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Abstract: Let G be a simple finite graph. A k-coloring of G is a partition π = {S1, · · · , Sk}
of V (G) so that each Si is an independent set and any vertex in Si takes color i. A k-coloring
π = {S1, · · · , Sk} of V (G) is a neighbor locating coloring if any two vertices u, v ∈ Si, there is
a color class Sj for which, one of them has a neighbor in Sj and the other not. The minimum k
with this property, is said to be neighbor locating chromatic number of G, denoted by χNL(G)
of G. We initiate to study the neighbor locating coloring of graphs resulted from three types of
product of two graphs. We investigate the neighbor locating chromatic number of Cartesian,
lexicographic and corona product of two graphs. Finally, we untangle the neighbor locating
chromatic number of any aforementioned three products of cycles, paths and complete graphs.

Keywords: Coloring, Neighbor locating coloring, (Cartesian, lexicographic and corona)
product, Graphs

1. Introduction

Let G = (V, E) be a simple, finite, connected and undirected graph with the vertex set
V = V (G) and the edge set E = E(G). The open neighborhood of v, N(v) is the set of
vertices adjacent to v and closed neighborhood of v is N [v] = N(v) ∪ {v}. The minimum and
the maximum degree of G is the smallest and largest number of neighbors of a vertex in G

and denoted by δ = δ(G) and ∆ = ∆(G) respectively. For the terminologies and notation not
herein, see [1].

For two standard products (Cartesian and lexicographic product) of graphs G and H, the
vertex set is V (G) × V (H) and the adjacency of two vertices are defined as follows. In the
Cartesian product G□H, two vertices (g, h) and (g′, h′) are adjacent if g is adjacent to g′ in G

and h = h′ in H, or if g = g′ in G and h is adjacent to h′ in H. In lexicographic product G[H],
two vertices (g, h) and (g′, h′) are adjacent if either gg′ ∈ E(G) or g = g′ and hh′ ∈ E(H). The
corona product G ◦ H of two graphs G and H is obtained by tacking one copy of G and |V (G)|
copies of H and by joining each vertex of the i-th copy of H to the i-th vertex of G, where
1 ≤ i ≤ |V (G)|. We use Pn, Cn and Kn to display the path, cycle and complete graph of order
n, respectively. The Cartesian product of Cm□Cn, Pm□Pn, Km□Cn, and Km□Pn, are said to
be tori graph, grid graph, perfect tori graph and perfect grid graph respectively.

A proper k-coloring of G, (k ∈ N), is a function f defined from V (G) to a set of colors
[K] = {1, 2, · · · , k} in which every two adjacent vertices have different colors. Minimum k
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for coloring of a graph G is called the chromatic number of G denoted by χ(G) = k, and
the color classes is denoted by π = {S1, · · · , Sk}. The color-degree of a vertex v is defined
to be the number of different colors of π comprising some vertex of N(v). For a connected
graph G, a vertex v ∈ V (G) and a set of vertices S ⊆ V (G), the distance between v and S is
d(v, S) = min{d(v, w) : w ∈ S}.

A k coloring π = {S1, S2, · · · , Sk} is said to be a metric locating (ML) coloring if for every
i ∈ {1, 2, · · · , k} and for every pair of distinct vertices u, v ∈ Si, there exists j ∈ {1, 2, · · · , k}
such that d(u, Sj) , d(v, Sj). Minimum k for ML-coloring of a graph G, is called (metric-
)locating number χL(G) of G, [2–4]. Recently, some authors worked on edge-locating coloring
of a graph, which is not without pleasure to see [5].

A k-neighbor locating coloring of a graph G is a partition of V (G) to π = {S1, S2, · · · , Sk}
so that for two vertices u1, u2 ∈ Si, the set of colors of the neighborhood of u1 is different from
the set of colors of the neighborhood of u2. Minimum k for a neighbor locating coloring (an
NL-coloring) of a graph G is called the neighbor locating chromatic number (NL-chromatic
number) of G denoted by χNL(G) = k. This concept has been defined under the name of
adjacency locating coloring (L2-coloring) of G in [6] and briefly worked on. Also, its chromatic
number was named L2-chromatic number of G (χL2(G) of G). For more information on this
area see [2, 6–11].

In this paper, we observe some preliminaries results on NL-coloring in Section 2. In Section
3, the NL-chromatic number of Cartesian product of two graphs are studied, in particular the
NL-chromatic number of some tori graphs, grid graphs, perfect tori graphs, and perfect grid
graphs are determined. In Section 4, the NL-chromatic number of lexicographic product of
two graphs are investigated and finally, NL-chromatic number of corona product of two graphs
are experimented in Section 5.

2. Preliminary Results

In this section, we explore some preparatory results related to NL-coloring of graphs.

Remark 1. ( [8] Remark 1) Let G be a graph of order n and maximum degree ∆. Let Π =
{S1, · · · , Sk} be a k-NL-coloring of G. There exist at most

(
k−1

j

)
vertices in Si of color-degree

j, for every 1 ≤ i ≤ k, where 1 ≤ j ≤ k − 1 and consequently, |Si| ≤ ∑∆
j=1

(
k−1

j

)
. For

χNL(G) = k ≥ 3 and 1 ≤ j ≤ ∆, we denote by aj(k) the maximum number of vertices of
color-degree j, and we denote by ℓ(k) the maximum number of vertices of color-degree 1 or 2
that is (ℓ(k) = a1(k) + a2(k)). Therefore, we have.

a1(k) = k(k − 1), a2(k) = k(k − 1)(k − 2)
2 , ℓ(k) = k

(
k

2

)
= k3 − k2

2 .

Theorem 1. ( [7] Theorem 1) Let G be a non-trivial graph of order n and maximum degree
∆. Let χNL(G) = k. If G has no isolated vertices and ∆ ≤ k − 1, then

n ≤ k
∆∑

j=1

(
k − 1

j

)
.

From Theorem 1 and this fact, for positive integers l ≥ k,
(

l
t

)
≥
(

k
t

)
(t ≤ k), then we have.

Corollary 1. Let G be a non-trivial graph of order n and maximum degree ∆. Let k =
χNL(G) ≤ l. If G has no isolated vertices, then

n ≤ l
∆∑

j=1

(
l − 1

j

)
.
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Let G be a graph of order n and maximum degree ∆. From Corollary 1, if m is a positive

integer in which ∆ ≤ m − 1 and n > m
∑∆

j=1

(
m−1

j

)
, then χNL(G) > m. Therefore we have the

following.
Corollary 2. Let G be a graph of order n and maximum degree ∆. Then

χNL(G) ≥ min
l : n ≤ l

∆∑
j=1

(
l − 1

j

) .

This bound is sharp for nontrivial path Pn from Theorem 3.6 of [6] or Theorem 17 of [8].
There needs the following.

