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Abstract: Let G be a simple finite graph. A k-coloring of G is a partition 7 = {Sy, -+, Sk}
of V(G) so that each S; is an independent set and any vertex in .S; takes color i. A k-coloring
7 ={S1, - ,Sk} of V(G) is a neighbor locating coloring if any two vertices u,v € S;, there is
a color class S; for which, one of them has a neighbor in S; and the other not. The minimum k
with this property, is said to be neighbor locating chromatic number of G, denoted by xnr(G)
of G. We initiate to study the neighbor locating coloring of graphs resulted from three types of
product of two graphs. We investigate the neighbor locating chromatic number of Cartesian,
lexicographic and corona product of two graphs. Finally, we untangle the neighbor locating
chromatic number of any aforementioned three products of cycles, paths and complete graphs.

Keywords: Coloring, Neighbor locating coloring, (Cartesian, lexicographic and corona)
product, Graphs

1. Introduction

Let G = (V,E) be a simple, finite, connected and undirected graph with the vertex set
V = V(G) and the edge set F = FE(G). The open neighborhood of v, N(v) is the set of
vertices adjacent to v and closed neighborhood of v is N[v] = N(v) U {v}. The minimum and
the maximum degree of GG is the smallest and largest number of neighbors of a vertex in GG
and denoted by § = §(G) and A = A(G) respectively. For the terminologies and notation not
herein, see [1].

For two standard products (Cartesian and lexicographic product) of graphs G and H, the
vertex set is V(G) x V(H) and the adjacency of two vertices are defined as follows. In the
Cartesian product GOH, two vertices (g, h) and (¢, h’) are adjacent if g is adjacent to ¢’ in G
and h =1 in H, or if g = ¢ in G and h is adjacent to b’ in H. In lexicographic product G[H],
two vertices (g, h) and (¢’, h’) are adjacent if either g¢' € E(G) or g = ¢’ and hh' € E(H). The
corona product G o H of two graphs G and H is obtained by tacking one copy of G and |V (G)|
copies of H and by joining each vertex of the i-th copy of H to the i-th vertex of GG, where
1 <i<|V(G)|. We use P,, C,, and K, to display the path, cycle and complete graph of order
n, respectively. The Cartesian product of C,,0C,, P,O0PF,, K,,0C,, and K,,0F,, are said to
be tori graph, grid graph, perfect tori graph and perfect grid graph respectively.

A proper k-coloring of G, (k € N), is a function f defined from V(G) to a set of colors
[K] = {1,2,--- ,k} in which every two adjacent vertices have different colors. Minimum &
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for coloring of a graph G is called the chromatic number of G denoted by x(G) = k, and
the color classes is denoted by m = {S1,---,Sk}. The color-degree of a vertex v is defined
to be the number of different colors of @ comprising some vertex of N(v). For a connected
graph G, a vertex v € V(G) and a set of vertices S C V(G), the distance between v and S is
d(v,S) = min{d(v,w) : w € S}.

A k coloring m = {Sy, Sa,- -+, Sk} is said to be a metric locating (M L) coloring if for every
i€{1,2,--- ,k} and for every pair of distinct vertices u,v € S;, there exists j € {1,2,--- ,k}
such that d(u,S;) # d(v,S;). Minimum k for M L-coloring of a graph G, is called (metric-
)locating number xr(G) of G, [2-4]. Recently, some authors worked on edge-locating coloring
of a graph, which is not without pleasure to see [5].

A k-neighbor locating coloring of a graph G is a partition of V(G) to m = {S1, 52, -+, Sk}
so that for two vertices uq, us € S;, the set of colors of the neighborhood of u; is different from
the set of colors of the neighborhood of uy. Minimum & for a neighbor locating coloring (an
N L-coloring) of a graph G is called the neighbor locating chromatic number (N L-chromatic
number) of G denoted by xn.(G) = k. This concept has been defined under the name of
adjacency locating coloring (Lo-coloring) of G in [6] and briefly worked on. Also, its chromatic
number was named Lo-chromatic number of G' (x1,(e) of G). For more information on this
area see [2,6-11].

In this paper, we observe some preliminaries results on N L-coloring in Section 2. In Section
3, the N L-chromatic number of Cartesian product of two graphs are studied, in particular the
N L-chromatic number of some tori graphs, grid graphs, perfect tori graphs, and perfect grid
graphs are determined. In Section 4, the N L-chromatic number of lexicographic product of
two graphs are investigated and finally, N L-chromatic number of corona product of two graphs
are experimented in Section 5.

2. Preliminary Results

In this section, we explore some preparatory results related to N L-coloring of graphs.

Remark 1. ( [8] Remark 1) Let G be a graph of order n and mazimum degree A. Let II =
{S1, -+, Sk} be a k-NL-coloring of G. There exist at most (k;l) vertices in S; of color-degree
g, for every 1 < i < k, where 1 < j < k — 1 and consequently, |S;| < Z]'A:1 (k;1> For
xni(G) =k >3 and 1 < j < A, we denote by a;(k) the maximum number of vertices of

color-degree j, and we denote by (k) the maximum number of vertices of color-degree 1 or 2
that is (¢(k) = a1(k) + ao(k)). Therefore, we have.

m(k) = k(k—1),  ap(h) = "EZDEZ2) é(k):k@):kgk,

Theorem 1. ( [7] Theorem 1) Let G be a non-trivial graph of order n and maximum degree
A. Let xyo(G) = k. If G has no isolated vertices and A < k — 1, then

A (k-1
=1\ J

From Theorem 1 and this fact, for positive integers | > k, (i) > (’;) (t < k), then we have.

Corollary 1. Let G be a non-trivial graph of order n and mazimum degree A. Let k =
xno(G) < 1. If G has no isolated vertices, then

A —
nSlZ(l ,1>.
=1\ J
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Let G be a graph of order n and maximum degree A. From Corollary 1, if m is a positive
integer in which A <m —1 and n > ijA:l (mj_l), then xn7(G) > m. Therefore we have the
following.

Corollary 2. Let G be a graph of order n and mazimum degree A. Then

XNL(G)zmin{l:nglej<l_,1>}.

=1\ J
This bound is sharp for nontrivial path P, from Theorem 3.6 of [6] or Theorem 17 of [8].
There needs the following.

Theorem 2. ( [6] Theorem 3.6). For a positive integer n > 2, Xr,(p,) = m, where m = min{k :
keNn< %(k:” — k?)}. More precisely, there exist an adjacency locating m-coloring f, of the
path P, = vyvy - - - v, with the color set {1,2,--- ,m}, and two specified colors (say “1” and “27)
such that f, satisfies the following properties.

