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Abstract: The question on how to colour a graph G when the number of available colours
to colour G is less than that of the chromatic number χ(G), such that the resulting colouring
gives a minimum number of edges whose end vertices have the same colour, has been a study
of great interest. Such an edge whose end vertices receives the same colour is called a bad edge.
In this paper, we use the concept of δ(k)-colouring, where 1 ≤ k ≤ χ(G) − 1, which is a near
proper colouring that permits a single colour class to have adjacency between the vertices in it
and restricts every other colour class to be an independent set, to find the minimum number
of bad edges obtained from the same for some wheel related graphs. The minimum number of
bad edges obtained from δ(k)-colouring of any graph G is denoted by bk(G).
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1. Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [1–3] and for
graph classes, we refer to [4,5]. Further, for the terminology of graph colouring, see [6–8]. Unless
mentioned otherwise, all graphs considered here are undirected, simple, finite and connected.

A graph G is (k, t)-colourable if the vertices of G can be coloured with k colours such
that each vertex is adjacent to at most t vertices of same colour as itself. This concept of
defective colouring or seldom called as improper or relaxed colouring was introduced in [9].
Substantial research findings have been done so far as part of variations in the concept of
improper colourings. Interested readers can also refer to some recent studies seen in [10, 12].
A new variation in proper colouring called as near proper colouring is discussed in [11]. A
near proper colouring is a colouring that minimises the number of bad edges by permitting few
colour classes to have adjacency between the elements in it. An edge is a bad edge if it is joint
by two vertices which receive a same colour. Further, a particular case of near proper colouring,
called the δ(k)-colouring, is introduced (see [11]). Few interesting and forthcoming studies on
the δ(k)-colouring of various graph classes can be seen in [13–16].

Definition 1. The δ(k)-colouring is a near proper colouring of G consisting of k given colours
where 1 ≤ k ≤ χ(G) − 1, which minimises the number of bad edges by permitting at most one
colour class to have adjacency among the vertices in it.

The minimum number of bad edges obtained from δ(k)-colouring of G is denoted by bk(G).
Throughout the paper, the k colours considered are c1, c2, . . . , ck and their respective colour
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classes are C1, C2, . . . Ck. We consider the colour class C1 to be the relaxed colour class, without
loss of generality. Now, when k = 1, bk(G) = |E(G)|. On account of this, we consider k to be
2 ≤ k ≤ χ(G) − 1 and do not consider the δ(k)-colouring of bipartite graphs as well. In this
paper, the bad edges of the graphs are represented by dotted lines.

2. On the δ(k)-Colouring of Wheel Related Graphs

This section aims at determining a δ(k)-colouring and its corresponding δ(k)-defect number
of a few graph classes generated from a wheel graph. A δ(k)-colouring of wheel graph W1,n

and helm graph H1,n have already been discussed in Proposition 2.4 and Proposition 2.5, [11].
Now, the below results focuses on determining a δ(k)-colouring and the minimum number of
monochromatic edges resulting from a δ(k)-colouring of some more wheel related graphs. Note
that, since a wheel-related graph has wheel graph as a subgraph, the δ(k)-defect number of a
wheel-related graph is greater than or equal to the δ(k)-defect number of a wheel graph.

A δ(k)-colouring of a closed helm graph and the number of monochromatic edges obtained
from the same are discussed in the following theorem.

Definition 2. [17] A closed helm graph, denoted by CH1,n, is a graph obtained by joining the
pendant vertices of a helm graph

The vertices ui’s; 1 ≤ i ≤ n and vi’s; 0 ≤ i ≤ n considered in the below result are as per
Definition 2.

Theorem 1. The δ(k)-defect number of a closed helm graph CH1,n is

bk(CH1,n) =


n
2 , if n ≥ 4 is even and k = 2,
⌈n

2 ⌉ + 3, if n ≥ 5 is odd and k = 2,
1, if n ≥ 3 is odd and k = 3.

Proof. When n is even, χ(CH1,n) = 3 and when n is odd, χ(CH1,n) = 4. Hence, when n is
even k is 2 and when n is odd k is 2 and 3. Now, CH1,n has W1,n as its subgraph and hence
bk(CH1,n) ≥ bk(W1,n). Below are the δ(k)-colourings of CH1,n for different values of n and k.

1) Let n be even and k = 2. When n is even, b2(W1,n) = n
2 (see Proposition 2.5, [11]). Since

n is even, the outer cycle formed by connecting uiui+1 can be properly coloured with k = 2
cycle. Thus, when n is even, b2(CH1,n) = n

2 (see Figure 1b for illustration).
2) Let n be odd and k = 2. The minimum number of monochromatic edges obtained from

a δ(k)-colouring of W1,n, when n is odd and k = 2, is ⌈n
2 ⌉ + 1. The outer odd cycle of

CH1,n when coloured with k = 2 gives one more monochromatic edge. There is one more
edge that is connected by an end vertex of the monochromatic edge in the rim of wheel
subgraph and an end vertex of the monochromatic edge in outer cycle of CH1,n. Thus,
when n is even, the δ(k)-defect number of CH1,n is ⌈n

2 ⌉ + 3 (see Figure 1a for illustration).
3) Let n be odd and k = 3. When n is odd b3(W1,n) = 1. Now, the outer cycle of a CH1,n

can be properly coloured with k = 3 colours. Thus, when n is odd b3(CH1,n) = 1

□

The following result discusses a δ(k)-colouring and the δ(k)-defect number of a web graph.

