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Abstract: A graph labeling is an assignment of integers to the vertices or edges or both, which
will satisfy certain conditions. The domination cover pebbling number of a graph G is ψ(G)
which is the minimum number of pebbles required in such a way that any initial configuration
of ψ(G) pebbles should be transformed through a number of pebbling moves such that the
set of vertices with pebbles after the pebbling operation form a dominating set of G. In this
paper, we explore the relationship between two graph parameters namely graph labeling and
domination cover pebbling.
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1. Introduction

All graphs discussed here are simple, finite and connected. We consider a graph G with
order |V (G)| = p and size |E(G)| = q. The reader can refer to Harary [1] for basic terminology
in graphs. A labeling of a graph is a mapping that carries the vertices, edges or both of G
to the set of non-negative or positive numbers . A mapping g : V (G) → {0, 1} is said to be
binary labeling of G and g(v) is called label of v in G under g. For any edge uv, the function
g∗ : E(G) → {0, 1} induced by g is fixes by g∗(uv) = |g(u) − g(v)|. Let vg(0), vg(1) be the
count of vertices of G with label 0 and 1 respectively under g. Let eg(0), eg(1) be the count
of edges of G with label 0 and 1 respectively under g∗. The reader can refer to Gallian [2] for
getting to know a survey of graph labeling.

A pebbling move [3,4] is the removal of two pebbles from one vertex and the addition of one
pebble to an adjacent vertex .

Gardner et al. [5] presented the concept of domination cover pebbling number in to the
literature. The domination cover pebbling number of a graph G is ψ(G) which is the minimum
number of pebbles required in such a way that any initial configuration of ψ(G) pebbles should
be transformed through a number of pebbling moves such that the set of vertices with pebbles
after the pebbling operation form a dominating set of G.

In this paper we introduce a new concept known as binary domination cover pebbling (DCP)
labeling. Also, we investigate some graphs that satisfy binary DCP labeling and give a pro-
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gramming approach to binary DCP labeling.

Definition 1. Let g : V (G) → {0, 1} be a binary labeling of G that induces a function g∗ :
E(G) → {0, 1}. The function g is called a binary domination cover pebbling (DCP) labeling
if vg(1) + eg(1) = ψ(G), where ψ(G) is the domination cover pebbling number of a graph G.
A graph which admits a binary domination cover pebbling (DCP) labeling is called a binary
domination cover pebbling (DCP) graph.

The readers can get the information about the graphs Wn, K1,n, Fn, Bn, P 2
n , Hw(n) and

Fl(k) in [5–7].

2. Main Results

In Table 1, we state the domination cover pebbling number of some families of graphs. We
then determine all such graphs that admit a binary domination cover pebbling (DCP) labeling.

Graph Families G Domination Cover Pebbling Number ψ(G) Reference
Path Pn

⌈
2n+1−2

7

⌉
[8]

Odd Cycle C2k−1


2k+2−9

7 if k = 3m+ 5⌊
2k+2−1

7

⌋
otherwise k ≥ 3 and m ≥ 0

[8]

Even Cycle C2k

⌊
3(2k+1)−3

7

⌋
[8]

Wheel graph Wn(n ≥ 3) n− 2 [5]
Star graph K1,n n [7]
Fan graph Fn, n ≥ 3 n− 1 [7]
Binary tree Bn B1 = 2 B2 = 11 [5]
Lollipop graph L3,2 3 [9]
Square of path P 2

5 3 [6]
Square of path P 2

6 5 [6]
Square of path P 2

7 6 [6]
Square of path P 2

8 9 [6]
Square of path P 2

9 10 [6]
Pseudo star graph Hw(n) n [7]

Fuse graph Fl(k)


2l+2−2α

7 + k − 1 if l − 1 ≡ α , 0(mod3)
2l+2−23

7 + k − 1 if l − 1 ≡ 0(mod3)
[7]

Table 1

Lemma 1. Suppose G is a graph of order p and size q, then vg(1) + eg(1) ≤ p+ q − 1 and the
bound is sharp.

Proof. By definition, it is not possible to label all the vertices and edges by 1. The upper bound
is obtained. Consider the star graph K1,p−1, p ≥ 2. If p = 2, label at least one vertex by 1,
we get vg(1) + eg(1) = 2 = p + q − 1. If p ≥ 3, label only the pendant vertices by 1. Then
vg(1) + eg(1) = 2p− 2 = p+ q − 1. □

Theorem 1. The path Pn admits binary DCP labeling if n = 3, 4.