Theorem 2. ( [6] Theorem 3.6). For a positive integer n ≥ 2, χL2(Pn) = m, where m = min{k :
k ∈ N, n ≤ 1

2(k3 − k2)}. More precisely, there exist an adjacency locating m-coloring fn of the
path Pn = v1v2 · · · vn with the color set {1, 2, · · · , m}, and two specified colors (say “1” and “2”)
such that fn satisfies the following properties.
(a) fn(vn−1) = 2 and fn(vn) = 1.
(b) If n ≥ 9, then fn(vn−2) = m.
(c) If n ≥ 9 and n , 1

2(m3 − m2) − 1, then fn(v1) = 2 and fn(v2) = 1.
Theorem 3. ( [8] Theorem 17). Let k, n be integers such that k ≥ 4 and ℓ(k − 1) < n ≤ ℓ(k).
Then,

(1) χNL(Pn) = k.
(2) χNL(Cn) = k, if n , ℓ(k) − 1.
(3) χNL(Cn) = k + 1, if n = ℓ(k) − 1.

3. NL-Coloring of Cartesian Product of Graphs

In this section we discuss on the neighbor locating coloring of Cartesian product of two graphs
and obtain neighbor locating chromatic number of some tori graphs, grid graphs, complete tori
and complete grid graphs.
Theorem 4. Let G and H be two graphs. Then χNL(G□H) ≤ χNL(G)χNL(H). This Bound
is sharp.
Proof. Let V (G) = {v1, v2, · · · , vm} and V (H) = {u1, u2, · · · , un}. Let χNL(G) = k′ and
χNL(H) = k′′ with C1 = CNL(G) = {1, 2, · · · , k′} as an NL-coloring of G and C2 =
CNL(H) = {1, 2, · · · , k′′} as an NL-coloring of H. Now we give rise an NL-coloring of G□H.
Let {wij = (vi, uj) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} be the set of vertices G□H. We make an
NL-coloring of G□H with k′k′′ colors. Let

C = {rs : 1 ≤ r ≤ k′ and 1 ≤ s ≤ k′′} = {11, 21, · · · , k′1, 12, 22, · · · , k′2, · · · , 1k′′, 2k′′, · · · , k′k′′}

be a set of k′k′′ labels in which the vertex wij is assigned by the label rs whenever the vertex
vi has been assigned with label r and uj with label s. It is sufficient to show that for both
vertices with the same color, their color neighbors are different.
For this, we bring up three positions.

1. If we have two or more similar colors in a row, for instance wik and wil are assigned with
same color rs in a ith row. Then vertex vi is assigned by r and uk, ul are assigned by s.
Since uk, ul has same color in H, N(uk) ∩ C2 , N(ul) ∩ C2. Assume that the label t is in
N(uk) ∩ C2 \ N(ul) ∩ C2, then rt is in N(wik) and is not in N(wil). This shows that, the
color neighbors of wik and wil are different.
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2. If we have two or more similar colors in a column, that is the vertices wkj and wlj have

similar color, then we can observe the proof as part 1.

3. Let wij and wlk have same color where i , l and j , k. Let rs be the color of wij and wlk.
Then the vertices vi, vk are assigned with color r and the vertices uj, ul are assigned with
color s. Assume that t is the color of one of the neighbors of vi say vp while no neighbors
of vl are assigned by t. Thus wpj has color ts. On the other hand, no vertex like wqz

with color ts cannot be appeared in N(wlk) since otherwise, vq is assigned with color t in
NH(vl). This denotes, the color neighbors of wij and wlk are different. Therefore C is a
neighbor locating coloring of G□H.

For observing the sharpness, consider G = H = P2, then χNL(P2) = 2, P2□P2 = C4 and
χNL(C4) = 4. □

3.1. Tori graphs

The tori graph Cm□Cn has maximum degree ∆ = 4 and is a free isolated vertices graph.
Therefore we have.
Theorem 5. Let G = Cm□Cn be a tori graph. Then,

min{k :
ℓ(k) + k

(
k
4

)
mn

≥ 1} ≤ χNL(Cm□Cn) ≤ χNL(Cm)χNL(Cn).

Proof. The upper bound is resulted from Theorem 4.
The lower bound. By definition of Cartesian product, the tori graph Cm□Cn is a regular

graph with degree ∆(G) = δ(G) = 4, and

k
4∑

j=1

(
k − 1

j

)
= k

((
k − 1

1

)
+
(

k − 1
2

)
+
(

k − 1
3

)
+
(

k − 1
4

))

= k

(
k

2

)
+ k

(
k

4

)
= ℓ(k) + k

(
k

4

)
.

Therefore the Corollary 2 prove the lower bound. □

Now we investigate the neighbor locating chromatic number of some special tori graphs.
Proposition 1. The following holds.

(i) χNL(C3□C3) = 5,
(ii) χNL(C3□C4) = 4,

(iii) χNL(C3□C5) = 5,
(iv) χNL(C4□C4) = 5,
(v) 5 ≤ χNL(C4□C5) ≤ 6,

(vi) 5 ≤ χNL(C5□C5) ≤ 6,
(vii) 5 ≤ χNL(C6□C6) ≤ 6,

(viii) 6 ≤ χNL(C9□C9) ≤ 7.

Proof. (i) On the contrary, suppose that χNL(C3□C3) < 5. It is clear, χNL(C3□C3) ≥ 4. Let
{uij : 1 ≤ i ≤ 3, 1 ≤ j ≤ 3} be the set of vertices of C3□C3. If π = {S1, S2, S3, S4} be the
set of colors, then it is well known that u22 cannot have color-degree 1 or 2. So there are
at least three colors in its neighbors. Let {u22} ⊆ S1, {u12} ⊆ S2, {u23, u32} ⊆ S3 and
{u21} ⊆ S4. Then it is easy to check that u11 does not accept color 1 or 3 and it must be
labeled with fifth color, a contradiction.
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(ii) Let {uij : 1 ≤ i ≤ 3, 1 ≤ j ≤ 4} be the set of vertices C3□C4. It is clear

χNL(C3□C4) ≥ 4. On the other hand, if π = {S1, S2, S3, S4} is the set of colors, and
consider S1 = {u24, u31, u33}, S2 = {u21, u32, u34}, S3 = {u11, u13, u22}, S4 = {u12, u14, u23}.
then it can be an NL-coloring of C3□C4. Therefore χNL(C3□C4) = 4.

(iii) It is well known that χNL(C3□C5) ≥ 4. On the contrary, assume that, χNL(C3□C5) = 4.
Let π = {S1, S2, S3, S4}. Then any vertex of C3□C5 has color degree 2 or 3 and from
Observation 1 for m = 3 and n = 5, there exist at most 10 vertices of color degree 2
in C3□C5. On the other hand, there exist at most 4

(
3
3

)
= 4 vertices of color degree 3,

thus there must exist at least 11 vertices of color degree 2 in C3□C5, a contradiction.
Therefore χNL(C3□C5) ≥ 5. Now we give an NL-coloring of C3□C5 with 5 colors. Let
π = {S1, S2, S3, S4, S5} with S1 = {u22, u25, u31, u33}, S2 = {u23, u34}, S3 = {u12, u15, u24},
S4 = {u11, u14, u32, u35} and S5 = {u13, u21} is an NL coloring of C3□C5. Therefore
χNL(C3□C5) = 5.

(iv) On the contrary, assume that χNL(C4□C4) = 4. At first, we can easy to see that, there
does not exist any vertex of color degree 1 in C4□C4. Also by a routine investigation,
there exist at most two vertices of color degree 2 in each column of C4□C4. On the
other hand, since k = 4, there must exist at least 4

(
3
2

)
= 12 vertices of color degree 2,

a contradiction. Therefore χNL(C4□C4) ≥ 5. Now we give an NL-coloring with 5 colors
as follows. Let π = {S1, S2, S3, S4, S5} with S1 = {u22, u31, u33, u44}, S2 = {u14, u34},
S3 = {u12, u24, u41, u43}, S4 = {u11, u23, u32} and S5 = {u13, u21, u42}. Therefore
χNL(C4□C4) = 5.