Definition 3. [18] A web graph, denoted by Wb1,n, is the graph obtained by attaching a
pendant edge to each vertex of the outer cycle of the closed helm graph CH1,n.

It can be noted that, the vertices ui’s and vi’s considered in the below discussion are as per
Definition 3.
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Figure 1. A δ(k)-colouring of Closed Helm Graph

Theorem 2. The δ(k)-defect number of web graph Wb1,n is

bk(Wb1,n) =


n
2 , if n ≥ 4 is even and k = 2,
⌈n

2 ⌉ + 3, if n ≥ 5 is odd and k = 2,
1, if n ≥ 3 is odd and k = 3.

Proof. The proof of Wb1,n for different parities of n and different values of k is the same as
that of the proof of a δ(k)-colouring of CH1,n and bk(Wb1,n) = bk(CH1,n) (see Theorem 1). This
is because, web graph has n additional pendant vertices attached to each of the vertices of
the outer cycle of CH1,n, which can be properly coloured with colours other than the colour
assigned to its adjacent vertex. □

Definition 4. [17] A double wheel graph, denoted by DW1,n, is obtained from CH1,n by adding
the vertices ui; where 1 ≤ i ≤ n of CH1,n to its central vertex v0, or in other words a double-wheel
graph, denoted by DW1,n, is the graph obtained by connecting the vertices of two (disjoint)
cycles each of size n to a common vertex called central vertex. That is, DW1,n := 2Cn + K1.

It is to be noted that, the vertices ui’s and vi’s considered in the below discussion is as per
Definition 4.

Theorem 3. The δ(k)-defect number of a double wheel graph DW1,n is

bk(DW1,n) =


n, if n ≥ 4 is even and k = 2,
2(⌈n

2 ⌉ + 1), if n ≥ 3 is odd and k = 2,
1, if n ≥ 3 is odd and k = 3.

Proof. Let ci be the available i colours with their respective colour classes Ci; 1 ≤ i ≤ k. Let vi

and ui; 1 ≤ i ≤ n, be the vertices of the two disjoint cycles of DW1,n and let v0 be the central
vertex. Now, v0 is a universal vertex and hence if any colour other than the colour c1, say c2
or c3, is assigned to it, then no other vi’s or ui’s can be assigned the same colour to satisfy
the requirements of a δ(k)-colouring of graphs. In each of the following cases different possible
δ(k)-colourings are explained.

1) Let n be even and k = 2. As mentioned above two different possible δ(2)-colourings for
this case are discussed. The first one is as follows. Assign the colour c2 to the vertex
v0. Now, none of the remaining vertices can be assigned the colour c2 and since k = 2,
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every vertex of the two cycles are assigned the colour c1 to meet the requirements of a
δ(k)-colouring of graphs. This colouring will yield 2n number of monochromatic edges in
DW1,n (n monochromatic edges in each of the two cycles). Thus, when n is even, the
δ(2)-defect number resulting from this colouring is 2n.
In the second δ(2)-colouring, assign the colour c1 to the vertex v0 and the vertices
v1, v2, . . . , vn are properly coloured with two colours c1 and c2 alternatively. This colour-
ing will provide a scenario where there exists no monochromatic edges in the cycle. The
vertices u1, u2, . . . , un of the outer cycle can also be coloured properly with k = 2 colours.
Thus, the monochromatic edges in this case will arise from the vertices of both the cycles
that are assigned the colour c1 incident on the central vertex v0, where c(v0) = c1. There
are each of n

2 number of vertices that receive the colour c1 in both the cycles. Thus,
there are n monochromatic edges resulting from this δ(2)-colouring. When both the above
discussed δ(2)-colourings are compared, it can be observed that the second gives the mini-
mum possible number of monochromatic edges. Thus, the δ(2)-defect number of DW1,n is
n, when n is even (see Figure 2b for illustration).

2) Let n be odd and k = 2. The above-mentioned two δ(2)-colourings can be followed in this
case as well. As explained above the first δ(2)-colouring will give rise to 2n monochromatic
edges. Thus, a detailed discussion on the second δ(2)-colouring is given as follows. For
the second δ(2)-colouring, as explained in the second δ(2)-colouring of Case 1, the colour
c1 is assigned to the vertex v0. The vertices of the two cycles are coloured with the two
colours c1 and c2 alternatively. The δ(2)-defect number of odd cycles is 1 (see Proposition
2.3, [11]). Here, both the cycles will have each of one monochromatic edge. Since n is odd
and k = 2, both the cycles will have ⌈n

2 ⌉ vertices that receive the colour c1, adjacent to
the vertex v0. This results in ⌈n

2 ⌉ monochromatic edges between each of the cycles and v0.
Thus, the total number of monochromatic edges obtained from the δ(2)-colouring in this
case is 2(⌈n

2 ⌉+1). Hence, when both the possible δ(2)-colourings mentioned are compared,
b2(DW1,n) = 2(⌈n