Proof. Suppose n = 3. Define g(a1) = 1 and g(ar) = 0 for r = 2, 3. Obviously vg(1) + eg(1) =
2 = ψ(P3). Suppose n = 4. Define g(a1) = g(a3) = g(a4) = 1 and g(a2) = 0. Obviously
vg(1)+eg(1) = 5 = ψ(P4). It is easy to see that Pn for n = 3, 4 admits binary DCP labeling. □
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Listing 1. Python Code for Binary DCP Labeling of Path Graph

def vertex1 (n):

if(i % 4 == 1):

return 1

else:

return 0

def vertex2 (n):

if(i % 4 == 2):

return 0

else:

return 1

def edge(i):

if(abs(v[i-1]-v[i]) == 1):

return 1

else:

return 0

n = int(input (" Enter any positive number : "))

p = n

q = n-1

print (" The cardinality of the vertices : ", p)

print (" The cardinality of the edges: ", q)

v = [ ]

v_1 = 0

v_0 = 0

e_1 = 0

e_0 = 0

print (" Vertex labels are as follows : ")

for i in range (1, p+1):

if(n == 3):

v. append ( vertex1 (i))

print( vertex1 (i), end =" ")

if ( vertex1 (i )==1):

v_1 += 1

else:

v_0 += 1

elif(n == 4):

v. append ( vertex2 (i))

print( vertex2 (i), end =" ")

if ( vertex2 (i )==1):

v_1 += 1

else:

v_0 += 1

else:

print (" Path graph does not admit a binary DCP labeling .")

break

if(len(v) > 1):

print ("\ nEdge labels are as follows : ")

for i in range (1, len(v)):

print(edge(i), end =" ")
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if (edge(i )==1):

e_1 += 1

else:

e_0 += 1

print ("\ nDomination cover pebbling number of the path graph

is", v_1+e_1 ,".")

print ("\ nPath Graph admits a binary DCP labeling .")

Output

Theorem 2. The cycle Cn admits binary DCP labeling if n = 4, 6.

Proof. Let Cn = a1a2a3 · · · an. Suppose n = 4. Define g(a1) = 1 and g(ar) = 0 for r = 2, 3, 4.
Obviously vg(1)+eg(1) = 1+2 = 3 = ψ(C4). Suppose n = 6. Define g(a1) = g(a2) = g(a4) = 1
and g(ar) = 0 for r = 3, 5, 6. Obviously vg(1) + eg(1) = 3 + 4 = 7 = ψ(C6). Then Cn for
n = 4, 6 admits binary DCP labeling. □

Theorem 3. The wheel graph Wn admits binary DCP labeling if n ≡ 0 (mod 2) and n > 4.

Proof. Let a be an apex vertex and a1, a2, · · · , an be the rim vertices of the wheel Wn. Suppose
n ≡ 0 (mod 2) and n > 4. Define a binary labeling g that labels a1, a2, · · · , an

2 −2 of rim vertices
by 1 and remaining vertices by 0. Clearly, there are n

2 edges with label 1. So vg(1) + eg(1) =
n
2 − 2 + n

2 = n− 2 = ψ(Wn). Thus g is a binary DCP labeling. □

Listing 2. Python Code for Binary DCP Labeling of Wheel Graph
import math

def vertex (p) :

if (1 <= i <= math.ceil ((n -4)/2)):

return 1

elif (math.ceil (((n -4)/2)+1) <= i <= n):

return 0

n = int(input (" Enter any positive number : "))

v = [ ]

b = [ ]

c = [ ]

u = 0

print (" Vertex labels are as follows : ")

print (" Center vertex u is", u)

print (" Vertex labels v_i ’s are: ")

for i in range (1, n+1) :

if n > 4:

if (n % 2 == 0):
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v. append ( vertex (i))

print( vertex (i), end= " ")

else:

print(f"Wheel W_{n} does not admit a binary DCP labeling .")

break

else:

print(f"Wheel W_{n} does not admit a binary DCP labeling .")

break

if len(v) >= 3:

for i in range (1, len(v)):

c. append (abs(u - v[i -1]))

b. append (abs(v[i -1] - v[i]))

c. append (abs(u - v[ -1]))

b. append (abs(v[0] - v[ -1]))

print ("\ nEdge labels are as follows : ")

print (" Edge labels uv_i ’s are: ")

print(c, end = " ")

print ("\ nEdge labels v_iv_i +1’s and v_nv_1 are: ")

print(b, end = " ")

pebble = sum(v)+ sum(b)+ sum(c)

print(f"\ nDomination cover pebbling number of wheel {n} is { pebble }.")

print ("\ nWheel W_{n} admits a binary DCP labeling .")