(v) At first we assert χNL(C4□C5) ≥ 5. Assume on the contrary that, χNL(C4□C5) = 4.
Since C4□C5 has only the vertices of color degree 2 or 3 with 4 colors, from
Theorem 5 χNL(C4□C5) > 4. The following denotes χNL(C4□C5) ≤ 6. Let
π = {S1, S2, S3, S4, S5, S6} with S1 = {u22, u25, u31, u33}, S2 = {u23, u34, u41},
S3 = {u12, u15, u24}, S4 = {u14, u32, u35, u43}, S5 = {u13, u21, u45} and S6 = {u11, u42, u44}.
Therefore 5 ≤ χNL(C4□C5) ≤ 6.

(vi) It is clear that, χNL(C5□C5) ≥ 5. Now, consider π = {S1, S2, S3, S4, S5, S6} with
S1 = {u22, u25, u31, u33, u45}, S2 = {u23, u34, u51}, S3 = {u12, u15, u24, u42, u44},
S4 = {u14, u32, u35, u53}, S5 = {u13, u21, u43, u55} and S6 = {u11, u41, u52, u54}. Then
π is an NL-coloring of C5□C5. Therefore 5 ≤ χNL(C5□C5) ≤ 6.

(vii) It is easy to see that, χNL(C6□C6) ≥ 5. We show an NL-coloring of C6□C6 with 6 colors.
Consider the coloring π = {S1, S2, S3, S4, S5, S6} with S1 = {u25, u33, u42, u51, u53, u66},
S2 = {u21, u23, u32, u34, u41, u55, u62}, S3 = {u11, u15, u22, u43, u45, u54}, S4 =
{u13, u24, u26, u35, u44,

u52, u61, u64}, S5 = {u14, u16, u31, u46, u63, u65} and S6 = {u12, u36, u56}. Therefore
5 ≤ χNL(C6□C6) ≤ 6.

(viii) And finally we investigate χNL(C9□C9). From Theorem 5, χNL(C9□C9) ≥ 6. Consider
π = {S1, S2, S3, S4, S5, S6, S7} with
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S1 = {u11, u14, u34, u47, u53, u55, u62, u73, u75, u82, u88},

S2 = {u16, u24, u36, u45, u54, u56, u59, u71, u83, u95, u97},

S3 = {u17, u21, u38, u42, u44, u49, u61, u65, u67, u76, u87, u99},

S4 = {u13, u19, u26, u28, u33, u39, u47, u52, u57, u66, u68, u74, u79, u94, u96},

S5 = {u32, u35, u37, u41, u43, u58, u63, u78, u84, u86, u92},

S6 = {u22, u25, u27, u48, u64, u69, u81, u93, u98} and

S7 = {u12, u15, u18, u23, u29, u31, u51, u72, u77, u85, u89, u91}.

This coloring is an NL-coloring of C9□C9 with 7 colors. Therefore 6 ≤ χNL(C9□C9) ≤ 7. □

Regarding to the Theorem 5, the following problem can be explored.

Problem 1. Let n ≥ 3 be a positive integer. For k ≥ 5, if

ℓ(k − 1) + (k − 1)
(

k − 1
4

)
< n2 ≤ ℓ(k) + (k)

(
k

4

)
,

then χNL(Cn□Cn) ∈ {k, k + 1}.

3.2. Grid graphs

In this subsection we discuss on NL-coloring of grid graphs. The grid graph Pm□Pn has
maximum degree ∆ = 4 for n, m ≥ 3, and has maximum degree ∆ = 3 for m = 2 and n ≥ 3,
furthermore, any grid graph is free isolated vertices graph. Therefore we have.

Proposition 2. Let G = P2□Pn be grid graph (lader graph) where n ≥ 3. Then

min{k :
k2 − k + k

(
k
3

)
2n

≥ 1} ≤ χNL(P2□Pn) ≤ 2χNL(Pn).

The lower bound is sharp for P2□Pn (n ∈ {3, 4, 5}) and the upper bound is sharp for P2□P2.

Proof. The upper bound and its sharpness are resulted from Theorem 4.
For lower bound, since ∆(P2□Pn) = 3,

k
3∑

j=1

(
k − 1

j

)
= k

((
k − 1

1

)
+
(

k − 1
2

)
+
(

k − 1
3

))

= k2 − k + k

(
k

3

)
.

Now using Corollary 2, we observe the proof. □

For grid graphs Pm□Pn for m, n ≥ 3, we have ∆(Pm□Pn) = 4. Therefore using similar proof
of Theorem 5 we have the following.

Theorem 6. Let G = Pm□Pn be the grid graph obtained from Cartesian product of Pm and
Pn. Then

min{k :
ℓ(k) + k

(
k
4

)
mn

≥ 1} ≤ χNL(Pm□Pn) ≤ χNL(Pm)χNL(Pn).

The lower bound is sharp for Pm□Pn where m = n ∈ {3, 4, 5, 6}, see Proposition 3.

Proposition 3. For grid graphs Pn□Pn, n ∈ {3, 4, 6, 9}, we have.
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(i) χNL(P3□P3) = 4,

(ii) χNL(P4□P4) = 4,
(iii) χNL(P6□P6) = 5,
(iv) χNL(P9□P9) = 6.

Proof. At first, assume that V (Pn) = {v1, v2, · · · , vn} and vij = (vi, vj) for 1 ≤ i ≤ n and
1 ≤ j ≤ n be the vertex in a ith row and jth column of Pn□Pn.

(i) Suppose to the contrary that χNL(P3□P3) ≤ 3. It is easy to see that, v22 has color-degree 1
or 2. If the color degree of v22 is 1, then v12, v21, v23, v32 have same color. According to the
definition of neighbor locating coloring v11, v13, v31, v33 should be assigned with different
colors, a contradiction.
If the color degree of v22 is 2 and without loss of generality, the color of v22 is 1 and
v12, v21, v23 and v32 accept two colors 2 or 3. So, at least one of the vertices of v11, v13, v31
and v33 for example v31, should be assigned with color 1, and so v22 and v31 with color 1
have same color neighbor, which is a contradiction. On the other hand, it is easy to see
that χNL(P3□P3) ≤ 4. Therefore χNL(P3□P3) = 4.

(ii) For 4-NL coloring of P4□P4, from Theorem 6, χNL(P4□P4) ≥ 4. On the other hand, the
tables T1 and T2 show that χNL(P4□P4) = 4.

(iii) Theorem 6 denotes χNL(P6□P6) ≥ 5. On the other hand, the tables T2 and T3 show that
χNL(P6□P6) = 5.

(iv) From Theorem 6 we have χNL(P9□P9) ≥ 6. Now tables T3 and T4 show that χNL(P9□P9) =
6.

