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Abstract: In this paper, we study the Aα-spectral radius of graphs in terms of given size
m and minimum degree δ ≥ 2, and characterize corresponding extremal graphs completely.
Furthermore, we characterize extremal graphs having maximum Aα-spectral radius among
(minimally)2-edge-connected graphs with given size m.
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1. Introduction

All graphs considered here are simple and undirected. For a graph G, A(G) denotes its
adjacency matrix and D(G) denotes the diagonal matrix of its degrees. The matrix Q(G) =
D(G) + A(G) is called the signless Laplacian matrix of G. The largest eigenvalue of A(G) is
called the spectral radius of G, and the largest eigenvalue of Q(G) is called the signless Laplacian
spectral radius of G. For any real number α ∈ [0, 1], Nikiforov [17] defined the Aα-matrix of G

as Aα(G) = αD(G) + (1 − α)A(G), which can be regarded as a common generalization of A(G)
and Q(G). The largest eigenvalue of Aα(G) is called the Aα-spectral radius of G, denoted by
ρα(G). For a connected graph G, by the Perron-Frobenius theory of non-negative matrices [17],
ρα(G) has multiplicity one and there exists a unique positive unit eigenvector corresponding to
ρα(G). We shall refor to such an eigenvector as the Perron vector of Aα(G).

The investigation on the extremal problems of the spectral radius and the signless Laplacian
spectral radius of graphs is an important topic in the theory of graph spectra. For related
results, one may refer to [4, 16, 21, 22] and the references therein. Specially, the problem of
characterizing the graph with maximal spectral radius for given size is initiated by Brualdi and
Hoffman [2], and completely solved by Rowlinson [19]. For further investigation, one may refer
to [1, 7, 13, 14, 20, 24] and the references therein. Just recently, one of the hot topics in the
study of the Q-spectrum is to characterize the spectral extreme under the conditions of given
size and graph parameters. Zhai et al. [26] determined the graph with maximal Q−spectral
radius among all graphs with given size, and characterized the graph with maximal Q−spectral
radius among all graphs with given size and clique number (resp., chromatic number). Lou et
al. [15] determined the maximal signless Laplacian spectral radius (Laplacian spectral radius) of
connected graphs with fixed size and diameter. For more results, one may refer to [8,10,25,27].

The Aα-spectral radius of a graph has been widely concerned. However, the results on
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the Aα-spectral radius under edge-condition are still relatively little known. Li and Qin [12]
generalized the conclusion in [26] to Aα-spectral radius for 1/2 ≤ α ≤ 1. Feng et al. [6] and
Huang et al. [9] determined independently the graph having the maximum Aα-spectral radius
for 1/2 ≤ α ≤ 1 among all connected graphs of size m and diameter (at least) d.

A friendship graph is one in which every pair of vertices has exactly one common neighbour,
denoted by Fm

3
for given m ≡ 0(mod3). The join of graphs G and H, denoted by G ∨ H, is the

graph obtained from G ∪ H by joining each vertex of G with every vertex of H. In this paper,
we completely characterize the graphs attaining the maximal Aα-index among all graphs with
given size m and minimum degree δ ≥ 2 for 1

2 ≤ α < 1.

r...
@

@
@
r

HHH
r

���r �
�

�r
�
�
�
r

���
r

@
@
@r

r
�
�
��

B
B
BB

JJ

w

v1

v2

v3

v4

v5

v6

v 2m−5
3

v 2m−2
3

G1
(
d(w) = 2m−2

3

)

r...
@

@
@
r

HHH
r

���r �
�

�r
�

�
�

r
@

@
@r

r
�
�
��

B
B
BB

G2
(
d(w) = 2m−1

3

)
w

Figure 1. G1, G2

Theorem 1. Let 1
2 ≤ α < 1 and G be a graph with m edges and minimum degree δ ≥ 2, and

G1, G2 be the graphs shown in Figure 1.

(i) If m ≥ 24 and m ≡ 0(mod3), then ρα(G) ≤ ρα(Fm
3

), with equality if and only if G = Fm
3

.
(ii) If m ≥ 37 and m ≡ 1(mod3), then ρα(G) ≤ ρα(G1), with equality if and only if G = G1,

where G1 = K1 ∨ (m−7
3 K2 ∪ K1,3).