(a) fn(vn—l) =2 and fn(vn) =1
(b) If n > 9, then fn(v,—2) = m.
(c) If n>9 and n # 5(m* —m?) — 1, then f,(vi) =2 and f,(vs) = 1.

Theorem 3. ( [8] Theorem 17). Let k,n be integers such that k > 4 and ((k — 1) <n < {(k).
Then,

(1) xno(Pa) = k.
(2) XNL(CTL) = k, if n # E(k’) — 1.

3. NL-Coloring of Cartesian Product of Graphs

In this section we discuss on the neighbor locating coloring of Cartesian product of two graphs
and obtain neighbor locating chromatic number of some tori graphs, grid graphs, complete tori
and complete grid graphs.

Theorem 4. Let G and H be two graphs. Then xyr(GOH) < xni(G)xnr(H). This Bound
s sharp.

Proof. Let V(G) = {v1,va, - , v} and V(H) = {uy,ug, - ,u,}. Let xyo(G) = k' and
xvo(H) = K" with ¢, = CNL(G) = {1,2,--- ,k'} as an NL-coloring of G and Cy =
CNL(H)={1,2,--- ,k"} as an N L-coloring of H. Now we give rise an N L-coloring of GOH.
Let {w;; = (v,u;) : 1 < i < m,1 < j < n} be the set of vertices GH. We make an
N L-coloring of GoH with K'k” colors. Let

C={rs:1<r<kandl <s<k'}={11,21,--- K'1,12,22 -+ K2, ---  1K" ) 2k" --- JK'k"}

be a set of k'k” labels in which the vertex w;; is assigned by the label rs whenever the vertex
v; has been assigned with label 7 and u; with label s. It is sufficient to show that for both
vertices with the same color, their color neighbors are different.

For this, we bring up three positions.

1. If we have two or more similar colors in a row, for instance w;, and w; are assigned with
same color rs in a ¢th row. Then vertex v; is assigned by r and uy, u; are assigned by s.
Since wuy, u; has same color in H, N(ug) N Cy # N(u;) N Cy. Assume that the label ¢ is in
N(ug) N Cy \ N(u;) N Cy, then 7t is in N(wyy) and is not in N(wy). This shows that, the
color neighbors of w;, and w;; are different.
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2. If we have two or more similar colors in a column, that is the vertices wy; and w;; have
similar color, then we can observe the proof as part 1.

3. Let w;; and wyy, have same color where ¢ # [ and j # k. Let 7s be the color of w;; and wy.
Then the vertices v;, vy, are assigned with color r and the vertices u;, u; are assigned with
color s. Assume that ¢ is the color of one of the neighbors of v; say v, while no neighbors
of v; are assigned by ¢. Thus w,; has color ts. On the other hand, no vertex like w,,
with color ts cannot be appeared in N(wy;) since otherwise, v, is assigned with color ¢ in
Ny (v). This denotes, the color neighbors of w;; and wy are different. Therefore C' is a
neighbor locating coloring of GOH.

For observing the sharpness, consider G = H = P, then xn.(FP) = 2, P,0P, = C4 and
XNL(C4) = 4. O

3.1. Tori graphs

The tori graph C,,0C, has maximum degree A = 4 and is a free isolated vertices graph.
Therefore we have.

Theorem 5. Let G = C,,0C,, be a tori graph. Then,

_ 0(k) + k(5)
min{k : — > 1} < xwve(CniCy) < XNL(Co)XNL(Ch).

Proof. The upper bound is resulted from Theorem 4.

The lower bound. By definition of Cartesian product, the tori graph C,,0C),, is a regular
graph with degree A(G) = §(G) = 4, and

() = () ()5 00)
=+{3) ++(3) = +(5)

Therefore the Corollary 2 prove the lower bound. O

Now we investigate the neighbor locating chromatic number of some special tori graphs.

Proposition 1. The following holds.

(i) xni(C30C3)
(ZZ) XNL<C3DC4)
(ZZZ) XNL(CBDC5> ,
(Z’U) XNL(O4DC4) =9,

(v) 5 < xn(CyoCs) <6,
(’UZ) 5 < XNL(C5DC5> < 6,
(m'z') 5 < XNL(C(SDCG) <6,

(’UZZZ) 6 < XNL(09D09> <7.

Proof. (i) On the contrary, suppose that xn.(C30C3) < 5. It is clear, xn.(C30C5) > 4. Let
{u;; + 1 <1i<3,1<j <3} be the set of vertices of C50C5. If m = {51, 52,55, 54} be the
set of colors, then it is well known that uss cannot have color-degree 1 or 2. So there are
at least three colors in its neighbors. Let {ug} C S, {uia} C S, {uss,use} C S3 and
{ug1} C Sy. Then it is easy to check that u;; does not accept color 1 or 3 and it must be
labeled with fifth color, a contradiction.

)

)

)
4
)
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(i)

(iii)

(iv)

(vii)

(viii)

Let {u;; : 1 < i < 3,1 < j < 4} be the set of vertices C5a0Cy. It is clear
x~nz(C30Cy) > 4. On the other hand, if 7 = {5, 55, 55,54} is the set of colors, and
consider S; = {U24, U31, U33}, Sy = {u21, U32, U34}7 Sz = {U11,U13,U22}, Sy = {U12, U14, U23}-
then it can be an N L-coloring of C30C}. Therefore x . (C50C,) = 4.

It is well known that xn.(C50C5) > 4. On the contrary, assume that, xyz(C30C5) = 4.
Let m = {S1, 52, 53,54}. Then any vertex of C30C5 has color degree 2 or 3 and from
Observation 1 for m = 3 and n = 5, there exist at most 10 vertices of color degree 2
in C30C5. On the other hand, there exist at most 4@) = 4 vertices of color degree 3,
thus there must exist at least 11 vertices of color degree 2 in C30C5, a contradiction.
Therefore xnz(C30C5) > 5. Now we give an N L-coloring of C30C5 with 5 colors. Let
™= {51, Sa, 53, S4, 55} with S = {UQQ,U25,U31,U33}, Sy = {U23,U34}, Sy = {U12,U15,U24},
Sy = {ui1, w14, ug, ugs} and S5 = {wiz,ug} is an NL coloring of C30C5. Therefore
XNL<03EIO5) = 5.