1 2
3 4

3 2 4 1
2 1 2 4
1 3 4 3
4 1 3 2

4 2 5 2 5 3
5 3 2 4 1 4
1 2 1 2 4 5
5 1 3 4 3 4
1 4 1 3 2 5
2 5 3 5 3 1

1 6 2 4 6 5 6 3 1
6 3 5 3 2 4 1 4 3
3 2 4 2 5 2 5 3 5
6 3 5 3 2 4 1 4 6
2 4 1 2 1 2 4 5 4
3 1 5 1 3 4 3 4 3
2 6 1 4 1 3 2 5 6
3 1 2 5 3 5 3 1 2
6 4 1 6 1 3 6 5 1

T1 T2 T3 T3

Therefore the results hold. □

According to Theorem 6 and Proposition 3, we expect to have the following problem.

Problem 2. Let n ≥ 3 be a positive integer. For k ≥ 5, if

ℓ(k − 1) + (k − 1)
(

k − 1
4

)
< n2 ≤ ℓ(k) + (k)

(
k

4

)
,

then χNL(Pn□Pn) = k.
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3.3. Perfect tori graphs and perfect grid graphs

For neighbor locating coloring of perfect tori graph and perfect grid graph, we have.

Lemma 1. Let χNL(Km□Cn) = k. If m + 1 ≤ k ≤ 2m − 1, then at least one vertex of any
column have color degree at least m.

Proof. Let u1i be the i-th vertex of the first column with color in Si. Suppose on the contrary,
the first column has the property that, every vertex has color degree m − 1, then the second
and end columns must be colored with colors Sj, 1 ≤ j ≤ m which have already used for the
1st column. Now, each vertex in the second column with color in Si, must have a neighbor in
the third column with a color in St where t ≥ m + 1. Since St can be nominated for at most
m − 1 colors, one vertex in the third column can be in Sj, 1 ≤ j ≤ m. Let vertex u3l be in
S1. Then two vertices u2l and u1r with same color in Sr (1 ≤ r ≤ m) find same neighbor colors
{S1, S2, · · · , Sr−1, Sr+1, · · · Sm}, that is a contradiction. □

The following give us an upper sharp bound for neighbor locating chromatic number for
Km□Pn and Km□Cn.

Proposition 4. Let G = Km□Pn be the perfect grid graph obtained from Cartesian product of
Km and Pn with m ≥ 3, n ≥ 1. Then χNL(Km□Pn) ≤ m + n − 1. This bound is sharp for
K3□P3.

Proof. Each vertex in Km□Pn has m − 1 neighbors in its column and at most two neighbors in
its row. There is also n copy of Km in Km□Pn. We color the graph by the columns.
The first column must accept m colors. By assigning a new color to every other column,
we will clearly have a neighbor locating coloring for Km□Pn. We consequently, will have
χNL(Km□Pn) ≤ m + n − 1. □

Using similar proof of Proposition 4, we have.

Proposition 5. Let G = Km□Cn be the perfect tori graph obtained from Cartesian product of
Km and Cn with m, n ≥ 3. Then χNL(Km□Cn) ≤ m + n − 1 if 3 ≤ m ≤ 6. This bound is sharp
for K3□C3.

In the fallow, we display some Cartesian product of Km□C3 which m + 1 ≤ χNL(Km□Cn) ≤
m + 2. For m = 3, with an easy calculation is verifiable that χNL(K3□Cn) = 5 = 3 + 2, and for
the m ≥ 7, we have χNL(Km□Cn) = m + 1 according to the table shown below.

2 m + 1 4
3 1 5
4 5 6
5 6 7
. . .

. . .

. . .

m − 2 m − 1 m
m − 1 m m + 1

m 3 1
m + 1 4 2

T5
χNL(Km□Cn) = m + 1
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Regarding to the table T5 and χNL-coloring of K3□C3 we have.

Corollary 3. For m ≥ 3,

1. χNL(Km□C3) ≤ m + 2 if 3 ≤ m ≤ 6. This bound is sharp.
2. χNL(Km□C3) = m + 1 if m ≥ 7.

According to the Corollary 3, one can have.

Problem 3. For 4 ≤ m ≤ 6, χNL(Km□C3) = m + 2.

4. Lexicographic Product of Graphs

In this section we discuss on the neighbor locating coloring of lexicographic product of two
graphs with emphasis on paths, cycles and complete graphs. We start with the following.

Taking the proof of Theorem 4 as a plan, we can have the following theorem.

Theorem 7. Let G and H be two graphs. Then χNL(G[H]) ≤ χNL(G)χNL(H). This bound is
sharp.

Proof. The proof is quite similar to the proof of Theorem 4. For sharpness consider G = P2
and H = Pn for any n or H = Cn for n ≥ 3, and see Proposition 6. □

For n = 1 and n = 2, P2[P1] = K2 and P2[P2] = K4, and next χNL(K2) = 2, χNL(K4) = 4.
We hence deduce χNL(P2[P1]) = 2χNL(P1) and χNL(P2[P2]) = 2χNL(P2). Now we extend the
mentioned results for any Pn and Cn.

Proposition 6. Let n ≥ 3. Then,

(i) χNL(P2[Pn]) = 2χNL(Pn).
(ii) χNL(P2[Cn]) = 2χNL(Cn).

Proof. (i) Let v1, v2, · · · , vn be the vertices of Pn and u1, u2 be the vertices of P2. Then
V (P2[Pn]) = {(u1, vi), (u2, vi) : 1 ≤ i ≤ n}. Since any (u1, vi) is adjacent to any (u2, vj),
hence they receive distinct colors. Therefore, we must use χNL(Pn) = k colors for first row and
χNL(Pn) = k colors for the second row and then χNL(P2[Pn]) = 2k = 2χNL(Pn).

(ii) It is proved such as the proof of part (i). □

It is expected we nurture the Proposition 6 as.

Theorem 8. If k ≥ 3 and n ≥ 4 are integers and χNL(Pn) = k, then

(i) χNL(Pn[Pn]) = 2χNL(Pn) = 6, if n ∈ {3, 4},
(ii) χNL(Pn[Pn]) = 2χNL(Pn) + ⌊n−2

2 ⌋, if n ∈ {5, 6},
(iii) χNL(Pn[Pn]) ≤ 2χNL(Pn) + ⌊n−2

2 ⌋, if n ≥ 7.

Proof. Let V (Pn) = {v1, v2, · · · , vn} and V (Pn[Pn]) = {uij : 1 ≤ i, j ≤ n}. From the definition
of the Lexicographic product, each vertex of the first row is adjacent to the vertices of the
second row, each vertex of the last row is adjacent to the vertices of the n − 1-th row and
each vertex of the i-th row is adjacent to the vertices of the i − 1-th and i + 1-th rows for
2 ≤ i ≤ n − 1.
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(i) For n = 3, it is easy to see that, χNL(P3[P3]) = 2χNL(P3) = 6.

Let n = 4. From the relation between vertices mentioned as above, we need at least 6 col-
ors for NL-coloring of P4[P4]. Let π = {S1, S2, S3, S4, S5, S6} where S1 = {u22, u24, u44},
S2 = {u12, u14, u34}, S3 = {u21, u41, u43}, S4 = {u11, u31, u33}, S5 = {u23, u42} and
S6 = {u13, u32}. This gives an NL-coloring of P4[P4] with 6 colors. Therefore
χNL(P4[P4]) = 6.