2 ⌉ + 1), when n is odd (see Figure 2a for illustration).
3) Let n be odd and k = 3. Since there are two odd cycles of length n, both can be properly

coloured with three colours c1, c2 and c3. However, as v0 is a universal vertex, it cannot be
assigned any colours other than c1. Thus, between the two cycles and v0 there can be a
minimum of one monochromatic edge each. Hence, there are a total of two monochromatic
edges obtained from this δ(3)-colouring. Now, if the vertex v0 is given the colour other than
c1, say c3, then the vertices vi’s and ui’s, where 1 ≤ i ≤ n, of both the cycles are coloured
with the colours c1 and c2. This colouring will provide one monochromatic edge in each of
the odd cycles (see Proposition 2.3, [11]). Thus, this δ(3)-colouring will also result in total
of two monochromatic edges in DW1,n. Hence, the δ(3)-defect number of DW1,n is 2, when
n is odd.

□

The minimum number of monochromatic edges resulting from a δ(k)-colouring of F1,n is
discussed in the following theorem. Since χ(F1,n) = 3, when n is even and is 4, when n is odd,
the two values that k can take are 2 and 3. A δ(k)-colouring for the different parities of n and
distinct values of k is discussed in the following theorem.

Definition 5. [17] A flower graph, F1,n is a graph obtained from a helm graph H1,n by joining
each of its pendant vertices ui’s to its central vertex v0.

Note that, the vertices ui’s, where 1 ≤ i ≤ n, and vi’s, where 0 ≤ i ≤ n, considered in the
below discussion are as per Definition 5.
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Figure 2. A δ(2)-colouring of Double Wheel Graph

Theorem 4. For a flower graph F1,n, the δ(k)-defect number is

bk(F1,n) =


n, if n ≥ 4 is even and k = 2,
n + 1, if n ≥ 3 is odd and k = 2,
1, if n ≥ 3 is odd and k = 3.

Proof. Let v0 be the central vertex and let v1, v2, . . . , vn be the rim vertices of the rim. Let
u1, u2, . . . , un be the pendant vertices corresponding to v1, v2, . . . , vn of the rim respectively.

A common δ(k)-colouring irrespective of the parity of n and k = 2 is as follows. As explained
in Theorem 3, since v0 is a universal vertex, if c(v0) = c2, then the colour c2 cannot be assigned
to any of the remaining vertices. Hence, c1 is assigned to every other vertex to maintain the
requirements of a δ(k)-colouring graphs and this will yield n monochromatic edges in the rim
and n monochromatic edges between the cycle and the pendant vertices. Thus, when k = 2,
the total monochromatic edges obtained from this δ(k)-colouring is 2n.

Now, other possible δ(k)-colourings for different parities of n and different values of k are
discussed as below.

1) Let n be even and k = 2. As mentioned in the above δ(k)-colouring, the number of
monochromatic edges obtained from the same is 2n. Now, the other possible δ(k)-colouring
is investigated as follows. Assign the colour c1 to v0 and vi’s; 1 ≤ i ≤ n are properly
assigned the colours c1 and c2 alternatively. No ui’s are adjacent to each other and hence
they result in no monochromatic edges. Also, no ui’s, adjacent to their corresponding vi’s,
are given the same colour as that of c(vi). This results in a situation where there are no
monochromatic edges between ui’s and vi’s. The only monochromatic edges obtained from
this δ(k)-colouring is between v0 and vi’s and v0 and ui’s respectively. Now, there are n

2
vertices among vi’s and ui’s that receive the colour c1 and this results in n

2 monochromatic
edges each. Thus, when n is even, b2(F1,n) = n, when both the δ(k)-colourings are compared
(see Figure 3b for illustration).

2) Let n be odd and k = 2. A common δ(k)-colouring explained above result in 2n monochro-
matic edges. A different δ(k)-colouring that results in monochromatic edges less than 2n

is as follows. Let c(v0) = c1. Since n is odd, assigning the colours c1 and c2 alternatively
to vi’s, where 1 ≤ i ≤ n will results in one monochromatic edge v1vn. Between vi’s and
v0 there are ⌈n

2 ⌉ vertices that receive the colour c1 which will cause ⌈n
2 ⌉ monochromatic

edges between the same. Now, ui’s are assigned the colours in such a way that it does not
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receive the colour of its corresponding vi. Assign the colour c2 to the vertex u1, c1 to the
vertex u2 and so on the vertex un−1 is assigned the colour c2. Since, c(vn) = c1, un can be
coloured with c2. Thus, there are ⌊n

2 ⌋ vertices among the n ui’s that receive the colour c1.
These vertices adjacent to v0 will give rise to ⌊n

2 ⌋ monochromatic edges. Thus, there are
a minimum of n + 1 monochromatic edges resulting from this δ(k)-colouring. Hence, when
both the δ(k)-colourings are compared, b2(F1,n) = n + 1, when n is odd.

3) Let n be odd and k = 3. Assign the colour c3 to v0 . Since v0 is a universal vertex, none
of the remaining vertices can be given the colour c3. The colour c1 and c2 are assigned to
vi’s alternatively. Since n is odd, colouring the odd cycle with two colours will result in
one monochromatic edge in the cycle. Now, ui’s are also coloured with the colours c1 and
c2 as explained in Case 2. This will result in no monochromatic edges between ui’s and
vi’s and also no monochromatic edges between v0. Thus, when n is odd, b3(F1,n) = 1 (see
Figure 3a for illustration).