On the contrary, assume that ynz(Cy0Cy) = 4. At first, we can easy to see that, there
does not exist any vertex of color degree 1 in Cy0C,. Also by a routine investigation,
there exist at most two vertices of color degree 2 in each column of Cy0C,. On the
other hand, since k = 4, there must exist at least 4(2) = 12 vertices of color degree 2,
a contradiction. Therefore xn.(C4O0Cy) > 5. Now we give an N L-coloring with 5 colors
as follows. Let m = {51,52753,54785} with Sl = {UQQ,Ugl,U33,U44}, SQ = {U14,U34},
Sg = {ulg,u24,u41,u43}, 54 = {U117U23,U32} and 55 = {ulg,u21,u42}. Therefore

XNL<C4DC4) =35.

At first we assert ynz(C40C5) > 5. Assume on the contrary that, xy.(C4O0C5) = 4.
Since C40C5 has only the vertices of color degree 2 or 3 with 4 colors, from
Theorem 5 xnp(Cy0Cs5) > 4. The following denotes xn.(Cy,0C5) < 6. Let
T = {51752753754755756} with S; = {U22,U25,U31,U33}, Sy = {U23,U34,U41}7
Sy = {U12,U15,U24}7 Sy = {U14,U32,U35,U43}, S5 = {U13,U21,U45} and Sg = {U11,U42,U44}-
Therefore 5 < xn(C40C5) < 6.

It is clear that, ynr(C50Cs) > 5. Now, consider m = {Si,Ss, 53,54, 55,5} with
S = {U22,U25,U31,U33,U45}, Sy = {U23,U34,U51}, Sy = {U12,U15,U24,U42,U44},
Sy = {U14>U32>U35>U53}, S5 = {U13,U21,U43,U55} and Sg = {U11,U417U527U54}- Then
7 is an N L-coloring of C5;0C}5. Therefore 5 < xnz(C50C5) < 6.

It is easy to see that, xn1(Cs0Cs) > 5. We show an N L-coloring of Cs0Cys with 6 colors.
Consider the coloring m = {51, 52, 53,54, 55,5} with S; = {uas, ugs, uaa, Us1, Uss, Uge }

Sy = {U21,U237U327U347U41,U557U62}7 Sy = {UnaU15,U22,U43,U45,U54}> Sy =
{U13, U24, U26, U35, Ugd,
u52,u61,u64}, 55 == {U14,U16,U31,U46,U63,U65} and Sﬁ = {Ulg,U36,U56}. Therefore

5 < xn1(Cs0Cs) < 6.

And finally we investigate xnz(Co0Cy). From Theorem 5, xnz(CoOCy) > 6. Consider
7 = {51,52,55, 54, S5, S, S7} with
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S = {U117U147U34,U47,U53,U55,U62,U73,U75,U82,U88},
Sy = {U167 U24, U36, Ugs, U4, Use, Us9, U7, U3, UY5, Ug?},
Sy = {U17, U21, U3, U42, Ugq, Ug9, Ue1, Ues, UeT, UT6, UST, Ugg};
Sy = {U13, U19, U6, U2g, U33, U39, U47, Us2, U7, Use6, U6, UT4, UT9, UY4, U96},
S5 = {U32, U3s, U37, Ug1, Ug3, Usg, Ue3, UTs, Ul UsE, U92},
Se = {U227U257U277U487 Ug4, Ug9, UL, UY3, Ugs} and
S7 = {U127 U1s5, U1s, U23, U29, U31, Us1, UT2, UTT, USS, UsY, U91}-
This coloring is an N L-coloring of CoOCy with 7 colors. Therefore 6 < xn.(CoOCy) < 7. O
Regarding to the Theorem 5, the following problem can be explored.

Problem 1. Let n > 3 be a positive integer. For k > 5, if

K(k:—l)Jr(k—l)(k;l) <n2§£(k:)+(k:)<i>,

then xn.(C,0C,) € {k,k + 1}.

3.2. Grid graphs

In this subsection we discuss on N L-coloring of grid graphs. The grid graph P,,0PF, has
maximum degree A = 4 for n,m > 3, and has maximum degree A = 3 for m = 2 and n > 3,
furthermore, any grid graph is free isolated vertices graph. Therefore we have.

Proposition 2. Let G = P,OP, be grid graph (lader graph) where n > 3. Then
k2 —k+ k(%)
min{k : — o, > 1} < xno(P0P,) < 2xni(Pn).
n
The lower bound is sharp for P,OP, (n € {3,4,5}) and the upper bound is sharp for P,OP,.

Proof. The upper bound and its sharpness are resulted from Theorem 4.
For lower bound, since A(P,0P,) = 3,

)+ () (57)
]

Now using Corollary 2, we observe the proof. O

For grid graphs P,,0P, for m,n > 3, we have A(P,,0PF,) = 4. Therefore using similar proof
of Theorem 5 we have the following.

Theorem 6. Let G = P,,0F, be the grid graph obtained from Cartesian product of P,, and

P,. Then
0(k) + k(’;)

. > 1} < xnp(PnOP,) < Xvo(Po)XNL(Fr)-

min{k :
The lower bound is sharp for P,,0F, where m =n € {3,4,5,6}, see Proposition 3.

Proposition 3. For grid graphs P,0P,, n € {3,4,6,9}, we have.
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(i) xno(Ps0P3) = 4,
(11) xni(PyOPy) = 4,
(iii) xnr(Ps0Ps) =5,
(i) xni(PoOPy) = 6.

Proof. At first, assume that V(B,) = {v1,v2,-- ,v,} and v;; = (v;,v;) for 1 < i < n and
1 < 7 < n be the vertex in a ¢th row and jth column of P,0F,.

(i) Suppose to the contrary that xyz(Ps0P;) < 3. It is easy to see that, vae has color-degree 1

or 2. If the color degree of v9s is 1, then wvyo, V91, V23, v32 have same color. According to the
definition of neighbor locating coloring vi1, v13, v31, v33 should be assigned with different
colors, a contradiction.
If the color degree of vyy is 2 and without loss of generality, the color of vy is 1 and
V12, V21, V23 and w3y accept two colors 2 or 3. So, at least one of the vertices of vyq, v13, V31
and wvs33 for example v3;, should be assigned with color 1, and so vy and wv3; with color 1
have same color neighbor, which is a contradiction. On the other hand, it is easy to see
that xnr(Ps0P;) < 4. Therefore yy(P;0P;) = 4.

(ii) For 4-NL coloring of PyOPy, from Theorem 6, xn.(P,0F;) > 4. On the other hand, the
tables T} and T; show that yyz(PyOP;) = 4.