(ii) Let n ∈ {5, 6}. We show that χNL(Pn[Pn]) = 2χNL(Pn) + ⌊n−2
2 ⌋.

χNL(P5[P5]). It is obvious that, the first and second rows needs at least 6 colors for NL-
coloring. On the other hand, for avoiding to the same color neighbors for vertices of the first and
third rows or for vertices of the second and fourth rows, we need at lest one color that has not
been used for first and second rows. Thus χNL(P5[P5]) ≥ 7. Let π = {S1, S2, S3, S4, S5, S6, S7}
where S1 = {u11, u14, u31, u34}, S2 = {u12, u32, u52}, S3 = {u13, u15, u33, u34, u51, u54}, S4 =
{u21, u24, u53, u55}, S5 = {u21, u42, u44}, S6 = {u23, u25, u41} and S7 = {u43, u45}. Then π
is an NL-coloring of P5[P5] with 7 colors. This shows that, χNL(P5[P5]) ≤ 7. Therefore
χNL(P5[P5]) = 7 = 2χNL(P5) + ⌊5−2

2 ⌋.
χNL(P6[P6]). The first and second rows need 6 colors for NL-coloring of P6[P6]. If the third

row take the colors of the first row, then the fourth row must take at least one color that has not
been used for the second row. As well, if the fifth row take the color of the third row, then the
sixth row must take at least one color that has not been used for the second and fourth rows.
Thus for NL-coloring of P6[P6] we need at least 8 distinct colors. That is χNL(P6[P6]) ≥ 8. Now
we give an NL-coloring of P6[P6] with 8 colors. Let π = {S1, S2, S3, S4, S5, S6, S7, S8} where
S1 = {u11, u16, u31, u36, u64, u66}, S2 = {u12, u14, u32, u34, u51, u53}, S3 = {u13, u15, u33, u35},
S4 = {u21, u26, u54, u56}, S5 = {u22, u24, u44, u46}, S6 = {u23, u25, u41, u43, u62, u65},
S7 = {u52, u55} and S8 = {u42, u45, u61, u63}. Then π is an NL-coloring of P6[P6] with
8 colors. This shows that, χNL(P6[P6]) ≤ 8. Therefore,χNL(P6[P6]) = 8 = 2χNL(P6) + ⌊6−2

2 ⌋.

(iii) We want to show that for n ≥ 7, χNL(Pn[Pn]) ≤ 2χNL(Pn)+⌊n−2
2 ⌋. If n ≥ 7, then we use

χNL(Pn) = k colors {1, 2, · · · , k} for odd rows and we assign k colors {k + 1, k + 2, · · · , 2k} for
second row, and for any other even row, we use a new color beside the colors have been used for
the second row. Since we have ⌊n

2 ⌋ even rows, we need at most ⌊n−2
2 ⌋ new colors. This coloring

is an NL-coloring for Pn[Pn] with 2k + ⌊n−2
2 ⌋. Therefore χNL(Pn[Pn]) ≤ 2χNL(Pn) + ⌊n−2

2 ⌋. □

Regarding to the Theorem 8, maybe have the following problem.

Problem 4. For which integers n ≥ 7, χNL(Pn[Pn]) = 2χNL(Pn) + ⌊n−2
2 ⌋?

In G[H], if G = C3 and H ∈ {Cn, Pn}, then from definition of lexicographic product of two
graphs, any two vertices of C3[Cn] or of C3[Pn] are adjacent. Let Gin represent the i-th row
of C3[Cn] or of C3[Pn]. Then, there needs χNL(Cn) or χNL(Pn) colors for NL-coloring of Gin.
Therefore χNL(C3[Cn]) ≥ 3χNL(Cn) or χNL(C3[Pn]) ≥ 3χNL(Pn). Now from Theorem 7 we
have.

Observation 9. Let n ≥ 3. Then,

(i) χNL(C3[Cn]) = 3χNL(Cn).
(ii) χNL(C3[Pn]) = 3χNL(Pn).

Remark 2. In the graph G[H], if G = P3 and H ∈ {Cn, Pn}, then from definition of lexico-
graphic product of two graphs, any vertex of second row of P3[Cn] or of P3[Pn] is adjacent to
any vertex of the first and third rows of P3[Cn] or P3[Pn] respectively. Thus there need at least
2χNL(Cn) or 2χNL(Pn) for NL-coloring of P3[Cn] or of P3[Pn] respectively. On the other hand,
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each vertex of first and third rows have all colors of the second row in their color neighbors.
Therefore if u1j and u3l of the first and third rows are in a same color class, then it must
{u1(j+1), u1(j−1)} , {u3(l+1), u3(l−1)} (mod n). Therefore we can adapt the NL-coloring of P1n,
and P3n, from the NL-coloring of P2n and also adapt the NL-coloring of C1n, and C3n, from
the NL-coloring of C2n.

Now from the Remark 2, we can have.

Theorem 10. Let n ≥ 3. If ℓ(k − 1) < n ≤ ℓ(k) and ℓ(k + t − 1) < 2n ≤ ℓ(k + t), then

(i) χNL(P3[Pn]) ≤ 2χNL(Pn) + t + 2.
(ii) χNL(P3[Cn]) ≤ 2χNL(Cn) + t + 2.

Proof. (i) Let Pin = ui1ui2 · · · uin be the i-th row of P3[Pn]. Let χNL(Pn) = k. Then ℓ(k−1) <

n ≤ ℓ(k), and ℓ(k + t−1) < 2n ≤ ℓ(k + t). Hence χNL(P2n) = k + t = m for t ≥ 0. We par-
tition the path P2n with the set of vertices {v1, v2, · · · , vn−1, vn, vn+1, vn+2, · · · , v2n−1, v2n}
with χNL-colors, to two paths P1n = u11u12 · · · u1n and P3n = u31u32 · · · u3n where u1j = vj

and u3j = vn+j.
Suppose that, c(x) denote the color of x. From the NL-coloring of P2n,
(c(u11), c(u12)) , (c(u3n), c(u3(n−1))). Now we bring up a few situations.

(a) If (c(u11), c(u12)) < {(c(u1n), c(u1(n−1))), (c(u31), c(u32))} and (c(u3n), c(u3(n−1))) <
{(c(u1n), c(u1(n−1))), (c(u31), c(u32))}, then the colors assigned to P1n and P3n are
NL-coloring.

(b) If (c(u11), c(u12)) = (c(u1n), c(u1(n−1))), then (c(u3n), c(u3(n−1))) , (c(u1n), c(u1(n−1))).
Thus in this situation, we assign a new color to u11 and the rest of the colors remain
unchanged. Therefore P1n and P3n are NL-colored with at most m + 1 colors.

(c) If (c(u11), c(u12)) = (c(u1n), c(u1(n−1))) and (c(u3n), c(u3(n−1))) = (c(u1n), c(u1(n−1))),
then we assign two new colors, one to u11, and one other to u31. These coloring is an
NL-coloring for P1n and P3n with at most m + 2 colors.