□
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Figure 3. A δ(2)-colouring of Flower Graph

The below-mentioned theorem discusses a δ(k)-colouring of and the δ(k)-defect number of
flower graph F1,n.

Definition 6. [17] The sunflower graph, denoted by SF1,n, is obtained by attaching n number
of vertices ui; 1 ≤ i ≤ n corresponding to each vi, where 1 ≤ i ≤ n, of W1,n such that each ui

is adjacent to vi and vi+1.

It is to be noted that, the vertices ui’s and vi’s considered in the below discussion are as per
Definition 6.

Theorem 5. The δ(k)-defect number of the sunflower graph SF1,n is

bk(SF1,n) =


n, if n ≥ 4 is even and k = 2,
n, if n ≥ 3 is odd and k = 2,
1, if n ≥ 3 is odd and k = 3.

Proof. Let vi’s, where 1 ≤ i ≤ n, be the rim vertices and v0 be the central vertex of the wheel
subgraph of SF1,n. Let ui’s, where 1 ≤ i ≤ n, be the corresponding vertices of vi. The different
possible δ(k)-colourings for SF1,n are discussed as follows.
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1) Let n be even and k = 2. When k = 2, there can be two possible δ(k)-colourings for

different parities of n among which one δ(k)-colouring is same irrespective of the parity of
n. The first δ(k)-colouring is as follows. Assign the colour c1 to the vertex v1, the colour c2
to the vertex v2, c1 to the vertex v3 and so on the colour c2 can be assigned to the vertex
vn. This colouring will cause a situation where there exists no monochromatic edges in
the rim. Now, v0 is assigned the colour c1 and this will result in n

2 monochromatic edges
in the wheel subgraph of SF1,n. Every ui has to be assigned the colour c1 to satisfy the
necessary conditions of a δ(k)-colouring of graphs which results in n monochromatic edges
between ui’s and vi’s, where 1 ≤ i ≤ n. Thus, when n is even and k = 2, there are a total
of 3n

2 monochromatic edges obtained from the δ(k)-colouring.
2) Let n be odd and k = 2. As explained in Case 1, when n is odd and k = 2, there can

be two possible δ(k)-colourings. The first δ(k)-colouring is as explained below. Assign the
colours c1 and c2 to the rim vertices of W1,n and the colour c1 is assigned to v0. This
colouring will give rise to ⌈n

2 ⌉ monochromatic edges between v0 and vi, where 1 ≤ i ≤ n,
and one monochromatic edge v1vn in the rim. Now, ui’s, where 1 ≤ i ≤ n, are assigned
the colours in following manner. The colour c1 is assigned to the vertices u1 to un−1 and
un can be assigned the colour c1 or c2. In this particular case as it is adjacent to v1 and
vn which is given the colour c1, to minimise the number of monochromatic edges, assign
the colour c2 is assigned to the vertex un. This colouring will yield a situation where there
are n − 1 monochromatic edges between ui’s and vi’s, where 1 ≤ i ≤ n. Thus, there are
a total of 3n+1

2 monochromatic edges obtained from this δ(k)-colouring when n is odd and
k = 2.
The second δ(k)-colouring which is common for both the parities of n and k = 2 is discussed
below. In SF1,n, the central vertex v0 is adjacent to all vi, where 1 ≤ i ≤ n, and all ui’s,
where 1 ≤ i ≤ n are independent. Hence, v0 and ui’s; 1 ≤ i ≤ n, can be assigned the
colour c2 and vi’s; 1 ≤ i ≤ n, can be assigned the colour c1. The monochromatic edges
resulting from this δ(k)-colouring is only from the rim vertices of the wheel graph in SF1,n.
Thus, b2(SF1,n) is n.
Thus, when both the δ(k)-colourings are compared, it can be seen that, the second δ(k)-
colouring gives a minimum of n monochromatic edges, when k = 2 and irrespective of
parity of n. Hence, b2(SF1,n) is n (see Figure 4a and Figure 4b for illustration).

3) Let n be odd and k = 3. The following explanation aims at discussing a δ(k)-colouring
of SF1,n, when n is odd and k = 3. As explained above, since the vertex v0 and ui are
not adjacent to each other and since ui’s are independent, a same colour can be given
to these vertices. Since k = 3, assign the colour say c3 to the vertices v0 and ui. Now,
vi’s, where 1 ≤ i ≤ n, must be coloured with c1 and c2 only to meet the requirements of
a δ(k)-colouring of graphs. Colour the rim of the wheel subgraph alternatively with the
colours c1 and c2. This will result in a monochromatic edge v1vn. Hence, when n is odd
and k = 3, the δ(k)-defect number of SF1,n is 1.

□

Below-mentioned theorem investigates the δ(k)-defect number of a closed sunflower graph
CSF1,n, for different parities of n and values of k.

Definition 7. [17] A closed sunflower graph CSF1,n, is obtained by adding the edge uiui+1 of
the sunflower graph.