(iii) Theorem 6 denotes xnr(Ps0Fs) > 5. On the other hand, the tables 75 and T3 show that
XNL<P6DP6) = b.

(iv) From Theorem 6 we have xn(Po0OF) > 6. Now tables T5 and 7 show that xn.(Py0Fy) =
6.

16 24656 31
Casaga B10T2A1
3241 53241 4 0oe Y
6 353 2 41 46
1 2 2 1 2 4 1 2 1 2 4 5
24 1 2 1 2 4 5 4
3 4 1 3 4 3 5 1 3 4 3 4
31 5 13 4 3 4 3
4 1 3 2 1 41 3 2 5
253531261413256
312535312
6 41613651
Ty 15 T3 T3
Therefore the results hold. m|

According to Theorem 6 and Proposition 3, we expect to have the following problem.

Problem 2. Let n > 3 be a positive integer. For k > 5, if

Ok —1) + (k - 1)(’“;1) <n? < (k) + (k;)(i),
then yxn(PaOPy) — k.
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3.3. Perfect tori graphs and perfect grid graphs

For neighbor locating coloring of perfect tori graph and perfect grid graph, we have.

Lemma 1. Let xn.(K,,0C,) = k. Ifm+1 <k < 2m — 1, then at least one vertex of any
column have color degree at least m.

Proof. Let uy; be the i-th vertex of the first column with color in S;. Suppose on the contrary,
the first column has the property that, every vertex has color degree m — 1, then the second
and end columns must be colored with colors S;, 1 < j < m which have already used for the
1st column. Now, each vertex in the second column with color in S;, must have a neighbor in
the third column with a color in S; where t > m + 1. Since S; can be nominated for at most
m — 1 colors, one vertex in the third column can be in S;, 1 < j < m. Let vertex ug be in
S1. Then two vertices ug and g, with same color in S, (1 <r < m) find same neighbor colors
{S1,89, -+ ,S,_1,5041, - - Sm}, that is a contradiction. O

The following give us an upper sharp bound for neighbor locating chromatic number for
K,, 0P, and K,,a0C,.

Proposition 4. Let G = K,,0PF, be the perfect grid graph obtained from Cartesian product of
K., and P, with m > 3, n > 1. Then xnyr(K,,0F,) < m+n — 1. This bound is sharp for
KgDPg.

Proof. Each vertex in K,,0F, has m — 1 neighbors in its column and at most two neighbors in
its row. There is also n copy of K,, in K,,,0F,. We color the graph by the columns.

The first column must accept m colors. By assigning a new color to every other column,
we will clearly have a neighbor locating coloring for K,,0FP,. We consequently, will have
xno(KnOP,) <m+n—1. O

Using similar proof of Proposition 4, we have.

Proposition 5. Let G = K,,aC,, be the perfect tori graph obtained from Cartesian product of
K,, and C,, with m,n > 3. Then xn1(K,,0C,) <m+n—11if 3 <m < 6. This bound is sharp
fO’f’ K3|:|03.

In the fallow, we display some Cartesian product of K,,,0C3 which m+1 < yn(K,,0C,) <
m+ 2. For m = 3, with an easy calculation is verifiable that xyz(K30C,,) =5 = 3+ 2, and for
the m > 7, we have yn(K,,0C,) = m + 1 according to the table shown below.

U W N
@OTH+
N O Ut =~

m—2 m-—1 m
m—1 m m+1

m 3 1
m+1 4 2
T

XNL(KmDCn) =m + 1
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Regarding to the table T5 and x yr-coloring of K30C3 we have.

Corollary 3. Form > 3,

1. xnp(Kn0C3) <m+2 if 3<m < 6. This bound is sharp.

According to the Corollary 3, one can have.

Problem 3. For4 <m <6, xn.(K,,0C3) =m + 2.
4. Lexicographic Product of Graphs

In this section we discuss on the neighbor locating coloring of lexicographic product of two
graphs with emphasis on paths, cycles and complete graphs. We start with the following.
Taking the proof of Theorem 4 as a plan, we can have the following theorem.

Theorem 7. Let G and H be two graphs. Then xnp(G[H]) < xno(G)xnr(H). This bound is
sharp.

Proof. The proof is quite similar to the proof of Theorem 4. For sharpness consider G = P,
and H = P, for any n or H = C,, for n > 3, and see Proposition 6. |

For n =1 and n = 2, B[P|| = K5 and B[P, = K4, and next xnyr(K2) = 2, xno(Ky) = 4.
We hence deduce xni(P[P1]) = 2xnr(P1) and xni(P[Pe]) = 2xno(FP2). Now we extend the
mentioned results for any P, and C,.

Proposition 6. Let n > 3. Then,

Proof. (i) Let vy, vq,--+ ,v, be the vertices of P, and uj,us be the vertices of P,. Then
V(B[P,)) = {(w,v:), (ug,v;) : 1 < i < n}. Since any (uq,v;) is adjacent to any (us,v;),
hence they receive distinct colors. Therefore, we must use xnyr(F,) = k colors for first row and
X~nL(P,) = k colors for the second row and then xnp(P[P,]) = 2k = 2xn1(FP).

(ii) It is proved such as the proof of part (i). o

It is expected we nurture the Proposition 6 as.

Theorem 8. If k > 3 and n > 4 are integers and xn(P,) = k, then

(i) xnL(Po[P,)) = 2X (P ) =6, if n € {3,4},
(i) xni(PulP,]) < 2>< <P ) + |%52], ifn > 7.

Proof. Let V(P,) = {v1,v2,--- ,v,} and V(P,[P,]) = {w;; : 1 <4,j <n}. From the definition
of the Lexicographic product, each vertex of the first row is adjacent to the vertices of the
second row, each vertex of the last row is adjacent to the vertices of the n — 1-th row and
each vertex of the i-th row is adjacent to the vertices of the ¢« — 1-th and ¢ + 1-th rows for
2<i<n-—1.
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(i) For n = 3, it is easy to see that, xyr(P3[Ps]) = 2xnr(Ps3) = 6.
Let n = 4. From the relation between vertices mentioned as above, we need at least 6 col-
ors for NL—COIOI‘ng of P4[P4] Let m = {Sl, Sg, 83, 547 55, S@} where Sl = {UQQ, U24, U44},
Sy = {U12,U14,U34}7 Sy = {U21,U41,U43}, Sy = {U117U31,U33}, Sy = {U23,U42} and
Se = {uiz,usa}. This gives an NL-coloring of Py[P;] with 6 colors. Therefore

xnL(Pi[Py]) = 6.