(iii) If m ≥ 29 and ≡ 2(mod3), then ρα(G) ≤ ρα(G2), with equality if and only if G = G2,
where G2 = K1 ∨ (m−5

3 K2 ∪ P3).

A graph is 2-edge-connected if removing fewer than 2 edges always leaves the remaining
graph connected, and is minimally 2-edge-connected if it is 2-edge-connected and deleting any
arbitrary chosen edge always leaves a graph which is not 2-edge-connected. For graphs of order
n, Chen and Guo [3] showed that K2,n−2 attained the maximal spectral radius among all the
minimally 2-(edge)-connected graphs. Fan et al. [5] proved that K3,n−3 has the largest spectral
radius over all minimally 3-connected graphs. For graphs of size m, Guo and Zhang [8,27] gave
sharp upper bounds on the Q(L)-index of (minimally) 2-connected graphs with given size and
characterized the corresponding extremal graphs completely. Noting that a connected graph
having no cut edges is 2-edge-connected, we have following corollary.

Corollary 1. Let 1
2 ≤ α < 1 and G be a 2-edge-connected graph with m edges.

(i) If m ≥ 24 and m ≡ 0(mod3), then ρα(G) ≤ ρα(Fm
3

), with equality if and only if G = Fm
3

.
(ii) If m ≥ 37 and m ≡ 1(mod3), then ρα(G) ≤ ρα(G1), with equality if and only if G = G1,

where G1 = K1 ∨ (m−7
3 K2 ∪ K1,3).

(iii) If m ≥ 29 and ≡ 2(mod3), then ρα(G) ≤ ρα(G2), with equality if and only if G = G2,
where G2 = K1 ∨ (m−5

3 K2 ∪ P3).

In this paper, we further study the problem of characterizing graphs among minimally 2-
edge-connected graph with maximal Aα- spectral radius. For m ≡ 1(mod3), let G3 (shown
in Figure 2) be the graph obtained from the friendship graph Fm−1

3
by subdividing an edge
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once. For m ≡ 2(mod3), let G4 (shown in Figure 2) be the graph obtained from the friendship
graph Fm−2

3
by subdividing an edge twice. Employing Theorem 1, we can prove the following

theorem.

Theorem 2. Let 1
2 ≤ α < 1 and G be a minimally 2-edge-connected graph with m edges.

(i) If m ≥ 24 and m ≡ 0(mod3), then ρα(G) ≤ ρα(Fm
3

), with equality if and only if G = Fm
3

.
(ii) If m ≥ 37 and m ≡ 1(mod3), then ρα(G) ≤ ρα(G3), with equality if and only if G = G3.

(iii) If m ≥ 50 and m ≡ 2(mod3), then ρα(G) ≤ ρα(G4), with equality if and only if G = G4.

The remainder of the paper is organized as follows. In Section 2, we recall some useful
notions and lemmas that will be used later. In Section 3, we give proofs of Theorems 1 and 2
respectively.

2. Preliminaries

For a graph G, V (G) and E(G) denote the vertex set and edge set of G respectively, and
e(G) = |E(G)| denotes the number of edges in G. For v ∈ V (G), dG(v) or d(v) denotes the
degree of v, NG(v) or N(v) denotes the set of all neighbors of v in G, and N [v] = N(v) ∪ {v}.
For a subset S of V (G), G[S] denotes the subgraph of G induced by S, e(S) denotes the number
of edges in G[S], and NS(v) denotes the set of all neighbors of v in S. For two disjoint subsets
S and T of V (G), e(S, T ) denotes the number of edges with one endpoint in S and the other
in T . Let G − uv denote the graph obtained from G by deleting the edge uv ∈ E(G). Similarly,
G + uv is the graph obtained from G by adding an edge uv < E(G), where u, v ∈ V (G). The
average degree of the neighbors of a vertex vi of G is m(vi) = 1

d(vi)
∑

vivj∈E(G)
d(vj). The degree

sequence of G is the non-increasing sequence of its vertex degrees. Whenever necessary, the
vertices of G can be renumbered so that di ≥ di+1 for 1 ≤ i ≤ n. In that case, we say that G

has degree sequence (d1, d2, · · · , dn), denoted by D(G) = (d1, d2, · · · , dn).
Let G be a connected graph on n vertices and X = (x1, x2, · · · , xn)T ∈ Rn. Then X can be

considered as a function defined on V (G), that is, each vertex xi is mapped to xi = x(vi). One
can find in [17] that