Note that, in the below discussion the vertices ui’s and vi’s considered are as per Definition
7.
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Figure 4. A δ(2)-colouring of Sunflower Graph

Theorem 6. The δ(k)-defect number of a closed sunflower graph CSF1,n is

bk(CSF1,n) =



3n
2 , if n ≥ 4 is even and k = 2,

n
2 , if n ≥ 4 is even and k = 3,
5n−3

2 , if n ≤ 7 is odd and k = 2,
2(n + 1), if n ≥ 7 is odd and k = 2,
n+1

2 , if n ≥ 3 is odd and k = 3.

Proof. Since χ(CSF1,n) = 4 for any n, the value of k can be 3 or 2. The different cases for
different parities of n and values of k are explained as follows.

1) Let k = 2 and n be even. The first colouring for this case is colouring the even cycle
properly with k = 2 colours and then assigning v0 and the remaining ui’s the colour c1 to
meet the requirements of a δ(k)-colouring of graphs. Thus, there are n

2 and n monochro-
matic edges between v0 and vi’s and v0 and ui’s, where 1 ≤ i ≤ n, respectively. Now,
there are n monochromatic edges between ui’s and vi’s, where 1 ≤ i ≤ n. Thus, when
n is even and k = 2, there are n

2 + n + n = 5n
2 monochromatic edges obtained from this

δ(k)-colouring of CSF1,n. The second δ(k)-colouring is where v0 and the independent n
2

vertices of ui’s are assigned the colour c2 and the remaining vi’s are assigned the colour c1.
This colouring will give rise to situation where there are n monochromatic edges in the rim
and n monochromatic edges between vi’s and ui’s, where 1 ≤ i ≤ n. Thus, when n is even
and k = 2, there are a total of 2n monochromatic edges resulting from this δ(k)-colouring
of CSF1,n. Thus, when the two δ(k)-colourings are compared the latter gives the minimum
monochromatic edges. Hence, when n is even and k = 2, the δ(k)-defect number of CSF1,n

is 3n
2 (see Figure 5b for illustration).

2) Let k = 3 and n be even. It can be noted that, when n is even, χ(W1,n) is 3 and hence
the wheel subgraph of CSF1,n can be properly coloured with three colours c1, c2 and c3
as follows. Assign the colour c3 to the vertex v0 and remaining vi’s can be properly
coloured with c1 and c2 alternatively. Now, ui’s must be coloured using only two colours
c1 and c3 to maintain the requirements of a δ(k)-colouring of graphs. Thus, alternatively
assign the colours c1 and c3 to ui’s. This colouring to a situation where there will be n

2
monochromatic edges between ui’s and vi’s, where 1 ≤ i ≤ n. Hence, when n is odd and
k is 3, the δ(k)-defect number of CSF1,n is n

2 .
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3) Let k = 2 and n be odd. There are two possible δ(k)-colourings that are separately

discussed below.
a) Let k = 2 and n be odd. In the first colouring, as explained in Case 1, assign the colour

c2 to v0 and ⌊n
2 ⌋ independent ui’s. The colour c1 can be assigned to the remaining vi’s;

1 ≤ i ≤ n. Now, ui’s when coloured with two colours will provide one monochromatic
edge. There are ⌈n

2 ⌉ vertices of ui’s that are assigned the colour c1 which will yield
2⌈n

2 ⌉ monochromatic edges between ui’s and vi’s, where 1 ≤ i ≤ n. Also, there are
n monochromatic edges in the rim of the wheel subgraph. Thus, when n is odd,
b2(CSF1,n) is 2⌈n

2 ⌉ + n + 1 = 2(n + 1) (see Figure 5a for illustration).
b) The second δ(k)-colouring is as follows. Assign the colour c1 and c2 alternatively to

the rim of the wheel subgraph. Let the vertex v1 receive the colour c1, the vertex v2
the colour c2, and so on the vertex vn−1 is assigned the colour c2. The last vertex
vn is given the colour c1 to maintain the requirements of a δ(k)-colouring of graphs.
Such a δ(k)-colouring will give rise to a monochromatic edge, say v1vn (see Proposition
2.4, [11]). The colour c2 cannot be assigned to the central vertex V0, and hence the
colour c1 can be assigned to the central vertex to maintain the requirements of a δ(k)-
colouring of graphs. This colouring will result in a situation where there exists ⌈n

2 ⌉
monochromatic edges between v0 and vi’s, where 1 ≤ i ≤ n. Now, every ui is adjacent
to the vertices vi and vi+1 and hence no vertices ui other than the vertex un in this
case (as it is adjacent to v1 and vn that are assigned the colour c1) can be assigned
the colour c2. Thus, there are n − 2 monochromatic edges in the outer cycle formed
by ui’s and n − 1 monochromatic edges between ui’s and vi’s, where 1 ≤ i ≤ n. Thus,
the total number of monochromatic edges in this case is 1+⌈n

2 ⌉+n−1+n−2 = 5n−3
2 .