(ii) Let n € {5,6}. We show that xnr(Pn[Ps]) = 2xnr(FPn) + L"T_QJ

XnL(Ps[Ps]). Tt is obvious that, the first and second rows needs at least 6 colors for N L-
coloring. On the other hand, for avoiding to the same color neighbors for vertices of the first and
third rows or for vertices of the second and fourth rows, we need at lest one color that has not
been used for first and second rows. Thus xn(Ps[Ps]) > 7. Let m = {54, S, Ss3, S4, S5, S6, S7}
where S; = {U11,U14,U31,U34}, Sy = {U127 us2, U52}, Sy = {u13, U1s, U3, U4, Us1, U54}, Sy =
{U21, Uz4, U537U55}, Sy = {U21,U42,U44}, S = {U23, Usgs, U41} and S; = {U43, U45}' Then 7
is an N L-coloring of Ps[Ps] with 7 colors. This shows that, xn.(Ps[Ps]) < 7. Therefore
Xne(P5[Ps]) = 7= 2xni(Ps) + | 552].

X~NL(Ps[Ps]). The first and second rows need 6 colors for N L-coloring of Ps[Fs]. If the third
row take the colors of the first row, then the fourth row must take at least one color that has not
been used for the second row. As well, if the fifth row take the color of the third row, then the
sixth row must take at least one color that has not been used for the second and fourth rows.
Thus for N L-coloring of Ps[Ps] we need at least 8 distinct colors. That is xnp(FPs[Fs)) > 8. Now
we give an N L-coloring of Pg[Ps] with 8 colors. Let m = {5, Ss, S3, Sy, S5, S, S7, Sg} where
S1 = {Un,U167U31,U36,U647U66}, Sy = {U12, U4, U32,U34,U51,U53}7 Sy = {U13, U1s5, U33, U35},
Sy = {U21, U26, Us4, U56}, S5 = {U22, U4, Uyq, U46}, S¢ = {U23,U25,U41, Uy3, Up2, U65}7
S7 = {usz, us5} and Sg = {u4, ugs, ug1, ugz}. Then 7 is an N L-coloring of Ps[Ps] with
8 colors. This shows that, xnyz(Fs[FPs]) < 8. Therefore,xnr(Fs[Fs]) = 8 = 2xni(Fs) + L%J

(iif) We want to show that for n > 7, xn1(P[Pa)) < 2xni(Po)+[252]). If n > 7, then we use
x~nL(P,) = k colors {1,2,---  k} for odd rows and we assign k colors {k+1,k+2,--- 2k} for
second row, and for any other even row, we use a new color beside the colors have been used for
the second row. Since we have | 2] even rows, we need at most |52 | new colors. This coloring

is an N L-coloring for P,[P,] with 2k + [ 252 ]. Therefore xn1(P,[Pa]) < 2xni(Pn) + [%52). O

Regarding to the Theorem 8, maybe have the following problem.
Problem 4. For which integers n > 7, Xn1(Pa[Pa]) = 2xni(Pa) + [ %52] 7

In G[H], if G = C5 and H € {C,,, P, }, then from definition of lexicographic product of two
graphs, any two vertices of C5[C,,] or of C3[P,] are adjacent. Let G, represent the i-th row
of C5]C,,] or of C3[P,]. Then, there needs xn.(Cy) or xni(P,) colors for N L-coloring of Gj,.
Therefore xnz(Cs5[Cr]) > 3xnr(Crn) or xnr(Cs[P,]) > 3xnL(P,). Now from Theorem 7 we
have.

Observation 9. Let n > 3. Then,
(i) xnz(Cs[Ch]) = 3xnL(Ch).
(i) xni(C3[Pn]) = 3xnr(Fa)-

Remark 2. In the graph G[H|, if G = P3 and H € {C,, P,}, then from definition of lexico-
graphic product of two graphs, any vertex of second row of P3|C,] or of Ps[P,] is adjacent to
any vertex of the first and third rows of Ps[C,] or P3|P,] respectively. Thus there need at least
2xnL(Cy) or 2xnL(Py,) for N L-coloring of P5[C,,] or of Ps3[P,] respectively. On the other hand,
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each vertex of first and third rows have all colors of the second row in their color neighbors.
Therefore if ui; and us; of the first and third rows are in a same color class, then it must
{1y, vig—} # {usasny, usa—1)} (mod n). Therefore we can adapt the N L-coloring of P,
and Ps_, from the N L-coloring of P, and also adapt the N L-coloring of C1,, and Cs,, from
the N L-coloring of Cy,.

Now from the Remark 2, we can have.

Theorem 10. Let n > 3. Ifl(k—1) <n <{l(k) and b(k+t—1) < 2n < l(k+1), then

(i) XnL(P5[Pa]) < 2Xnp(Pn) +t + 2.
(1) Xnr(Ps[Cn]) < 2xnL(Cn) +1 + 2.

Proof. (i) Let P, = uj2 - - - Uy, be the i-th row of P3[P,]. Let xnr(FP,) = k. Then ((k—1) <
n <Ll(k),and l(k+t—1) < 2n < l(k+t). Hence xy1(Pan) = k+t =m for t > 0. We par-
tition the path Py, with the set of vertices {vi, v, , Un_1,Vn, Uni1, Unta, ** , Van_1, Van }
with xnr-colors, to two paths Py, = ujjuia - - - w1, and P3, = usjuss - - - ug, where uy; = v;
and ug; = Up4j.

Suppose that, c¢(z) denote the color of =. From the N L-coloring of P,
(c(u11), c(u12)) # (c(usn), c(ugmn-1))). Now we bring up a few situations.

(a) If (c(un), c(uz)) ¢ {(c(uwn), c(uim-1))), (c(us1),c(us2))} and (c(usn), c(usm-1))) ¢
{(c(u1n), c(urm-1))), (c(usi),c(usz))}, then the colors assigned to Py, and Ps, are
N L-coloring.

(b) If (c(u11), c(ur2)) = (c(uin), c(tr(n-1y)), then (c(usn), c(us@m-1))) # (c(un), c(uin-1)))-
Thus in this situation, we assign a new color to u;; and the rest of the colors remain
unchanged. Therefore P, and P;, are N L-colored with at most m + 1 colors.