XT Aα(G)X = (2α − 1)
∑

u∈V (G)
x2

ud(u) + (1 − α)
∑

uv∈E(G)
(xu + xv)2,

and for arbitrary unit vector X ∈ Rn,

ρα(G) ≥ XT Aα(G)X, (1)

with the equality if and only if X is the Perron vector of Aα(G).
In order to prove our main results, we need the following lemmas.
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Lemma 1. ( [17]) If G is a graph with no isolated vertices, then

ρα(G) ≤ max{ αd(u) + (1 − α)m(u) | u ∈ V (G) }. (2)

Lemma 2. ( [17]) Let G be a graph with n vertices and ∆(G) = ∆. If α ∈ [1
2 , 1), then

ρα(G) ≥ α∆ + (1 − α)2

α
. (3)

The equality holds if and only if α = 1
2 and G is the star K1,n−1.

Lemma 3. ( [17]) Let G be a connected graph with α ∈ [0, 1) and H be a proper subgraph of
G, then ρα(H) < ρα(G).

Lemma 4. ( [18]) Let G be a connected graph, u and v be two vertices of G. Suppose that
vi ∈ NG(v) \ NG(u) (1 ≤ i ≤ s) and x = (x1, x2, . . . , xn)T is the Perron vector of Q(G), where
xi corresponds to the vertex vi (1 ≤ i ≤ n). Let G∗ be the graph obtained from G by deleting
the edges vvi and adding the edges uvi (1 ≤ i ≤ s). If xu ≥ xv, then ρα(G) < ρα(G∗).

An internal path in some graph is a path v0v1 . . . vs (s ≥ 1, or s ≥ 3 whenever vs = v0) such
that d(v0) > 2, d(vs) > 2, and d(vi) = 2 for 0 < i < s. Li, Chen and Meng [11] proved the
following subdivision theorem.

Lemma 5. ( [11]) Let G be a connected graph with α ∈ [0, 1) and uv be some edge on an
internal path of G. Let Guv denote the graph obtained from G by subdivision of edge uv into
edges uw and wv. Then ρα(Guv) < ρα(G).

A cycle C of a graph G is said to have a chord if there is an edge of G that joins a pair of
non-adjacent vertices of C.

Lemma 6. ( [14]) If G is a minimally 2-edge-connected graph, then no cycle of G has a chord.

For a connected graph, Yu, Wu and Shu [23] gave a sharp upper bound on Q-index in terms
of its degree sequence. The authors of the current paper [28] generalized their result to Aα-index
of a connected graph. The following Lemma is a corollary of our result.

Lemma 7. ( [28]) Let G be a simple connected graph with n vertices and degree sequence
d1 ≥ d2 ≥ · · · ≥ dn. If d1 ≥ s ≥ d2, then ρα(G) ≤ A(d1, s), where

A(d1, s) = 1
2(αd1 + s + α − 1 +

√
(s − αd1 + 1 − α)2 + 4(1 − α)(d1 − s) ).
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Lemma 8. Let 1
2 ≤ α < 1, m ≥ 50, and G5 be the graph shown in Figure 3. Then ρα(G5) <

ρα(G4).
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Proof. Label the vertices is as shown in Figure 1. Let X = (xw, x1, x2, · · · , x 2m−2

3
, xu)T be a

unit eigenvector corresponding to ρ =: ρα(G5) where xw corresponds to w and xi corresponds
to vi(1 ≤ i ≤ 2m−4

3 ) and xu corresponds to u. By the eigenvalue equation ρX = Aα(G5)X,
we have x1 = x2 = x3 = x4 and ρxu = 4αxu + 4(1 − α)x1. It follows that x1 = ρ−4α

4(1−α)xu.
Define Y = (yw, y1, y2, · · · , y 2m−4

3
, yu, yv)T such that yw = xw, yi = xi for 1 ≤ i ≤ 2m−4

3 , and
yu = yv =

√
2

2 xv. Clearly,

2m−4
3∑

i=1
y2

i + y2
w + y2

u + y2
v =

2m−4
3∑

i=1
x2

i + x2
w + x2

u = 1.