Output

Theorem 4. The star graph K1,n (n ≥ 2) admits binary DCP labeling if n ≡ 0 (mod 2).

Proof. Suppose n ≡ 0 (mod 2). Define a binary labeling g that labels n
2 of the pendant vertices

by 1 and the remaining vertices by 0. Clearly, there are n
2 edges with label 1. Thus, vg(1) +

eg(1) = n = ψ(K1,n). This admits binary DCP labeling. □

Theorem 5. The fan graph Fn admits binary DCP labeling if n ≡ 0 (mod 2).

Proof. Let a be the apex vertex and a1, a2, · · · , an be the vertices of path Pn. Suppose n ≡ 0
(mod 2). Define a binary labeling g that labels the vertices a1, a2, · · · , an

2 −1 by 1 and remaining
vertices by 0. Clearly, there are n

2 edges with label 1. vg(1)+eg(1) = n
2 −1+ n

2 = n−1 = ψ(Fn).
Thus g is a binary DCP labeling. □

Theorem 6. The complete binary tree Bn admits binary DCP labeling if n = 1, 2.
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Proof. Suppose n = 1. Let V (B1) = {v0, u1, u2} and E(B1) = {v0u1, v0u2}. Define
g(u1) = 1 and g(v0) = g(u2) = 0. Clearly, we have an edge with label 1. Thus
vg(1)+eg(1) = 2 = ψ(B1). Suppose n = 2. Let V (B2) = {v0, u1, u2, w1, w2, w

′
1, w

′
2} and E(B2) =

{v0u1, v0u2, u1w1, u1w2, u2w
′
1, u2w

′
2}. Define g(v0) = g(w1) = g(w2) = g(w′

1) = g(w′
2) = 1 and

g(u1) = g(u2) = 0. Clearly, we have 6 edges with label 1. Thus vg(1) + eg(1) = 11 = ψ(B2).
Thus, Bn admits a binary DCP labeling. □

Theorem 7. The lollipop graph L3,2 admits binary DCP labeling.

Proof. Let L3,2 be a lollipop graph obtained from a cycle C3, (v0, v1, v2) by attaching a path
(v0u1) of length 1 to a vertex of the cycle. Define g(v1) = 1 and g(v0) = g(v2) = g(u1) = 0.
Clearly, we have 2 edges with label 1. Thus vg(1) + eg(1) = 3 = ψ(L3,2). Thus, L3,2 admits
binary DCP labeling. □

Theorem 8. The square P 2
n of path graph admits binary DCP labeling if 5 ≤ n ≤ 9.

Proof. Suppose n = 5. Define g(v1) = 1 and g(vr) = 0, r , 1. Clearly, we have 2 edges with
label 1. Thus vg(1) + eg(1) = 3 = ψ(P 2

5 ). Thus, P 2
5 admits binary DCP labeling.

Suppose n = 6. Define g(v1) = g(v2) = 1 and g(vr) = 0, r , 1, 2. Clearly, there are 3 edges
with label 1. Thus vg(1) + eg(1) = 5 = ψ(P 2

6 ). Thus, P 2
6 admits binary DCP labeling.

Suppose n = 7. Define g(v1) = g(v7) = 1, g(vr) = 0, r , 1, 7. Clearly, there are 4 edges with
label 1. Thus vg(1) + eg(1) = 6 = ψ(P 2

7 ). Thus, P 2
7 admits binary DCP labeling.