(¢) If (c(un),c(urz)) = (C(Uln),c(ul(nfl))) and (C(USn%C(Uz(nfl))) = (C(Uln)ac(ul(nfl))),
then we assign two new colors, one to uy;, and one other to uz;. These coloring is an
N L-coloring for P, and P;, with at most m + 2 colors.

(ii) Now we discuss on xnp(P5[Cy]). Let C;, = unu - - uy be the i-th row of P3[C),]. Let
xvo(Cn) € {k,k +1}. Then {(k —1) < n < {(k), and £(k+t—1) < 2n < l(k +
t). Hence xnp(Co,) = k+t = m for t > 0. We partition the cycle Cy, with the set
of vertices {v1, V2, , Un_1,Un, Uni1, Unt2, "+, Van—_1,Von} With N L-colors, to two cycles
Cln = U1U12 * * " Ulnp and an = U31U32 * * - U3n where Uy = Uy and Uzj = Un4j- From the
N L-coloring of C5,, we bring up a few situations.

1. If ¢(u1,) = c(usy,), then Cy, has no same color vertices with same color neighbors. In this
situation (c(u11), c(u1z)) # (c(us1), c(ugz)), and it observes that Cj, also has no same color
vertices with same color neighbors. Therefore this N L-coloring of Cs,, can be used for C},
and Cj,,.

2. Let c(urn) # c(usn). If (c(uir),c(ur2)) = (c(usi), c(usz)), then Cj, has no same color
vertices with same color neighbors. But maybe, (5 has same color vertices with same
color neighbors, for this problem, we assign a new color to us;.

3. Let c(u1,) # c(usy,) and (c(ur), c(uiz)) # (c(usn), c(usz)), to avoid finding vertices with the
same color that have same color neighbors, we use two new colors for uy; and wus;. These
coloring is an N L-coloring for ', and C3  with at most m + 2 colors.

O

Here we give some examples P3[P,] and P5[C,] with xnyi(Ps[P.]) = 2xno(FPn) + 1,
XNL(P3[Pa]) = 2xnv2(FP) + 2, xvn(F3[Cn]) = 2xv2(Cr) and xnvr(P3]Ch]) = 2xnn(Cn) + 1.
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Example 1.

e For n = No(Ps3[Py]) = 6 = 2xnp(Py) with c(uiy, uie, uig, ug) = (3,1,2,1),
C(U21,U22,U23,U24) ( 5,6,5) and c(ugy, uss, uss, uss) = (3,2,3,1).

o For n = 4, xno(B[C4]) = 8 = 2xni(Cy) with c(urr, wiz, ws, wig) = (1,2,3,4),
C(u21, U2, U23, U24) = (5,67 7, 8) and C(U317U32,U33,U35) = (1, 3,274)-

e For n =5, XNL(PS[P5]) =7= 2XNL(P5) + 1 with C(U11,U12,U137U147U15) = (1,2737 172),
C(U21,U22,U23,U24,U25) = (475,6,475) and C(U31,U32,U33,U34>U35) = (772,3, 7, 2)-

e For n = 5, XNL(P3[C5]) =7= 2XNL(C5) + 1 with C(U11,U12,U13,U14,U15) = (1,2, 17273),
C(U21,U227U237U247U25) = (475;47 576) and C(U317U327U337U347U35) = (7727 7, 172)‘

e For n = 6, xwno(Bs[Fs]) = 7 = 2xwo(Fs) + 1 with c(uiy, uia, uas, u1a, Urs, t1g) =
(1,273,273,1), C(Uzl,U22,U237U24,U25,U26) = (4,5,675,674) and C(Usl,U32,U337U34,U35,U36) =
(2,7,2,3,7, 3).

o For n = 6, xno(B[Cs]) = 9 = 2 xni(Cs) + 1 with c(uiy, uia, urs, Uis, Us, i)
(1737472;372% C(UzhU22,U237U247U257U26) = (5767 77876;8) and C(U31;U32,U33;U34,U357U36) =
(1,9,2,3,9,3).

In the same way we can obtain xyi(Ps3[Pr]) = xnvo(Bs[Fs)) = xwvo(Ps[P]) = 7,
XN (B3[C7]) = xvi(P3[Cy]) = 7 and xnr(F3[Cs]) = 9.

In the next example, it is displayed a xnz(P3[Ca4]) = 10 = 2xn1(Coq) + 2

Example 2. XNL(Pg[P49]) =12 = QXNL(P49) + 2 and XNL(P3[C49]) =13 = 2XNL(C49> + 1.
Since £(4) < 49 < E(E)) and 49 = 6(5) — 1, XNL(P49) = 5 and XNL(PQS) = 7 and XNL(C49) =6
and xnr(Cog) = 7, the vertices of Py,,, Ps,,, C1,, and C3,, cannot be N L-colored with 6 colors,
otherwise xnr(Pos), Xxnr(Cos) < 6 which is impossible. The following is an y yz-coloring of
Ps3[Pyy) with 12 colors and Ps3[Cy9] with 13 colors.

P,,, is NL colored with colors 8,9,10,11,12 as usual.

The N L-colors of the vertices of P, is
7,1,5,6,1,6, 1,5,4, 1,3,5, 1,3,2, 6,7,2, 6,3,2, 4,6,4, 6,2,4, 5,2,5, 2,6,5, 6,5,2, 4,7,2, 4,3,6,
3,6,4, 3,5,3, 7 for the vertices uyy, - - - , u1(9) respectively.

The N L-colors of the vertices of Ps,, is
77 57 67 37 57 47 57 47 67 57 47 37 47 37 27 57 37 27 77 37 27 ]'7 57 27 17 27 ]'7 47 27 17 67 27 ]'7 77 37 17 37 67 ]‘7 37 47 17
4,1,6, 4,1,7, 5 for the vertices usy, - - - , ug(9) respectively.

Cs,, is NL colored with colors 8,9, 10, 11,12, 13 as usual. By changing the color u;; from 7
to 4 in yyr-coloring of P3Py, we attain a yyr-coloring of P3[Cy9| with 13 colors.

If we use the Remark 2, and Theorem 10, for C4[P,| and C4|C,,] we can adopt.

Theorem 11. Letn > 4. If l(k—1) <n <{l(k) and l(k+t—1) <2n < l(k +1), then

(i) xno(Ca[Pn]) < 2xnp(Prn) + 2t 4 4.
(i) xnr(Ca[Cn]) < 2xnp(Cn) + 2t 4 4.
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Proof. Let Let P, and C;, respectively be the i-th row of C4[P,] and C4[C,,] for 1 <i < 4.