Noting that m ≥ 50 and d1(G5) = d(w) = 2m−4
3 , by Lemma 2, we have ρ = ρα(G5) > 2m−4

3 α ≥
16. By (1), we have

ρα(G4) − ρ ≥ Y T Aα(G7)Y − XT Aα(G6)X

= (2α − 1)(−2x2
u) + (1 − α)((x1 + x2)2 + (x3 + xu√

2
)2

+ (x4 + xu√
2

)2 + ( xu√
2

+ xu√
2

)2 − 4(x1 + xu)2)

= (2α − 1)(−2x2
u) + (1 − α)((2 ρ − 4α

4(1 − α)xu)2 + 2( ρ − 4α

4(1 − α)xu + xu√
2

)2

+ 2x2
u − 4( ρ − 4α

4(1 − α)xu + xu)2)

=ρ2 − (4
√

2α − 8α − 4
√

2 + 16)ρ + 16
√

2α2 − 24α2 + 32α − 16
√

2α + 8
8(1 − α) x2

u

>
ρ2 − (4

√
2α − 8α − 4

√
2 + 16)ρ

8(1 − α) x2
u

>0.

Therefore ρα(G5) < ρα(G4). This completes the proof. □

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. We may assume that G is connected. Otherwise, suppose that Hi(i =
1, 2, · · · , k) are k connected components of G, where k ≥ 2. Since δ(G) ≥ 2, then δ(Hi) ≥
2(1 ≤ i ≤ k). For i = 1, 2, · · · , k, let vi be a vertex of Hi, and G∗ be the graph obtained from
Hi by identifying vertices vi. Clearly, ρα(G) < ρα(G∗), and G∗ is a connected graph with m

edges and minimum degree δ ≥ 2. So, in order to complete the proof of Theorem 1, we may
assume that G is connected.

Furthermore, we may assume that G is 2-edge-connected. Otherwise, suppose that
u1v1 ∈ E(G) is a cut edge of G. Since δ(G) ≥ 2, then there exist a path P =
ukuk−1 · · · u2u1v1v2 · · · vl−1vl, where k, l ≥ 1, such that d(uk) ≥ 3(d(vl) ≥ 3) and uk(vl) be-
longs to a cycle C1 = ukuk+1 · · · uk+puk(C2 = vlvl+1 · · · vl+qv1). Suppose that |V (G)| = n. Let
X = (xu1 , xu2 , · · · , xuk+p

, xv1 , xv2 , · · · , xvl+q
, · · · , xn)T be a unit eigenvector corresponding to

ρα(G) where xui
corresponds to ui(1 ≤ i ≤ k + p), xvj

corresponds to vj(1 ≤ j ≤ l + q). If
xuk

≥ xvl
, let G∗ = G − vlvl+1 + ukvl+1; Otherwise, let G∗ = G − ukuk+1 + vluk+1. In the both

cases, G∗ is a connected graph with m edges and minimum degree δ ≥ 2 and uv is not a cut
edge of G∗ any more. By Lemma 4, we have ρα(G) < ρα(G∗). So we may assume that G is
2-edge-connected.

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 119, 243–253



Rong Zhang 248
Let G2

m denote the set of all 2-edge-connected graphs with m edges. For G ∈ G2
m and

v ∈ V (G), it is easy to see that d(v) ≥ 2 and G − v has no isolated vertices. Noting that
|E(G − v)| = m − d(v), we have

d(v) ≤ |V (G − v)| ≤ 2(m − d(v)).

It follows that d(v) ≤ 2m
3 with equality if and only if G = Fm

3
.

For G ∈ G2
m, let w be a vertex of G such that

max
u∈V (G)

{αd(u) + (1 − α)m(u)} = αd(w) + (1 − α)m(w) = αd(w) + 1 − α

d(w)
∑

wv∈E(G)
d(v).

Noting that e(N(w)) ≤ m−e(N(w), V (G)\N(w)) and e(N(w), V (G)\N(w)) ≥ d(w), we have∑
wv∈E(G)

d(v) = 2e(n(w)) + e(N(w), V (G) \ N(w)) ≤ 2m − d(w).