When both the colourings are compared it can be observed that, when k = 2 and n
is odd, the δ(k)-defect number of CSF1,n, is min{2(n + 1), 5n−3

2 } which is 5n−3
2 , when

n ≤ 7 and is 2(n + 1), when n ≥ 7.
4) Let k = 3 and n be odd. It is to be noted that, when n is odd, b3(W1,n) = 1 (see

Proposition 2.4, [11]). Now, two set of independent ⌊n
2 ⌋ vertices of ui’s can be assigned the

colour c3 and c1 to satisfy the conditions of a δ(k)-colouring of graphs. Now, the last vertex
un which is adjacent to the vertices v1 and vn that are assigned the colour c1 can be given
the colour c1 or c2. Assigning the colour c1 will provide a scenario where there exist two
monochromatic edges between the same and assigning the colour c2 will cause a situation
where there is no monochromatic edge and hence c(un) = c2. Now, between ui’s and vi’s
there are ⌊n

2 ⌋ monochromatic edges. Thus, when n is odd, b3(CSF1,n) is 1 + ⌊n
2 ⌋ = n+1

2 .
□

The following theorem determines a δ(k)-colouring and discusses the minimum number of
monochromatic edges resulting from the same for different parities of n and for distinct values
of k of the blossom graph, Bl1,n.
Definition 8. [17] A blossom graph, denoted by Bl1,n, is obtained by making each ui adjacent
to the central vertex of the closed sunflower graph.

Note that, the vertices ui’s and vi’s considered in the below discussion are as per Definition
8.
Theorem 7. The δ(k)-defect number of a blossom graph Bl1,n is

b4(Bl1,n) =
2, if n ≡ 1 (mod 3),

1, if n ≡ 2 (mod 3).
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Figure 5. A δ(3)-colouring of Closed Sunflower Graph

b3(Bl1,n) =


2n
3 , if n ≡ 0 (mod 3),

2⌈n
3 ⌉ + 2, if n ≡ 1 (mod 3),

2⌈n
3 ⌉ + 1, if n ≡ 2 (mod 3).

b2(Bl1,n) =


7n
2 , if n is even,

7n−5
2 , if n is odd.

Proof. Let v1, v2, . . . , vn be the rim vertices of the wheel subgraph of Bl1,n and v0 be its central
vertex. Let u1, u2, . . . , un be the vertices corresponding to each vi’s, where 1 ≤ i ≤ n. When
n ≡ 1 (mod 3) and n ≡ 2 (mod 3), χ(Bl1,n) is 5. Hence, for this particular case k can take the
values 4, 3 and 2. When n ≡ 0 (mod 3), χ(Bl1,n) = 4, hence the value of k is 3 and 2. The
various cases of a δ(k)-colourings for the different values of n and k are studied and discussed
as follows.

1) Let k = 4. The minimum number of monochromatic edges obtained from a δ(k)-colouring
is discussed in the following subcases.
a) Let k = 4 and n ≡ 1 (mod 3). It is known that if n ≡ 1 (mod 3), then 2n ≡ 2 (mod 3).

Now, in Bl1,n the central vertex v0 is a universal vertex and hence assign the colour
c4 to v0. The colour c4 cannot be assigned to any of the vertices. There are three
colours left to colour the remaining 2n vertices. When k = 3, each 2⌊n

3 ⌋ set of disjoint
independent vertices can be properly coloured with the colours c1, c2 and c3. There
are two more vertices, each of them of degree five, that are not given any colours yet.
Obviously, these vertices are adjacent to the vertices assigned the colour c1, c2, c3 and
the vertex v0 which is assigned the colour c4, by which it is also clear that they have
to be assigned the colour c1 to maintain the requirements of a δ(k)-colouring of graphs.
Thus, the two vertices assigned the colour c1, adjacent to two vertices assigned the
same colour, will give rise to a situation where there are two monochromatic edges in
the graph. Hence, when n ≡ 1 (mod 3) the δ(4)-defect number of Bl1,n is 2.

b) Let k = 4 and n ≡ 2 (mod 3). Assign the colour c4 to the vertex v0. This colour
cannot be assigned to any other vertices. The remaining 2n vertices are coloured in
the following manner. There are three colours left for colouring the remaining vertices.
The inner and outer cycle irrespective of the parity of n are properly coloured with

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 91–105



On δ(k)-colouring of Some Wheel Related Graphs 101
three colours. The monochromatic edge obtained in this case will be between ui’s and
vi’s, where 1 ≤ i ≤ n. Now, start colouring the vertices in the following pattern. Let
c(v1) = c1, c(v2) = c2, c(v3) = c3 and so on. This pattern is followed up to the vertex
vn−2. The colour c1 and c2 are assigned to vn−1 and vn respectively. Thus, this inner
cycle is coloured properly with three colours. Now, each ui that are adjacent to vi

and vi+1 are assigned a colour other than c(vi) and c(vi+1). Hence, the vertex u1, u2,
u3 in this case are assigned the colour c3, c1, c2 respectively and this colouring pattern
is continued for all the remaining vertices. The vertex un−1, adjacent to vn−1 and vn,
which are assigned the colour c1 and c2, can be given the colour c3. The last vertex un,
adjacent to the vertices vn, v1, un−1 and u1 which are assigned the colours c2, c1, c3 and
c3 respectively, should be assigned the colour c1. This colouring will yield a situation
where there exits a monochromatic edge unv1 in An. Thus, when n ≡ 2 (mod 3), the
δ(3)-defect number of Bl1,n is 1.
(Note that, a different δ(k)-colouring will also give bk(Bl1,n) ≥ 1. Here, a colour-
ing that exactly gives one monochromatic edge, which is the minimum number of
monochromatic edges obtained from any improper colouring of a graph is provided)

2) Let k = 3. The different δ(k)-colourings for the different values of n when n ≡ i (mod 3),
where 0 ≤ i ≤ 2 are discussed below.
a) Let k = 3 and n ≡ 0 (mod 3). It is clear that if n ≡ 0 (mod 3), then 2n ≡ 0 (mod 3).