(i) By definition all vertices P,, and P, are adjacent to all vertices of P, and P;  and vice
versa. Therefore, if two vertices w;; and ug; respectively in Py, and P, have same colors
under any N L-coloring, then {c(ui(j-1)), c(ui+1))} # {c(use-1)), c(u1@41))} (mod n), and
in the same way, if two vertices uy; and w4 respectively in P, and Py, have same colors
under any N L-coloring, then {c(uag—1)), c(ug(j+1))} # {c(wa-1)), c(uaes1y)} (mod n). Now
using the Remark 1 we need at most ynz(P,) + ¢ + 2 colors for N L-coloring of P;, and
P;, and we need at most xn(P,) +t + 2 colors for N L-coloring of P, and Pj,.

(ii) There is a same way for part 2 and we left the proof.

From the Examples 1, 2, maybe the Theorems 10 and 11 regulated as.

Problem 5. For path P, and cycle C,,, we have.

2. xno(Ps3[Ch]) < 2xnp(Cn) +t+1
8. xnp(CalP]) < 2xnp(Pn) + 2t +2
4. xno(Ca[Cr]) < 2xni(Cr) + 2t + 2

5. Corona Product of Graphs

In this section we investigate neighbor locating coloring of the corona product of two graphs
in terms of neighbor locating coloring of each of them. We start with a general result.

Theorem 12. Let G and H be two graphs. Then xnp(Go H) < |V(G)|+ xnr(H). This bound
s sharp.

Proof. For this, if we assign distinct colors to the vertices of G and from definition of corona
of two graphs the color of the i-th vertex of G must be different to the colors of the vertices of
t-th copy of H. On the other hand, if any two vertices in a copy of H have same color, then
it is clear, they have different color neighbors in this copy. If two vertices of two copies of H
have same color, then one of them is in i-th copy and the other is in j-th copy where the color
of i-th vertex in G and the color of j-th vertex in G are different and then two vertices in two
copies of H with same color find different color neighbors. This bound is sharp for K o K,,,
see Theorem 13. O

n m<n-—2

Theorem 13. Let n > 3 and m > 1 be integers. Then xnr(K, 0 K,,) = )
m+2 m>n-—1

Proof. Suppose that m < n — 2. Since xn.(K,) = n, let 7 = {S1,52,-++,S,} be the set of
colors assigned to K,,. Let the i-th vertex of K, is assigned by color ¢ and K’ be the i-th copy
of K,,. Then we consider 7(K:) = {Sis1, -, Siym} (mod n) for 1 < i < n. We assert that
these assignments give us an N L-coloring of K,, o K,,. For this, every vertex of K’ has at most
m color neighbors and any vertex in K,, has n — 1 > m + 1 color neighbors.

As well we say m; = 7(K!) = {Sis1, Siz2, + , Sizm} (modn). Then 7; can be have common
colors at most with m; 1, mi10, , Titm, Ti1, Ti—2,* -+ , Ti—m and m; does not have common
color with m; for j >i+m+1 or j <¢—m — 1 if any. On the other hand, for any 1 <k <m,
every vertex of K" does not have the color i + k — 1 (mod n) as a color neighbor but any
vertex of K has this property, also for any 1 < k < m, every vertex of K% does not have
the color i +m — k + 1 (mod n) as a color neighbor but any vertex of K! has this property.
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Therefore, 7 is a minimum- N L-coloring of K, 0 K, for m < n—2, and then xy.(K,0K,,) = n.

Suppose that m > n—1, then w(K, 0 K,,) = m-+1. Same as part 1, we need n distinct color
for K,, and since m > n — 1 at least m + 1 distinct color must be used for the i-th vertex of K,
and the vertices of K' . Therefore, we need at least m + 2 colors for N L-coloring of K, o K,,.
Now we give an N L coloring of K, 0 K,, with m+2 colors. For this, we bring up three situations.

1. Suppose that m = n — 1 and # = {S1, 52, -+, S, Sns1}. Then we assign the colors as
follows.
m(K,) = {51, 52, -, Sy}, where i-th color has been used for i-th vertex of K,,. Then

m(K},) = {51,592, . Si—a, Sit1, *+ + Sn, Spy1} for 1 <i < n.

We show that 7 is a minimum N L-coloring of G with m + 2 = n + 1 colors. We
straightforward understand, any vertex of K! does not have color ¢ — 1 in its color
neighbors and any vertex of K, with j-th color (j # i — 1) has i — 1 as a color neighbor.
On the other hand, every vertex of K' has color j — 1 in the color neighbor and every
vertex of K7 has color 7 — 1 in the color neighbor for i # j. Therefore the mentioned
coloring is a minimum N L-coloring.

2. Suppose that m = n and © = {S1, Sa, -+ , Sy, Snt1, Snie}. We show that 7 is a minimum
N L-coloring for K, o K,, with m 42 = n+ 2 colors. Then we consider the assigned colors
as follows.

m(K,) = {S1, 52, -, Sy}, where i-th color has been used for i-th vertex of K, and
W(K;n) — {Sla S?) T 7Si—27 S’H—lu e 7S7L+17 Sn+2} fOT 1 S Z S n.

It is straightforward to understand, any vertex of K (1 <4 < n) has color n+1 or n+2
in its color neighbors and any vertex of K, does not have one as a color neighbor. On the
other hand, every vertex of K’ has color j — 1 in the color neighbor and every vertex of
K7 has color i — 1 in the color neighbor for ¢ # j. Therefore the mentioned coloring is a
minimum N L-coloring.

3. Suppose that m > n+ 1 and m =n +r and 7 = {S1,S5, 55+, Spars1, Snirs2}. Then,
from part 2, consider 7(K,,) = {S1, 52, ,S,}, and

W(Kfn) - {517527 T aSZ'—QaSH-la T 7Sm+175m+2} fOT 1 S l S n.

Now similar proof of part 2, shows that 7 is a minimum N L-coloring of K, o K,, for
m>n+ 1.

Theorem 14. Let G = P,, o P, be a graph. Then,

(k+m) ((5") + (535

m —+mn

min{k +m : )) > 1} < xnp(PnoBy) <m+ xnin(P).

The upper bounds is sharp.

Proof. For upper bound, use Theorem 12 and for the sharpness, consider P;3 o P, for n > 1.
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Lower bound; in graph P,, o P,, the vertices of a copy of P, have color-degree 2 or 3 and
the vertices of P, have color-degree k + 2 or k + 3, where k = xnz(FP,). On the other hand
XNL(Pp o P,) < m+ k. From Corollary 1, we have

wems (1) (75 () ()

(ki +m) k+m n k+m
m .
3 k+2
Now using Corollary 2 the lower bound is observed. O
In the following, for any integer k > 3, we construct a graph G in which xy.(G o Py) = k.