By Lemma 1, we have
ρα(G) ≤ αd(w) + 2m

d(w)(1 − α) − 1 + α. (4)

(i) Let m ≥ 24 and m ≡ 0(mod3). It is easy to see that Fm
3

∈ G2
m. By Lemma 2, we have

ρα(Fm
3

) > 2mα
3 + (1−α)2

α
.

If d(w) = 2, noting that e(N(w)) ≤ 1, we have∑
wv∈E(G)

d(v) = 2e(N(w)) + e(N(w), V (G) \ N(w)) ≤ 2 + m − 1 = m + 1.

By (2), we have

ρα(G) ≤ 2α + m + 1
2 (1 − α) ≤ 2mα

3 + (1 − α)2

α
< ρα(Fm

3
)

for m ≥ 9 and 1
2 ≤ α < 1.

If d(w) = 3, noting that e(N(w)) ≤ 3, we have∑
wv∈E(G)

d(v) = 2e(N(w)) + e(N(w), V (G) \ N(w)) ≤ 6 + m − 3 = m + 3.

By (2), we have

q(G) ≤ 3α + m + 3
3 (1 − α) ≤ 2mα

3 + (1 − α)2

α
< ρα(Fm

3
)

for m ≥ 9 and 1
2 ≤ α < 1.

If 4 ≤ d(w) ≤ 2m−6
3 , let f(x) = αx + 2m

x
(1 − α). It is easy to see that the function f(x) is

convex for x > 0 and its maximum in any closed interval is attained at one of the ends of
this interval. Combining this and (4), we have

ρα(G) ≤ max
{

4α + 2m

4 (1 − α), 2m − 6
3 α + 3m

m − 3(1 − α)
}

− 1 + α

≤ 2mα

3 + (1 − α)2

α
< ρα(Fm

3
).

for m ≥ 12 and 1
2 ≤ α < 1.
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If d(w) = 2m−3
3 , then d1 = d1(G) = 2m−3

3 . Let |V (G − w)| = 2m−3
3 + s, then 2m ≥

2m−3
3 + 2(2m−3

3 + s). It follows that 0 ≤ s ≤ 1. This implies that d2 = d2(G) ≤ 2 + 3 = 5.
By Lemma 7, we have

ρα(G) ≤ A(2m − 3
3 , 5) <

2mα

3 + (1 − α)2

α
< ρα(Fm

3
)

for m ≥ 24 and 1
2 ≤ α < 1.

If d(w) = 2m
3 , then G = Fm

3
, completing the proof of (i).

(ii) Let m ≥ 37 and m ≡ 1(mod3). It is easy to see that G1 = K1 ∨ (m−2
3 K2 ∪ K1,3) ∈ G2

m. By
Lemma 2, we have ρα(G1) > 2m−2

3 α + (1−α)2

α
.

For 2 ≤ d(w) ≤ 2m−8
3 , by similar reasoning as in the proof of (i), we can derived that

ρα(G) ≤ 2m − 2
3 α + (1 − α)2

α
< ρα(G1)

for m ≥ 16 and 1
2 ≤ α < 1.

If d(w) = 2m−5
3 , then d1 = d1(G) = 2m−5

3 . Let |V (G − w)| = 2m−5
3 + s, then 2m ≥

2m−5
3 + 2

(
2m−5

3 + s
)
. It follows that 0 ≤ s ≤ 2. This implies that d2 = d2(G) ≤ 2 + 5 = 7.

By Lemma 7, we have

ρα(G) ≤ A
(2m − 5

3 , 7
)

<
2m − 2

3 α + (1 − α)2

α
< ρα(G1)

for m ≥ 37 and 1
2 ≤ α < 1.

If d(w) = 2m−2
3 , then d1 = d1(G) = 2m−2

3 . Let |V (G − w)| = 2m−2
3 + s, then 2m ≥

2m−2
3 + 2

(
2m−2

3 + s
)
. It follows that 0 ≤ s ≤ 1.

Case 1. s = 0, it follows that |V (G − w)| = 2m−2
3 . Noting that |E(G)| = m, it is well

known that
|V (G)|∑

i=1
di = 2m. Since δ ≥ 2, then we known that D(G) might be

( 2m − 2
3 , 4, 2, 2, 2, 2, . . . , 2

)
or

( 2m − 2
3 , 3, 3, 2, 2, 2, . . . , 2

)
.

