y, then:

1. If v is not pypaps, R’ still contains v and we are done.
2. If v = pipaps, then d(z | R') and d(y | R’) must still differ for at least one vertex in R
other than pypops.

Thus, d(z | R') # d(y | R') holds, proving that R’ is also a resolving set. Therefore, R being a
resolving set implies that any subset of R will also be a resolving set.

This completes the proof that if R is a resolving set, then R — {v} for any v € R is also a
resolving set.

Case 7. For v,n,& > 2,

Vi={p1, p2, b3, DL, Pl DBe-os DY DR D5,
PiP2, Pip2, .-, DID2, PADs, PiDs, .-, PIDs,
plp;w"v P1P3, plpg,..., P1P§,7 P2p3,

P3Ds.- -, P3ps, Papi, ... paph,
pivs. -, pIPY, Pips, ... pipss

P2, ..., PIDS, pipaps, DPDaps, ...,

DID2p3, DIDD3, - - -, DIDIDs3,
p1p2p§7 ey plp?pgv p%pgp& ey
Pipips, Pipaps. ..., Pip2ph,
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PAPIPS, - - -+ DADEDS,
Pip3ps, - pipiDS} -
Let the set
R={pt,... o, P3oooes DY, D3, 15

Pipa, ..., Pip2, Pips, ..., pips,
P13, -, P1PY, DiD3.- ., DADs,
P3Ps, ..., Dip3, Papi,. ... Doph,
Pips. - DIPY, PIDS, -, pIDS,
PID3, ..., RS, Dibaps, PIpaps.- .-
Pip2ps, PLP3D3s-- - PLPIDs,
]91]?2113,’ ceey p1p2p§,,
Pipaps, - .-, PIPEDs,
Pipaps, - - Pip2ps,
PADADS - -, P1PAPS.

pip3ps .-

. pipdps} C Vi

Now, we define the following distributions of p; given R:

)

dp1|R) =(2,...,2,...,2,...,2, 1,1, ..., 1,1, ... )1, .o 1 1,200 0002000020
e 12000002 1010,

dp2|R) =(2,...,2,...,2,...,1,1,...,1,1,2,...,2,1,...,1,2,...,2 1,1,...,1,...,1,1,...,
L...,1,...,1),

d(ps|R) =(2,...,2,...,2,...,2,2,2....,2,1,..., 1,2 ....2.1,....1,1,....1,2,...,2/1,...,
1,...,1,....1).

Next, we present the distributions for p? and p3:

dpiR) =(0,2,...,2,...,2,...,2,1,1,...,1,1,1,...,1,1,...,1,2,2,...,2,...,2,2,...,
2,3,...,3,1,...),

d(p}|R) =(2,0,2,...,2,...,2,...,2,1,1,...,1,2,...,2,1,...,1,1,2,2,...,2,...,2,...,
2,2,3,...,3,1,...,1,3,...,3,1,....1).

Continuing with the distributions for p3 and p3:

d(p3|R) =(2,...,2,0,2,...,2,...,2,1,1,2,...,2,...,2,...,2,1,...,1,3,...,3,1,...,
1,3,...,3,1,...,13,...),

d(p3|R) =(2,...,2,2,0,2,...,2,1,1,...,1,2,...,2,2,...,2,1,...,1,3,...,3,1,...,1,3,
31300003000,

Next, we have the distributions for p3 and p3:
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d(p3|R) =(2,...,2,0,2,...,2,2,...,2,1,1,...,1,2,...,2,...,2,...,2,1,1,...,1,3,. ..,
3,1,...,1,3,...,3),
dp3|R) =(2,...,2,2,0,2,...,2,2,2,...,2,1,1,...,1,2,...,2,1,1,...,1,2,...,2,...,2,
C52,1,1,.0).

Moving on to the distributions involving products:

d(pips|R) =(1,...,1,...,1,2,...,2,2,...,2.1,...,1,2,...,1,...,1,1,2,....,2,
C2,..,2,2,....2),

dp3pa|R) =(2,...,2,1,...,1,2,...,2,0,2,...,2,...,2,1,1,...,1,...,1,2,....,2,
C2,,2,2,...2),

d(pips|R) =(1,...,1,2,...,2,1,...,1,...,1,2,...,2,1,...,1,2,...,2,1,..., 1,1,
2,...,2,2,2,.0),

d(p3ps|R) =(2,...,2,1,...,1,1,...,1,0,2,...,2,1,...,1,2,...,2,1,...,1,2,....,2,
2,...,2,2,....,2).

Continuing, we have the following distributions:

dpip?|R) =(1,...,1,2,...,2,2,...,2,2,...,2,1,...,1,0,2,...,2,1,...,1,2,
L 2,2,..0,2,2,...,2),

dpipd|R) =(1,...,1,2,...,2,2,...,2,2,...,2,2,0,2,...,2,1,...,1,2,...,2,2,
.2,2,....,2),

dpipA|R) =(1,...,1,2,...,2,2,...,2,2,...,2,1,1,1,...,1,2,2,2,2,2, ...,2,0,2,
L 2,1,0001),

dpipd|R) =(1,...,1,3,...,3,2,2,1,1,...,1,2,...,2,2,...,2,2,2,2,2,0,2, ...,
2,1,...,1).

Finally, we address the distributions involving p3p3 and p3p?:

d(psp3|R) = (2,2,2,2,0,2,1,...,1,1,1,1,...,1,3,3,...,3,1,1,...,1,2,...,2,2,...),
d(psp3|R) = (2,2,2,2,0,2,1,1,...,1,1,1,...,1,3,3,...,3,1,1,...,1,2,...,2,2,...).
Since all the distances are distinct, it follows that R is a resolving set.