(ii) Now we discuss on χNL(P3[Cn]). Let Cin = ui1ui2 · · · uin be the i-th row of P3[Cn]. Let
χNL(Cn) ∈ {k, k + 1}. Then ℓ(k − 1) < n ≤ ℓ(k), and ℓ(k + t − 1) < 2n ≤ ℓ(k +
t). Hence χNL(C2n) = k + t = m for t ≥ 0. We partition the cycle C2n with the set
of vertices {v1, v2, · · · , vn−1, vn, vn+1, vn+2, · · · , v2n−1, v2n} with NL-colors, to two cycles
C1n = u11u12 · · · u1n and C3n = u31u32 · · · u3n where u1j = vj and u3j = vn+j. From the
NL-coloring of C2n, we bring up a few situations.

1. If c(u1n) = c(u3n), then C1n has no same color vertices with same color neighbors. In this
situation (c(u11), c(u12)) , (c(u31), c(u32)), and it observes that C3n also has no same color
vertices with same color neighbors. Therefore this NL-coloring of C2n can be used for C1n

and C3n .
2. Let c(u1n) , c(u3n). If (c(u11), c(u12)) = (c(u31), c(u32)), then C1n has no same color

vertices with same color neighbors. But maybe, C3n has same color vertices with same
color neighbors, for this problem, we assign a new color to u31.

3. Let c(u1n) , c(u3n) and (c(u11), c(u12)) , (c(u31), c(u32)), to avoid finding vertices with the
same color that have same color neighbors, we use two new colors for u11 and u31. These
coloring is an NL-coloring for C1n and C3n with at most m + 2 colors.

□

Here we give some examples P3[Pn] and P3[Cn] with χNL(P3[Pn]) = 2χNL(Pn) + 1,
χNL(P3[Pn]) = 2χNL(Pn) + 2, χNL(P3[Cn]) = 2χNL(Cn) and χNL(P3[Cn]) = 2χNL(Cn) + 1.
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Example 1.
• For n = 4, χNL(P3[P4]) = 6 = 2χNL(P4) with c(u11, u12, u13, u14) = (3, 1, 2, 1),

c(u21, u22, u23, u24) = (4, 5, 6, 5) and c(u31, u32, u33, u34) = (3, 2, 3, 1).

• For n = 4, χNL(P3[C4]) = 8 = 2χNL(C4) with c(u11, u12, u13, u14) = (1, 2, 3, 4),
c(u21, u22, u23, u24) = (5, 6, 7, 8) and c(u31, u32, u33, u35) = (1, 3, 2, 4).

• For n = 5, χNL(P3[P5]) = 7 = 2χNL(P5) + 1 with c(u11, u12, u13, u14, u15) = (1, 2, 3, 1, 2),
c(u21, u22, u23, u24, u25) = (4, 5, 6, 4, 5) and c(u31, u32, u33, u34, u35) = (7, 2, 3, 7, 2).

• For n = 5, χNL(P3[C5]) = 7 = 2χNL(C5) + 1 with c(u11, u12, u13, u14, u15) = (1, 2, 1, 2, 3),
c(u21, u22, u23, u24, u25) = (4, 5, 4, 5, 6) and c(u31, u32, u33, u34, u35) = (7, 2, 7, 1, 2).

• For n = 6, χNL(P3[P6]) = 7 = 2χNL(P6) + 1 with c(u11, u12, u13, u14, u15, u16) =
(1, 2, 3, 2, 3, 1), c(u21, u22, u23, u24, u25, u26) = (4, 5, 6, 5, 6, 4) and c(u31, u32, u33, u34, u35, u36) =
(2, 7, 2, 3, 7, 3).

• For n = 6, χNL(P3[C6]) = 9 = 2 χNL(C6) + 1 with c(u11, u12, u13, u14, u15, u16) =
(1, 3, 4, 2, 3, 2), c(u21, u22, u23, u24, u25, u26) = (5, 6, 7, 8, 6, 8) and c(u31, u32, u33, u34, u35, u36) =
(1, 9, 2, 3, 9, 3).

In the same way we can obtain χNL(P3[P7]) = χNL(P3[P8]) = χNL(P3[P9]) = 7,
χNL(P3[C7]) = χNL(P3[C9]) = 7 and χNL(P3[C8]) = 9.

In the next example, it is displayed a χNL(P3[C24]) = 10 = 2χNL(C24) + 2.

Example 2. χNL(P3[P49]) = 12 = 2χNL(P49) + 2 and χNL(P3[C49]) = 13 = 2χNL(C49) + 1.
Since ℓ(4) < 49 ≤ ℓ(5) and 49 = ℓ(5) − 1, χNL(P49) = 5 and χNL(P98) = 7 and χNL(C49) = 6
and χNL(C98) = 7, the vertices of P149 , P349 , C149 and C349 cannot be NL-colored with 6 colors,
otherwise χNL(P98), χNL(C98) ≤ 6 which is impossible. The following is an χNL-coloring of
P3[P49] with 12 colors and P3[C49] with 13 colors.

P249 is NL colored with colors 8, 9, 10, 11, 12 as usual.
The NL-colors of the vertices of P149 is

7, 1, 5, 6, 1, 6, 1, 5, 4, 1, 3, 5, 1, 3, 2, 6, 7, 2, 6, 3, 2, 4, 6, 4, 6, 2, 4, 5, 2, 5, 2, 6, 5, 6, 5, 2, 4, 7, 2, 4, 3, 6,
3, 6, 4, 3, 5, 3, 7 for the vertices u11, · · · , u1(49) respectively.

The NL-colors of the vertices of P349 is
7, 5, 6, 3, 5, 4, 5, 4, 6, 5, 4, 3, 4, 3, 2, 5, 3, 2, 7, 3, 2, 1, 5, 2, 1, 2, 1, 4, 2, 1, 6, 2, 1, 7, 3, 1, 3, 6, 1, 3, 4, 1,

4, 1, 6, 4, 1, 7, 5 for the vertices u31, · · · , u4(49) respectively.

C249 is NL colored with colors 8, 9, 10, 11, 12, 13 as usual. By changing the color u11 from 7
to 4 in χNL-coloring of P3[P49], we attain a χNL-coloring of P3[C49] with 13 colors.

If we use the Remark 2, and Theorem 10, for C4[Pn] and C4[Cn] we can adopt.

Theorem 11. Let n ≥ 4. If ℓ(k − 1) < n ≤ ℓ(k) and ℓ(k + t − 1) < 2n ≤ ℓ(k + t), then

(i) χNL(C4[Pn]) ≤ 2χNL(Pn) + 2t + 4.
(ii) χNL(C4[Cn]) ≤ 2χNL(Cn) + 2t + 4.
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Proof. Let Let Pin and Cin respectively be the i-th row of C4[Pn] and C4[Cn] for 1 ≤ i ≤ 4.

(i) By definition all vertices P2n and P4n are adjacent to all vertices of P1n and P3n and vice
versa. Therefore, if two vertices u1j and u3t respectively in P1n and P3n have same colors
under any NL-coloring, then {c(u1(j−1)), c(u1(j+1))} , {c(u3(t−1)), c(u1(t+1))} (mod n), and
in the same way, if two vertices u2j and u4t respectively in P2n and P4n have same colors
under any NL-coloring, then {c(u2(j−1)), c(u2(j+1))} , {c(u4(t−1)), c(u4(t+1))} (mod n). Now
using the Remark 1 we need at most χNL(Pn) + t + 2 colors for NL-coloring of P1n and
P3n and we need at most χNL(Pn) + t + 2 colors for NL-coloring of P2n and P4n .