Suppose n = 8. Define g(v1) = g(v2) = g(v3) = g(v8) = 1 and g(vr) = 0, r , 1, 2, 3, 8.
Clearly, there are 5 edges with label 1. Thus vg(1) + eg(1) = 9 = ψ(P 2

8 ). Thus, P 2
8 admits

binary DCP labeling.
Suppose n = 9. Define g(v1) = g(v2) = g(v3) = g(v4) = g(v9) = 1 and g(vr) = 0,

r , 1, 2, 3, 4, 9. Clearly, there are 5 edges with label 1. Thus vg(1) + eg(1) = 10 = ψ(P 2
9 ). Thus,

P 2
9 admits binary DCP labeling. □

Theorem 9. The pseudo star graph Hw(n) admits binary DCP labeling if w = n−1
2 for n is

odd and w = n−2
2 for n is even.

Proof. If n is odd, define a binary labeling g that labels the vertices a1, a2, · · · , an−1
2

by 1 and
remaining vertices by 0. Clearly, there are n+1

2 edges with label 1. So vg(1)+eg(1) = n−1
2 + n+1

2 =
n = ψ(Hw(n)).

If n is even, define a binary labeling g that labels the vertices a1, a2, · · · , an
2

by 1 and
remaining vertices by 0. Clearly, there are n

2 edges with label 1. So vg(1) + eg(1) = n
2 + n

2 =
n = ψ(Hw(n)). □

The vertices of a fuse graph Fl(k), (l ≥ 2 and k ≥ 2) are a1, a2 · · · an with n = l + k. The
edges of a fuse graph are a1a2, a2a3, · · · al−1al and alal+1, · · · , alan−1, alan.

Theorem 10. The fuse graph Fl(k) admits binary DCP labeling.

Proof. Case 1. l = 2 and k is odd.
We define a binary labeling g that labels first

⌈
k
2

⌉
vertices by 1 and remaining vertices by 0.

Clearly, there are
⌈

k
2

⌉
edges with label 1. So vg(1) + eg(1) = k+1

2 + k+1
2 = k + 1 = 2 + k − 1 =

ψ(F2(k)).
Case 2. l = 3.

Define a binary labeling g that labels g(a1) = g(a2) = g(a3) = 1 and g(ar) = 0, r , 1, 2, 3.
Clearly, there are k edges with label 1. So vg(1) + eg(1) = 3 + k = 4 + k − 1 = ψ(F3(k)).
Case 3. l = 4 and 2 ≤ k ≤ 5, k = 7.
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For k = 2, define a binary labeling g that gives the labels g(a1) = g(a3) = g(a5) = g(a6) = 1

and g(ar) = 0, r , 1, 3, 5, 6. Clearly, there are 2 + 3 edges with label 1. Thus vg(1) + eg(1) =
5 + 4 = 9 = ψ(F4(2)).

Let k = 3. Define a binary labeling g that gives the labels g(a1) = g(a2) = g(a3) =
g(a5) = g(a6) = g(a7) = 1 and g(a4) = 0. Clearly, there are 3 + 1 edges with label 1. Thus
vg(1) + eg(1) = 6 + 4 = 10 = ψ(F4(3)).

Let k = 4. Define a binary labeling g that gives the labels g(a1) = g(a2) = g(a5) = g(a6) =
g(a7) = g(a8) = 1 and g(a3) = g(a4) = 0. Clearly, there are 4 + 1 edges with label 1. Thus
vg(1) + eg(1) = 6 + 5 = 11 = ψ(F4(4)).

Let k = 5. Define a binary labeling g that gives the labels g(a1) = g(a5) = g(a6) = g(a7) =
g(a8) = g(a9) = 1 and g(a2) = g(a3) = g(a4) = 0. Clearly, there are 6 edges with label 1.
Thusvg(1) + eg(1) = 6 + 6 = 12 = ψ(F4(5)).

Let k = 7. Define a binary labeling g that gives the labels g(a5) = g(a6) = g(a7) = g(a8) =
g(a9) = g(a10) = g(a11) = 1 and g(a1) = g(a2) = g(a3) = g(a4) = 0. Clearly, there are 7 edges
with label 1. Thus vg(1) + eg(1) = 7 + 7 = 14 = ψ(F4(7)).

□

3. Conclusion

We have explored the relationship between two graph parameters namely binary labeling
and domination cover pebbling. We have determined binary DCP labeling for paths, cycles,
star, fan, wheel, binary tree graphs, pseudo star graph and fuse graph. It would be interesting
to find other families of graphs admitting a binary DCP labeling.
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