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Abstract: The metric dimension of a graph I' = (V, E), denoted by dim(T'), is the least
cardinality of a set of vertices in I' such that each vertex in I' is determined uniquely by its
vector of distance to the vertices of the chosen set. The topological distance between an edge
e =yz € F and a vertex k € V is defined as d(e,k) = min{d(z,k),d(y,k)}. A subset of
vertices Rpr in V is called an edge resolving set for I' if for each pair of different edges e; and
ey in E, there is a vertex j € Rr implying d(e1,j) # d(es,j). An edge resolving set with
minimum cardinality is called the edge metric basis for I" and this cardinality is the edge metric
dimension of T', denoted by dimg(I"). In this article, we show that the cardinality of minimum
edge resolving set is three or four, for two classes of convex polytopes (.S, and T,,, exist in the
literature).

Keywords: Planar graph, Metric dimension, Convex polytope, Edge metric dimension,
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1. Introduction

Suppose I' = I'(V, F) be an undirected, connected, simple, and non-trivial graph with order
|[V(T')| and size |E(T")|. For each pair of distinct vertices j, k € V, the distance between them,
denoted by d(j, k), is the number of edges in the shortest j — k path. A vertex p € V(I
resolves (or recognize) a pair of distinct vertices j, k if d(j,p) # d(k,p). A subset of vertices
R C V(') recognizes I' if every possible pair of different vertices in I' are resolved by some
vertex in R, then R is known as the resolving set (or metric generator) for I'. For an ordered
set R = {hi, hs, hs,...,h,} CV of different vertices, the metric code (or co-ordinate) of v € V'
with respect to R is the y-vector v(v|R) = (d(v, h1),d(v, he),d(v, hs), ..., d(v, hy)). The metric
dimension of I' is denoted by dim(I'), where dim(I') = min{|R| : R is resolving in I'}.

The notion of resolving set for a connected simple graph was proposed by Slater [1], under
the name locating set; he referred to a minimum resolving set as a reference set, and the
minimum cardinality of such a generator for a given connected graph as the location number
of a graph. These concepts were independently studied by Harary and Melter [2] under the
name metric dimension. It has been extensively investigated in a number of research articles,
see Sebo and Tannier [3], Sharma and Bhat [4,5], Khuller et al. [6], Chartrand et al. [7], Imran
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et al. [8], Javid et al. [9], Wei et al. [10], etc. It has appeared in several areas including robot
navigation [6], pattern recognition and image processing [11], combinatorial optimization [3],
and chemical science [12,13].

An edge metric dimension is a newly introduced (by Kelenc et al. [14]) variant of the metric
dimension. Then it was further investigated by Peterin and Yero [15], Zhu et al. [16], Zubrilina
[17], etc. The distance between a vertex k € V and an edge e = yz € F is given by d(e, k) =
min{d(z,k),d(y,k)}. For an ordered set, Rr = {ry,72,73,...,7m} of distinct vertices in T,
the edge metric code (or edge code) of an edge e; € E with respect to Rr is the m-vector
ve(e1|R) = (d(e1,m1),d(e1,r2),d(e1,73), ...,d(€1, 7). Then, Rr is called the edge resolving set
(ERS) for T iff for every pair of distinct edges e;, e; of I', we have vg(e1|R) # vr(e2|R). This Ry
with minimum number vertices is called an edge metric basis of I'. The edge metric dimension
(EMD) of I' is denoted by dimg(I"), where dimg(I') = min{|Rr| : Rr is an EMG of T'}.

In [14], Kelenc et al. initiated and introduced the study of the EMD in a non-trivial con-
nected graphs with respect to identifying uniquely the edges of the graph. They have given
some comparison between the EMD and the metric dimension. They particularly stated that it
is possible to find graphs where the EMD equals the metric dimension, as well as other graphs
I' where dimg(I") < dim(T") or dimg(I') > dim(I"). In this paper, we consider two convex
polytopes graph families, namely, S, and T,,, already exists in the literature [8], and analyze
such situations further by comparing the value of dimg(I') and dim(I"), where I" represents one
of the convex polytopes graph S,, and T,,.

The main contribution of the paper are as follows:

o The cardinality of minimum edge resolving set for .S,, and T, is three or four.
« Edge metric dimension (S,, and T},) > Metric dimension (S,, and T,,).
e The edge resolving set for S,, and T}, are independent.

These notions of metric dimension as well as its variants have been investigated for distinc-
tively significant graph families, for instance; planar graphs: path graph, kayak paddle graph,
several ladder graphs, (ladders of pentagons, heptags, nonagons, etc), antiprism graph, mo-
bious ladder graph, wheel graph, cycle graph, various convex polytopes, tadpole graph, and
many more; chemical graphs: one-pentagonal, one heptagonal, one nonagonal carbon nanocone
structures, linear heptagons structures, polycyclic aromatic compound, and linear phenylene
structure, for these one can refer [17-22]. The list is long but is still incomplete, i.e., there
are infinite number of distinct graph families for which the notions of resolving sets and its
variants have not been discussed yet. So, to address this partially, in this paper, we consider
two interesting planar graph families of convex polytopes, denoted by S,, & T,,, and determine
their edge metric basis as well as edge metric dimension.