Here k = 3 and there are 2n+1 vertices in the graph including a universal vertex v0. If
the universal vertex is given a colour other than c1, say c2 or c3, then no other vertices
can be given that particular colour. Hence, to minimise the number of monochromatic
edges an optimum δ(k)-colouring is as follows. Since 2n ≡ 0 (mod 3), the vertex set
can be divided into three disjoint independent sets of order 2n

3 and assign the vertices
of each set the colours c1, c2 and c3 respectively. Now, the universal vertex v0 has to
be given the colour c1 to maintain the conditions of a δ(k)-colouring of graphs. This
vertex is adjacent to a total of 2n

3 vertices that are assigned the colour c1. Thus, when
n ≡ 0 (mod 3), the δ(3)-defect number of Bl1,n is 2n

3 (see Figure 6b for illustration).
b) Let k = 3 and n ≡ 1 (mod 3). It is clear that if n ≡ 1 (mod 3), then 2n ≡ 2 (mod 3).

Thus, when k = 3, each 2⌊n
3 ⌋ set of disjoint independent vertices are properly coloured

with the colours c1, c2 and c3. There are two more vertices that are of degree four
which are not assigned any colours. It is obvious that these vertices are adjacent to
the vertices assigned the colour c1, c2 and c3 by which it is also clear that they have to
be assigned the colour c1 to maintain the requirements of a δ(k)-colouring of graphs.
Thus, the two vertices assigned the colour c1, adjacent to the two vertices having the
same colour, will provide a scenario where there are two monochromatic edges in the
graph. Now, v0 has to be assigned the colour c1 to meet the requirements of a δ(k)-
colouring of graphs. The vertex v0 is adjacent to ⌈n

2 ⌉ vertices that are assigned the
colour c1. Thus, there ⌈n

2 ⌉ monochromatic edges between v0 and vi, and ⌈n
2 ⌉ between

v0 and ui. Also, there are two monochromatic edges between ui’s and vi’s, where
1 ≤ i ≤ n. Hence, when n ≡ 1 (mod 3), the δ(3)-defect number of Bl1,n is 2(⌈n

2 ⌉ + 1)
(see Figure 6a for illustration).

c) Let k = 3 and n ≡ 2 (mod 3). By Subcase 1c, it can be noted that there is only
one monochromatic edge in Bl1,n when k = 4. In this case, k is 3, and the same
δ(k)-colouring as that of the one given in Subcase 1c is followed. The only difference is
that since k = 3, the vertex v0 is assigned the colour c1 to maintain the requirements
of a δ(k)-colouring of graphs. Thus, as explained in Subcase 2b, there are each of ⌈n

2 ⌉
monochromatic edges between the vertex v0 and vi and between v0 and ui. Moreover,
there is one monochromatic edge between ui’s and vi’s, where 1 ≤ i ≤ n. Hence, when
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n ≡ 2 (mod 3), b3(Bl1,n) = 2⌈n

2 ⌉ + 1.
3) Let k = 2. Following mentioned subcases discuss the different possible δ(k)-colourings

for the two parities of n. The δ(k)-colourings are discussed separately and compared to
determine the minimum number of monochromatic edges.
a) Let k = 2 and n be even. There are two possible δ(k)-colourings for this case. In the

first δ(k)-colouring, assign the colour c2 to the vertex v0. Since v0 is a universal vertex,
no other vertices can be assigned the colour c2. Now, the cycles of order n formed
by vi’s and ui’s will give rise to each of n monochromatic edges. Also, between ui’s
and vi’s there are 2n monochromatic edges. Thus, there are 4n monochromatic edges
obtained from this δ(k)-colouring.
In the second δ(k)-colouring, assign the vertex v0 the colour c1. Now, vi’s are properly
coloured with two colour c1 and c2 alternatively and ui’s corresponding to each vi’s
must be coloured with colour c1 to maintain the requirements of a δ(k)-colouring of
graphs. This results in n monochromatic edges between vi’s and ui’s, n monochromatic
edges in the cycle formed by ui’s, n monochromatic edges between ui’s and v0, and
n
2 monochromatic edges in the inner wheel subgraph. Thus, there are a total of
n + n + n + n

2 = 7n
2 monochromatic edges. Now, when both the colourings are

compared, the latter gives minimum number of monochromatic edges. Thus, when n
is even, the δ(2)-defect number of Bl1,n is 7n