(ii) There is a same way for part 2 and we left the proof.

□

From the Examples 1, 2, maybe the Theorems 10 and 11 regulated as.

Problem 5. For path Pn and cycle Cn, we have.

1. χNL(P3[Pn]) ≤ 2χNL(Pn) + t + 1.
2. χNL(P3[Cn]) ≤ 2χNL(Cn) + t + 1.
3. χNL(C4[Pn]) ≤ 2χNL(Pn) + 2t + 2.
4. χNL(C4[Cn]) ≤ 2χNL(Cn) + 2t + 2.

5. Corona Product of Graphs

In this section we investigate neighbor locating coloring of the corona product of two graphs
in terms of neighbor locating coloring of each of them. We start with a general result.

Theorem 12. Let G and H be two graphs. Then χNL(G◦H) ≤ |V (G)|+χNL(H). This bound
is sharp.

Proof. For this, if we assign distinct colors to the vertices of G and from definition of corona
of two graphs the color of the i-th vertex of G must be different to the colors of the vertices of
i-th copy of H. On the other hand, if any two vertices in a copy of H have same color, then
it is clear, they have different color neighbors in this copy. If two vertices of two copies of H
have same color, then one of them is in i-th copy and the other is in j-th copy where the color
of i-th vertex in G and the color of j-th vertex in G are different and then two vertices in two
copies of H with same color find different color neighbors. This bound is sharp for K2 ◦ Kn,
see Theorem 13. □

Theorem 13. Let n ≥ 3 and m ≥ 1 be integers. Then χNL(Kn ◦ Km) =
n m ≤ n − 2

m + 2 m ≥ n − 1
.

Proof. Suppose that m ≤ n − 2. Since χNL(Kn) = n, let π = {S1, S2, · · · , Sn} be the set of
colors assigned to Kn. Let the i-th vertex of Kn is assigned by color i and Ki

m be the i-th copy
of Km. Then we consider π(Ki

m) = {Si+1, · · · , Si+m} (mod n) for 1 ≤ i ≤ n. We assert that
these assignments give us an NL-coloring of Kn ◦Km. For this, every vertex of Ki

m has at most
m color neighbors and any vertex in Kn has n − 1 ≥ m + 1 color neighbors.

As well we say πi = π(Ki
m) = {Si+1, Si+2, · · · , Si+m} (mod n). Then πi can be have common

colors at most with πi+1, πi+2, · · · , πi+m, πi−1, πi−2, · · · , πi−m and πi does not have common
color with πj for j ≥ i + m + 1 or j ≤ i − m − 1 if any. On the other hand, for any 1 ≤ k ≤ m,
every vertex of Ki+k

m does not have the color i + k − 1 (mod n) as a color neighbor but any
vertex of Ki

m has this property, also for any 1 ≤ k ≤ m, every vertex of Ki−k
m does not have

the color i + m − k + 1 (mod n) as a color neighbor but any vertex of Ki
m has this property.
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Therefore, π is a minimum-NL-coloring of Kn ◦Km for m ≤ n−2, and then χNL(Kn ◦Km) = n.

Suppose that m ≥ n−1, then ω(Kn ◦Km) = m+1. Same as part 1, we need n distinct color
for Kn and since m ≥ n − 1 at least m + 1 distinct color must be used for the i-th vertex of Kn

and the vertices of Ki
m. Therefore, we need at least m + 2 colors for NL-coloring of Kn ◦ Km.

Now we give an NL coloring of Kn◦Km with m+2 colors. For this, we bring up three situations.

1. Suppose that m = n − 1 and π = {S1, S2, · · · , Sn, Sn+1}. Then we assign the colors as
follows.
π(Kn) = {S1, S2, · · · , Sn}, where i-th color has been used for i-th vertex of Kn. Then

π(Ki
m) = {S1, S2, · · · , Si−2, Si+1, · · · , Sn, Sn+1} for 1 ≤ i ≤ n.

We show that π is a minimum NL-coloring of G with m + 2 = n + 1 colors. We
straightforward understand, any vertex of Ki

m does not have color i − 1 in its color
neighbors and any vertex of Kn with j-th color (j , i − 1) has i − 1 as a color neighbor.
On the other hand, every vertex of Ki

m has color j − 1 in the color neighbor and every
vertex of Kj

m has color i − 1 in the color neighbor for i , j. Therefore the mentioned
coloring is a minimum NL-coloring.

2. Suppose that m = n and π = {S1, S2, · · · , Sn, Sn+1, Sn+2}. We show that π is a minimum
NL-coloring for Kn ◦ Km with m + 2 = n + 2 colors. Then we consider the assigned colors
as follows.
π(Kn) = {S1, S2, · · · , Sn}, where i-th color has been used for i-th vertex of Kn, and

π(Ki
m) = {S1, S2, · · · , Si−2, Si+1, · · · , Sn+1, Sn+2} for 1 ≤ i ≤ n.

It is straightforward to understand, any vertex of Ki
m (1 ≤ i ≤ n) has color n + 1 or n + 2

in its color neighbors and any vertex of Kn does not have one as a color neighbor. On the
other hand, every vertex of Ki

m has color j − 1 in the color neighbor and every vertex of
Kj

m has color i − 1 in the color neighbor for i , j. Therefore the mentioned coloring is a
minimum NL-coloring.

3. Suppose that m ≥ n + 1 and m = n + r and π = {S1, S2, S3 · · · , Sn+r+1, Sn+r+2}. Then,
from part 2, consider π(Kn) = {S1, S2, · · · , Sn}, and

π(Ki
m) = {S1, S2, · · · , Si−2, Si+1, · · · , Sm+1, Sm+2} for 1 ≤ i ≤ n.

Now similar proof of part 2, shows that π is a minimum NL-coloring of Kn ◦ Km for
m ≥ n + 1.

□

Theorem 14. Let G = Pm ◦ Pn be a graph. Then,

min{k + m :
(k + m)

((
k+m

3

)
+
(

k+m
k+2

))
m + mn

≥ 1} ≤ χNL(Pm ◦ Pn) ≤ m + χNL(Pn).

The upper bounds is sharp.

Proof. For upper bound, use Theorem 12 and for the sharpness, consider P3 ◦ Pn for n ≥ 1.
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Lower bound; in graph Pm ◦ Pn, the vertices of a copy of Pn have color-degree 2 or 3 and

the vertices of Pm have color-degree k + 2 or k + 3, where k = χNL(Pn). On the other hand
χNL(Pm ◦ Pn) ≤ m + k. From Corollary 1, we have

m + mn ≤ (k + m)
((

k + m − 1
2

)
+
(

k + m − 1
3

)
+
(

k + m − 1
k + 1

)
+
(

k + m − 1
k + 2

))
=

(k + m)
((

k + m

3

)
+
(

k + m

k + 2

))
.

Now using Corollary 2 the lower bound is observed. □

In the following, for any integer k ≥ 3, we construct a graph G in which χNL(G ◦ P2) = k.

Proposition 7. For every k ≥ 3, χNL(P k(k−1)(k−2)
6

◦ P2) = k.

Proof. For any positive integer m, there are m K3 in Pm ◦ P2 in which 2m vertices have exactly
color-degree 2. Therefore, from Corollary 1

n(Pm ◦ P2) = m + 2m ≤ l

(
l − 1

2

)
+ m ≤ 3

2

(
l − 1

2

)
.