Proposition 7. For every k > 3, xni(Pra-nn-2 o Py) = k.
6

Proof. For any positive integer m, there are m K3 in P,, o P, in which 2m vertices have exactly
color-degree 2. Therefore, from Corollary 1

[—1 [—1
n(PmoPQ):m+2m§l< 5 >+m§;’< ) )

Since W < l(lgl), from Corollary 2, xnr(Prx-nx-2) > k. Now we give an N L-coloring

for Prg—1y-2 o Py with k-colors. It is well known thgt, 6 | k(k — 1)(k — 2). Thus there exist
6
two situations as follows.

1. Let 6 | (k—1)(k—2) and t = W. Then we have a path with tk vertices and tk

paths P, which each of them is adjacent to a vertex of P, and the vertices of P, with
V(Py) = {vjkri : 1 <i<kand0 < j <t—1} and the vertices of V(mP,) = {wjyi, Wjk+i
1<i<kand0<j<t—1}
For coloring of Py, 0 P, we assign color ¢ to the vertex vjp4; for 1 <¢ < kand 0 <j <t-—1
of Py, and assign color i + 1, j 4+ ¢ 4+ 2 to the vertices wjjqi, wjry; for 1 < 7 < k and
1 < j <t—2and assign color i + 2,7 4 3 to the vertices wy—1)pti, Wi—1)kti (Mmod k)
respectively. This coloring is an N L-coloring with k& colors. Therefore, in this position
XNL<Pk(k71g(k72) o) Pg) =k

2. Let 6 4 (k—1)(k—2) and W = sk+r where 1 <r < k—1. Then we have a path with
sk+r vertices and sk+r paths P, which each of them is adjacent to a vertex of Py, and the
vertices of Pyyp, with V(Pyppy) = {vjki : 1 <i <k and0 < j < s—1}U{vgey 1 1 <i <1}
and the vertices of V(mP,) = {ujpyi, wjk+i 0 1 < i <k and0 < j <s—1}U{tUspri, Wspti :
1<i<r}

For coloring of Pyi, o I, we assign color ¢ to the vertex vjp4; for 1 <i < kand 0 < j < s of
P4, and assign color ¢+ 1, j +¢ + 2 to the vertices wjj1q, Wjgqs for 1 <i < kand1<j<s—1
and assign color ¢ + 2,4 + 3 to the vertices ugi, Wspri (1 <@ < r), (mod k) respectively. This
coloring is an N L-coloring with & colors. Therefore, in this position xnr(Prx-1x-2 © Py) = k.
Consequently, the result holds. ’ O

One of the relation in N L coloring of corona product, attaining x (K, o P,). For this, at
first we state a proposition.

Proposition 8.

m+2 m=n=23

K, oP,) =
xwi( ) {n+1 4<m=n<b5 orm=4andn <3, orm=3andn<2.
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Proof. 1.1f m = n = 3, then it is clear xn. (K3 0 P3) > 4. Assume contradictorily,
X~nL(K3 0 P3) = 4 and vertices of K3 are assigned with colors 1,2,3. Then the path Pj
adjacent to the vertex with color 1, are 2,3,4 and two other Pj, take colors 1,2,4 and
1,3, 4 respectively. With this coloring, either two vertices with color 4 attain a same color
neighbor or two vertices with one of colors 1,2 or 3 attain a same color neighbor, that
is a contradiction. Therefore xnz (K30 P;) > 5. Now we assign colors 1,4,5; 2,4,5 and
3,4,5 to the vertices P3 adjacent to the vertices with color 2, 3 and 1 respectively. The
former coloring is an N L-coloring of K3 o Psj.

2. Let m =n =4. Then xn.(K 0 P;) > 5. Now we give an NL coloring with 5 colors. Let
v; (1 <7 <4) be the vertices of Ky and uj;, (1 < j <4 be the vertices of Py, the path P,
adjacent to v;. The assignment color i to v;; color i — 1 (mod 4) to uy;; color i + 1 (mod 4)
to wug;; color 5 to wug;; and color @ + 2 (mod 4) to uy; give an N L-coloring for 1 < ¢ < 4.
Therefore (K40 Py) = 5.

Let m = n = 5. Then xnp (K50 P5) > 6. We give an NL coloring with 6 colors. Let v;
(1 < i < 5) be the vertices of K5 and uj;, (1 < j < 5) be the vertices of Ps,, the path Ps
adjacent to v;. The assignment color ¢ to v;; color i — 1 (mod 5) to wuy;; color i + 1 (mod 5) to
Ug;; color 6 to us;; color i+ 2 (mod 5) to ug;; and color i+ 3 (mod 5) to us; give an N L-coloring
for 1 <i < 4. Therefore x (K50 P5) = 6.

For m = 4 and n < 3; or m = 3 and n < 2, there exist similar reason, and we left the
proof. O

Theorem 15. Let m and n be positive integers, {(k — 1) +1 <n < {(k), and n =tk +r (0 <
r<k-—1).

If m > k and (m; 1) > 3(7»(%1 + (k- T)L%J), then xni(Kpm o Py) = m
Proof. Since ((k—1)+1 <n < (k), xnr(P,) = k. Let the vertex v; of K,,, be assigned by color
i for 1 <i <m. Let P,, be the path P, adjacent to v;, and V(P,,) = {u;; : 1 <j < n}. From
the data, we assign colors i + 1,7+ 2,--- i+ k (mod n) to the vertices of V(P,,) (1 <i < m).
There has been used mn colors for all P,;s so that every color is appeared in k paths P,;s, and
is iterated n times. In addition to that, each vertex is iterated || times in r paths P,;s and is
iterated |7 | times in k —r paths P,;s. On the other hand, each vertex has color degree at most
3. Hence, each vertex with color i has at most (r[%] + (k —r)[}]) clusters of three colors. In

the other words, there exist (r[%] 4 (k —r)[%]) clusters of four colors in which one of colors

is 7. Also, if we consider the m colors of K,,, for each vertex with color i, there exist (m; 1)

clusters of three colors so that ¢ forms clusters of four colors that one of colors is i. Since by

the data, (m3—1) > 3(r[#]+ (k—r)|%]), there does not exist two same color vertices with same

color neighbors. Therefore x (K, o P,) = m. m]
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