2 .
b) Let k = 2 and n be odd. There are two possible δ(k)-colourings for this case. The

first one is explained as follows. As explained in Case 3a, the central vertex is given
the colour c2 and every other vertex is assigned the colour c1, this δ(k)-colouring will
result in 4n monochromatic edges. Now, the second δ(k)-colouring is similar to the
second δ(k)-colouring mentioned in Case 3a. Assign the colour c1 to the vertex v0. The
inner wheel subgraph consisting of the vertices v1, v2, . . . , vn are assigned the colour
c1 and c2 alternatively leading to one monochromatic edge v1vn. Every ui other than
the vertex un adjacent to the monochromatic edge v1vn, are assigned the colour c1.
This colouring will result in a situation where there are n − 1 monochromatic edges
in ui’s, and also n − 1 monochromatic edges between ui’s and v0. Moreover, there
are n − 2 monochromatic edges between ui’s and vi’s, where 1 ≤ i ≤ n. Thus, there
are a total of ⌈n

2 ⌉ + n − 2 + n − 1 + n − 1 = 7n−5
2 monochromatic edges resulting

from this δ(k)-colouring. Now, when both the δ(k)-colourings are compared the second
δ(k)-colouring gives minimum of 7n−5

2 monochromatic edges. Hence, when n is odd,
the δ(2)-defect number of Bl1,n is 7n−5

2 .

□

The below-mentioned theorem examines the δ(k)-defect number of Djembe graph D1,n for
various values of k and different parities of n. By Definition 9, it is clear that D1,n has wheel
graph as its subgraph.

Definition 9. [19] A djembe graph, denoted by D1,n, is obtained by joining the vertices ui’s;
1 ≤ i ≤ n of a closed helm graph CH1,n to its central vertex v0.

Note that, the vertices ui’s and vi’s considered in the below discussion are as per Definition
9.

Theorem 8. For a djembe graph, the δ(k)-defect number is

bk(D1,n) =


n, if n ≥ 4 is even and k = 2,
n + 4, if n ≥ 3 is odd and k = 2,
2, if n ≥ 3 is odd and k = 3.
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Figure 6. A δ(3)-colouring of Blossom Graph

Proof. In D1,n, the central vertex v0 is a universal vertex, vi’s and ui’s form cycles of length
n and each ui is adjacent to its corresponding vi, where 1 ≤ i ≤ n. The following are the
δ(k)-colourings for different parities of n and different values of k.

1) Let n be even. Since χ(D1,n) = 3 , the only value that k can be take is 2. There can
be two possible δ(k)-colourings for this case. Since the vertex v0 is a universal vertex,
c(v0) = c1 or c(v0) = c2. If the colour c2 is assigned to v0, then every other vertex should
be given the colour c1. This colouring will cause a situation where there are each of n
monochromatic edges in both cycles and n monochromatic edges between ui’s and vi’s,
leading to a total of 3n monochromatic edges. Now, if c(v0) = c1, then since n is even,
vi’s can be properly coloured with the two colours c1 and c2. Moreover, ui’s can be given
the alternate colour of its corresponding vi. This colouring results in a scenario where
there exists no monochromatic edges between ui’s and vi’s. Also, between v0 and vi’s
and between v0 and ui’s there are n

2 monochromatic edges. Thus, there are a total of n
monochromatic edges resulting from this δ(k)-colouring of djembe graph. Now, when both
the colouring are compared, it can be seen that, when n ≥ 4 is even, the δ(2)-defect number
of D1,n is n (see Figure 7b for illustration).
When n is odd, χ(D1,n) = 4 and hence k is either 3 or 2. A δ(k)-colouring when k = 2 and
k = 3 are separately discussed in the following cases.

2) Let n be odd and k = 3. Since n is odd, each odd cycle of order n, when coloured with
k = 2 colours will give rise to one monochromatic edge (see Proposition 2.3, [11]). Now,
the colour c3 is assigned to the vertex v0. This colouring will again lead to a situation
where there are no monochromatic edges between v0 and vi and v0 and ui. Thus, when
n ≥ 3 is odd, b3(D1,n) is 2 (see Figure 7a for illustration).
Note that, in this case, any δ(k)-colouring other than the above mentioned one will also
yield a minimum of two monochromatic edges as there are two odd cycles of length n.

3) Let n ≥ 3 be odd and k = 2. As explained in Case 1, if c(v0) = c2, then this δ(k)-
colouring will lead to a situation where there are a total of 3n monochromatic edges.
However, if c(v0) = c1, then there will be one monochromatic edge in each of the cycles
and one monochromatic edge between vi’s and ui’s. The vertex v0 will provide each of
⌈n

2 ⌉ monochromatic edges between vi’s and ui’s. Thus, there are a total of 2⌈n
2 ⌉ + 3

monochromatic edges. When both the δ(k)-colourings are compared, it can be concluded
that, when n ≥ 3, the δ(2)-defect number of D1,n is 2⌈n

2 ⌉ + 3 = n + 4.
□
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Figure 7. A δ(2)-colouring of Djembe Graph

3. Conclusion

In this paper, we have determined the number of bad edges for some of the wheel related
graphs by discussing all the possible δ(k)-colourings and finding the optimal δ(k)-colouring that
gives the minimum number of bad edges for each different values of k where 1 ≤ k ≤ χ(G) − 1
from each of the graphs classes. We have permitted only one colour class to be non independent.
However, permitting few more colour classes to have adjacency between the elements in it can
be ground for further engrossing research.
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