If D(G) = ( 2m−2
3 , 4, 2, 2, 2, 2, . . . , 2 ), then G = G1.

If D(G) = ( 2m−2
3 , 3, 3, 2, 2, 2, . . . , 2 ), then G = G6 = K1 ∨ (m−7

3 K2 ∪ p4) or G = G7 =
K1 ∨ (m−10

3 K2 ∪ 2P3), shown in Figure 4. Let X = (xw, x1, x2, x3, x4, · · · , x 2m−2
3

)T be a
unit eigenvector corresponding to ρα(G6) where xw corresponds to w and xi corresponds to
vi(1 ≤ i ≤ 2m−2

3 ). If x2 ≥ x3, let G∗ = G6−v4v3+v4v2; Otherwise, let G∗ = G6−v1v2+v1v3.
In the both cases, G∗ = G1. By Lemma 4, we have ρα(G6) < ρα(G1). Applying Lemma 4
to the vertices v2 and v3 of G7, we can similarly derive that ρα(G7) < ρα(G1).
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Case 2. s = 1, then |V (G − w)| = 2m+1

3 . Noting that |E(G)| = m, then G has degree
sequence ( 2m−2

3 , 2, 2, 2, 2, 2, . . . , 2 ). It follows that G = G3. Noting that wv2v3v1 is an
internal path of G3, by Lemma 5, we have ρα(G3) < ρα(Fm−1

3
). Furthermore, noting that

Fm−1
3

is a proper subgraph of G6, by Lemma 3, we have ρα(Fm−1
3

) < ρα(G6). Therefore,
we have ρα(G3) < ρα(G6) < ρα(G1).

(iii) Let m ≥ 29 and m ≡ 2(mod3). It is easy to see that G2 ∈ G2
m. By Lemma 2, we have

ρα(G2) > 2m−1
3 α + (1−α)2

α
.

For 2 ≤ d(w) ≤ 2m−7
3 , by similar reasoning as in the proof of (i), we can similarly derived

that
ρα(G) <

2m − 1
3 α + (1 − α)2

α
< ρα(G2)

for m ≥ 14 and 1
2 ≤ α < 1.

If d(w) = 2m−4
3 , let |V (G − w)| = 2m−4

3 + s, then

2m ≥ 2m − 4
3 + 2

(2m − 4
3 + s

)
.

It follows that s ≤ 2. This implies that d2 = d2(G) ≤ 2 + 4 = 6. By Lemma 7, we have

ρα(G) ≤ A
(2m − 4

3 , 6
)

≤ 2m − 1
3 α + (1 − α)2

α
< ρα(G2)

for m ≥ 29 and 1
2 ≤ α < 1.

If d(w) = 2m−1
3 , let |V (G − w)| = 2m−1

3 + s, then

2m ≥ 2m − 1
3 + 2

(2m − 1
3 + s

)
.

It follows that s = 0. Noting that |E(G)| = m, we known that G has degree sequence
( 2m−1

3 , 3, 2, 2, 2, 2, . . . , 2 ). It follows that G = G2, completing the proof of (iii).

□

Proof of Theorem 2. Let H2
m denote the set of all minimally 2-edge-connected graphs with m

edges.

(i) Let m ≥ 24 and m ≡ 0(mod3). It is easy to see that Fm
3

∈ H2
m ⊆ G2

m. By Theorem 1(i),
we have ρα(G) ≤ ρα(Fm

3
) for G ∈ H2

m and the equality holds if and only if G = F (m
3 ).

(ii) Let m ≥ 37 and m ≡ 1(mod3). It is easy to see that G4 ∈ H2
m ⊆ G2

m. By Lemma
2, we have ρα(G3) > 2m−2

3 α + (1−α)2

α
. From the proof of Theorem 1(ii), we know that

ρα(G) ≤ 2m−2
3 α + (1−α)2

α
for G ∈ G2

m \ {G1, G3, G6, G7}. This implies that ρα(G) ≤ ρα(G3)
for G ∈ H2

m, and the equality holds if and only if G = G3.
(iii) Let m ≥ 50 and m ≡ 2(mod3). It is easy to see that G4 ∈ H2

m ⊆ G2
m. By Lemma 2, we

have ρα(G4) > 2m−4
3 α + (1−α)2

α
. For G ∈ H2

m, let w be a vertex of G such that

max
u∈V (G)

{αd(u) + (1 − α)m(u)} = αd(w) + (1 − α)m(w) = αd(w) + 1 − α

d(w)
∑

wv∈E(G)
d(v),

where 2 ≤ d(w) ≤ 2m−4
3 .