Since l(l−1)(l−2)
6 ≤ l

(
l−1

2

)
, from Corollary 2, χNL(P k(k−1)(k−2)

6
) ≥ k. Now we give an NL-coloring

for P k(k−1)(k−2)
6

◦ P2 with k-colors. It is well known that, 6 | k(k − 1)(k − 2). Thus there exist
two situations as follows.

1. Let 6 | (k − 1)(k − 2) and t = (k−1)(k−2)
6 . Then we have a path with tk vertices and tk

paths P2 which each of them is adjacent to a vertex of Ptk and the vertices of Ptk with
V (Ptk) = {vjk+i : 1 ≤ i ≤ k and 0 ≤ j ≤ t−1} and the vertices of V (mP2) = {ujk+i, wjk+i :
1 ≤ i ≤ k and 0 ≤ j ≤ t − 1}.
For coloring of Ptk ◦P2, we assign color i to the vertex vjk+i for 1 ≤ i ≤ k and 0 ≤ j ≤ t−1
of Ptk, and assign color i + 1, j + i + 2 to the vertices ujk+i, wjk+i for 1 ≤ i ≤ k and
1 ≤ j ≤ t − 2 and assign color i + 2, i + 3 to the vertices u(t−1)k+i, w(t−1)k+i (mod k)
respectively. This coloring is an NL-coloring with k colors. Therefore, in this position
χNL(P k(k−1)(k−2)

6
◦ P2) = k

2. Let 6 ∤ (k−1)(k−2) and k(k−1)(k−2)
6 = sk+r where 1 ≤ r ≤ k−1. Then we have a path with

sk+r vertices and sk+r paths P2 which each of them is adjacent to a vertex of Psk+r and the
vertices of Psk+r with V (Psk+r) = {vjk+i : 1 ≤ i ≤ k and 0 ≤ j ≤ s−1}∪{vsk+i : 1 ≤ i ≤ r}
and the vertices of V (mP2) = {ujk+i, wjk+i : 1 ≤ i ≤ k and 0 ≤ j ≤ s − 1} ∪ {usk+i, wsk+i :
1 ≤ i ≤ r}.

For coloring of Psk+r ◦ P2, we assign color i to the vertex vjk+i for 1 ≤ i ≤ k and 0 ≤ j ≤ s of
Psk+r and assign color i + 1, j + i + 2 to the vertices ujk+i, wjk+i for 1 ≤ i ≤ k and 1 ≤ j ≤ s − 1
and assign color i + 2, i + 3 to the vertices usk+i, wsk+i (1 ≤ i ≤ r), (mod k) respectively. This
coloring is an NL-coloring with k colors. Therefore, in this position χNL(P k(k−1)(k−2)

6
◦ P2) = k.

Consequently, the result holds. □

One of the relation in NL coloring of corona product, attaining χNL(Km ◦ Pn). For this, at
first we state a proposition.

Proposition 8.

χNL(Km ◦ Pn) =
m + 2 m = n = 3

n + 1 4 ≤ m = n ≤ 5, or m = 4 and n ≤ 3, or m = 3 and n ≤ 2.

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 73–89



Ali Ghanbari and Doost Ali Mojdeh 88
Proof. 1. If m = n = 3, then it is clear χNL(K3 ◦ P3) ≥ 4. Assume contradictorily,

χNL(K3 ◦ P3) = 4 and vertices of K3 are assigned with colors 1, 2, 3. Then the path P3
adjacent to the vertex with color 1, are 2, 3, 4 and two other P3, take colors 1, 2, 4 and
1, 3, 4 respectively. With this coloring, either two vertices with color 4 attain a same color
neighbor or two vertices with one of colors 1, 2 or 3 attain a same color neighbor, that
is a contradiction. Therefore χNL(K3 ◦ P3) ≥ 5. Now we assign colors 1, 4, 5; 2, 4, 5 and
3, 4, 5 to the vertices P3 adjacent to the vertices with color 2, 3 and 1 respectively. The
former coloring is an NL-coloring of K3 ◦ P3.

2. Let m = n = 4. Then χNL(K4 ◦ P4) ≥ 5. Now we give an NL coloring with 5 colors. Let
vi (1 ≤ i ≤ 4) be the vertices of K4 and uji, (1 ≤ j ≤ 4 be the vertices of P4i

, the path P4
adjacent to vi. The assignment color i to vi; color i − 1 (mod 4) to u1i; color i + 1 (mod 4)
to u2i; color 5 to u3i; and color i + 2 (mod 4) to u4i give an NL-coloring for 1 ≤ i ≤ 4.
Therefore χNL(K4 ◦ P4) = 5.

Let m = n = 5. Then χNL(K5 ◦ P5) ≥ 6. We give an NL coloring with 6 colors. Let vi

(1 ≤ i ≤ 5) be the vertices of K5 and uji, (1 ≤ j ≤ 5) be the vertices of P5i
, the path P5

adjacent to vi. The assignment color i to vi; color i − 1 (mod 5) to u1i; color i + 1 (mod 5) to
u2i; color 6 to u3i; color i + 2 (mod 5) to u4i; and color i + 3 (mod 5) to u5i give an NL-coloring
for 1 ≤ i ≤ 4. Therefore χNL(K5 ◦ P5) = 6.

For m = 4 and n ≤ 3; or m = 3 and n ≤ 2, there exist similar reason, and we left the
proof. □

Theorem 15. Let m and n be positive integers, ℓ(k − 1) + 1 ≤ n ≤ ℓ(k), and n = tk + r (0 ≤
r ≤ k − 1).

If m > k and
(

m − 1
3

)
≥ 3(r⌈n

k
⌉ + (k − r)⌊n

k
⌋), then χNL(Km ◦ Pn) = m

Proof. Since ℓ(k−1)+1 ≤ n ≤ ℓ(k), χNL(Pn) = k. Let the vertex vi of Km be assigned by color
i for 1 ≤ i ≤ m. Let Pni

be the path Pn adjacent to vi, and V (Pni
) = {uji : 1 ≤ j ≤ n}. From

the data, we assign colors i + 1, i + 2, · · · , i + k (mod n) to the vertices of V (Pni
) (1 ≤ i ≤ m).

There has been used mn colors for all Pnis so that every color is appeared in k paths Pnis, and
is iterated n times. In addition to that, each vertex is iterated ⌈n

k
⌉ times in r paths Pnis and is

iterated ⌊n
k
⌋ times in k − r paths Pnis. On the other hand, each vertex has color degree at most

3. Hence, each vertex with color i has at most (r⌈n
k
⌉ + (k − r)⌊n

k
⌋) clusters of three colors. In

the other words, there exist (r⌈n
k
⌉ + (k − r)⌊n

k
⌋) clusters of four colors in which one of colors

is i. Also, if we consider the m colors of Km, for each vertex with color i, there exist
(

m−1
3

)
clusters of three colors so that i forms clusters of four colors that one of colors is i. Since by
the data,

(
m−1

3

)
≥ 3(r⌈n

k
⌉ + (k − r)⌊n

k
⌋), there does not exist two same color vertices with same

color neighbors. Therefore χNL(Km ◦ Pn) = m. □
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