Now, we will prove that R\ {v} = R’ is also a resolving set, where v is any vertex that is a

member of R.
Let p? € R. Then, we have R\ {p?} = R'.

R ={p},....p0.03, 08,03 .05, Dip2s - - PID2,
PIPs - DD, P1P3 - - PIDS PADS, - - PIPS: DD, - - - DADs,
Pabis - D2D% DS, - - PIDS PIDS, - - PIDS,
P3P, - - DD5, DiDaDs, - - PID2D3, DADADS, - - - DIDADS,
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DID2D3, - - -y DID2DS, DiDAD3, - - -y DLDADS, DIDADE, - - - D] DD,
PIDADE, - iDaDS, DRDEDE, - - DIPADS )

dipr | R) =(2,...,2,...,2,...,2,1,1,...
1,2, .. 2,1,1,...)
1,1

. ey g Ly oo

1,101,

1,1,2,...,

Y Y )

2,1

2,2,2, ..,
..,1 11 1,0,
2,11,

2.1,. ..

111,

2,1,1

.,3,1,...,1,...,1,3,...,3,...),
2,1,

1,2

.2,2,0,2,...,2, ...
L 1,3,...,3,..),
d(p2 | R) =(2,...,2,...,2,0,2,...,2, ...

o)
,2,0,2,...,2,...,2

2,1,1,...,1,2,...
2,1, ...

1

3 PRI

11
2.2
2. ,2,2, .
2....2.1,...
C1,2,...,2
21,
35 FUUUES TUURS TS TUURUS T SO
NUEE I TURNUR FUUUES 15 TURUOE U SO
2 21,1,
=1, 1,1 1,2,0,2,2,.,2),
311,222,
L 1,3,....3,1,...,1,2,...,2),
L1308, 1,2,,2,00),
p1p2p§|R’ :1,...,1,...,1,3,...,3,2,...,2),
1,...,1,3,...,3,2,...,2),

g e ey
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11,22,

1111111
1,2,

1,1

1,2,...,2, ...

1,2, ..

12

21,22

1,202,101, 1, 12

),
2,1,...,1,1,...,1,...
1 1,2,2,00.2,00,2,

1,2,2

g e ey 3 g Ly eeey
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dpipsps | ) =(3,...,3,1,...,1,2,...,2,...),
d(pipips | R) =(3,...,3,1,...,1,2,...,2,...),
dpspips | R) =(3,...,3,1,...,1,2,...,2,...),
dpapipe | R) =(3,...,3,1,...,1,2,...,2,...),
d(pipips | R)) =(3,...,3,1,...,1,2,...,2,...),
dipipaps | R =(1,...,1,...,1,1,...,1,2,...,2),
d(p1p2p3|R/):(1,.. L 1,2,.0.,2),
d(p1p2p5|R'):(1,. L1 1,2)00,2),
dipipsps | R =(1,...,1,...,1,1,...,1,2,...,2),
dpipaps | R =(1,...,1,...,1,1,...,1,2,...,2),
dpipaps | R =(1,...,1,...,1,1,...,1,2,...,2),
dpipsp? | R =(1,...,1,...,1,1,...,1,2,...,2),
dpipspd | R =(1,...,1,...,1,1,...,1,2,...,2).

Since all the distances are unique, R’ is also a resolving set. Now we will prove the minimality
of the fault-tolerant resolving set R. Consider the set R’ — {v} = R”, where v is any vertex
that is a member of R'. Let p? € R’. Then, R — {p}} = R", s

R'={p{,....pL.p% - D% 13- 15,
P1D2, D12, - - - P12, P1D3, D1D3, - - - DI D3,
P13 - - DIDE, DD - - - P1DS,
P2P3, D3, - - -, D3D3. P2p3, - - -, Dl
Pip3. - - PIDS. PID3, - - PIDS,
P3P, - - > D3PS, P1paps,

Pipaps, - - ., PIP2ps,
PID3Ds, - - - s PLD3D3,
p1p2p§7 cee ,p1p2]?§7
PIPaDs, - - -, PIP3Ds,
Pipaps, - -, DID2py,
PiIPADA, - . PIPADS,

PIaps, ... pipaps}.

Then, we have

dp3R") =(2,...,2,...,2,...,2,1,3,...,3,1,3,...,3,1,...,1,...,1,3,3,....3,....,3,....3,
,3,1,3,...,1,...,1,3,...,3,...,1,...,1,3,...,3),

dp}|R") =(2,...,2,...,2,...,2,1,3,...,3,1,3,...,3,1,...,1,...,1,3,3,...,3,...,3,...,3,
,3,1,3,...,3,1,...,1,1,3,...,3,...,1,...,1,3,....,3).

Since the distances are not distinct, R” is not a resolving set. Thus, the minimum cardinality
of the fault-tolerant resolving set is (v + 1)(n+ 1)(§ + 1) — 8. mi
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4. Conclusion

The notion of metric dimension is easily understood. The applications that require the
identification of graph nodes are readily apparent owing to their robust correlation with GPS
and trilateration. On the contrary, the task of precisely determining the metric dimension of
generic graphs is an exceptionally difficult one. In this article, the arithmetic graph A;, where
[ is a composite number, is investigated. The fault-tolerant resolving set and the fault-tolerant
metric dimension of the arithmetic graph A; are computed.
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