For 2 ≤ d(w) ≤ 2m−10
3 , by similar reasoning as in the proof of Theorem 1(i), we can prove

that
ρα(G) ≤ αd(w) + (1 − α)m(w) ≤ 2m − 4

3 α + (1 − α)2

α
< ρα(G4)
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for m ≥ 20 and 1
2 ≤ α < 1.

If d(w) = 2m−7
3 , let |V (G − w)| = 2m−7

3 + s, then

2m ≥ 2m − 7
3 + 2

(2m − 7
3 + s

)
.

It follows that 0 ≤ s ≤ 3. This implies that d2 = d2(G) ≤ 2 + 7 = 9. By Lemma 7, we
have

ρα(G) ≤ A
(2m − 7

3 , 9
)

≤ 2m − 4
3 α + (1 − α)2

α
< ρα(G4)

for m ≥ 50 and 1
2 ≤ α < 1.

If d(w) = 2m−4
3 . let |V (G − w)| = 2m−4

3 + s, then

2m ≥ 2m − 4
3 + 2

(2m − 4
3 + s

)
.

It follows that 0 ≤ s ≤ 2. We consider the following three cases.
Case 1. s = 0, then |V (G − w)| = 2m−4

3 and |E(G − w)| = m+4
3 . Since G is minimally

2-edge-connected, it follows that G−w = pK2∪qK1, where p nd q are nonnegative integers
with 2p + q = 2m−4

3 . This implies that |E(G − w)| ≤ m−2
3 , a contradiction.

Case 2. s = 1. Let V (G) \ N [w] = {u}. Then |V (G − w)| = 2m−1
3 , and D(G) =

( 2m−4
3 , 4, 2, 2, 2, 2, . . . , 2) or (2m−4

3 , 3, 3, 2, 2, 2, . . . , 2 ). If D(G) = ( 2m−4
3 , 4, 2, 2, 2, 2, . . . , 2 )

and there exist a vertex vi ∈ N(w) such that d(vi) = 4, then there exist at least two
vertices vj, vk ∈ N(w) such that vivj, vivk ∈ E(G). Obviously, we obtain a cycle wvkvivjw

with a chord wvi, a contradiction to Lemma 6.
If D(G) = ( 2m−4

3 , 4, 2, 2, 2, 2, . . . , 2 ) and d(u) = 4, then G = G5, shown in Figure 3. By
Lemma 8, we have ρα(G5) < ρα(G4).
If D(G) = ( 2m−4

3 , 3, 3, 2, 2, 2, . . . , 2 ), then exists a vertex vi ∈ N(w) such that d(vi) = 3.
By Lemma 6, we know that G[N(w)] = pK2 ∪ qK1. It follows that u ∈ N(vi). Suppose
N(vi) = {w, u, vj}. Noting that d(u) ≥ 2, we deduce that there exists another vertex
vk ∈ N(w) such that uvk ∈ E(G). If vk = vj, we obtain a cycle wviuvjw with a chord vivj;
if vk , vj, we obtain a cycle wvjviuvkw with a chord wvi. This contracts Lemma 6.

Case 3. s = 2. Let V (G) \ N [w] = {u, v}. Then |V (G − w)| = 2m+2
3 and the degree

sequence of G must be ( 2m−4
3 , 2, 2, 2, 2, 2, . . . , 2 ). Noting that E(G) = m and d(w) = 2m−4

3 ,
it follows that G = G4 or G = G8, shown in Figure 5. Applying Lemma 4 to vertices u

and v of G8, we can derive ρα(G8) < ρα(G5). By Lemma 8, we have ρα(G5) < ρα(G4).
Therefore ρα(G8) < ρα(G4).
Combining the above arguments, we complete the proof.

□
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