The rest of this paper is organized in the following manner: Section 2 introduces some basic
concepts related to the resolving and the edge resolving sets of graphs. In addition, some of the
established results regarding the metric dimension of S,, and 7;, are also discussed. In sections
3 and 4, we investigate the edge metric dimension of the convex polytope graphs S, and T,
respectively. Finally, Sect. 5 discusses the conclusion and comparison of the metric dimension
and the EMD of these two graphs.

2. Preliminaries

In the present section, we define some necessary terminology and give some preliminary
results about the metric dimension and the EMD.
Definition 1 (Independent resolving set (IRS)). [23] A subset R of distinct vertices in I, is
said to be an IRS for I', if R is both resolving and independent set.
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Definition 2 (Independent edge resolving set (IERS)). [4] A subset Rg of distinct vertices in
I, is said to be an IERS for I, if Rg is both edge resolving and independent set.

Following are the some significant known results concerning the metric dimension and the
EMD:

Proposition 1. [14] For every natural n > 3,

1) Graph P, is a path iff 1 = dim(P,) = dimg(P,).
2) 2 = dim(C,) = dimg(C,), where C,, is the cycle graph of order n.
3)n—1=dim(K,) = dimg(K,), where K,, is the complete graph of order n.

Neat, suppose Y be a family of simple non-trivial graphs I'y, : Y = (I'y)n>1 relying on n as
follows: the order p(n) = |V (I')| and lim,_,o ¢(n) = oo. If there is a constant U > 0 such
that dimg(T',) > U for every n > 1 then we say that Y is the family of graphs with unbounded
EMD, otherwise Y has a bounded EMD. If all the graphs in Y have the equal EMD, then Y is
known as the constant EMD graphs family. In recent years, several authors have investigated
the bounded and unbounded EMD for various graph families [24]. The maximum (minimum,)
degree in I' is denoted by A(T") (6(I')). Now, for a connected graph T, the lower bounds with
respect to A(I') and (') for the EMD are given in the following propositions.

Proposition 2. [14] If A(I") is the mazimum degree in I', then [logoeA(T")] < dimp(T).
Proposition 3. [25] If 6(T') is the minimum degree in T', then [log20(T')] + 1 < dimg(T).

In this work, we consider two graphs of convex polytopes S,, & T,, [8], and we obtain their
EMD. Recently, the metric dimension of these two convex polytope graphs was computed. For
the metric dimension of these two graphs we have the following results:

Theorem 1. [8] dim(S,,) = 3, where n > 6 is a positive integer.
Theorem 2. [8] dim(T,,) = 3, where n > 6 is a positive integer.

In the next section, we consider a family of convex polytope graph S, for which we have
E(Sn) = {jajg+1: Jaka kajgr, kalg, lgmg, malgr1, mgog, 050544 = 1 < ¢ < n} (see Figure 1). We
denote the sets of edge metric co-ordinates for the edges of S, by Ai, A, Az, A4, As, Ag,
Az, and Ag, where Ay = {vp(Jgjsr1|Re) : 1 < ¢ < n}, Ay = {ye(jzk7|Rr) : 1 < q¢ < n},
Az = {yp(kgjgn|Re) : 1 < ¢ < n}, Ay = {yp(kglg|Re) : 1 < ¢ < n}, A5 = {ye(lgmq|RE) :
1 < g <n}, As = {ve(mglg|Re) : 1 < ¢ < n}, A7 = {ye(mgog|Re) : 1 < ¢ < n}, and
As ={vp(0g0541|Rp) : 1 < g < n}.

3. Edge Metric Dimension of 5,

In this section, we study some of the basic properties and the EMD of §,,.
The Graph S,

The convex polytope S,, [8] consists of 5n and 8n number of vertices and edges respectively
(see Figure 1). It has n cycles with 3-sides, n cycles with 6-sides, n cycles with 5-sides, and
two cycles with n-sides. The set of edges and vertices of S,, are denoted separately by F(S,,)

and V(S,), where E(S,) = {Jjgjar1, Jaka kajgr1s kalg, lgmg, malgi1, mgog, 0g0q11 1 < @ < n}
a‘nd V<Sn) = {j(ja ktfa l(j) m(ja Olj : 1 S q_ S TL}
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Figure 1. The Graph S,

We name the vertices {j; : 1 < ¢ < n} in the planar graph, S, as the j-cycle vertices, the
vertices {kz : 1 < ¢ < n} in the planar graph, S, as the k-vertices, the vertices {l;: 1 < g <n}
in the planar graph, S, as the [-vertices, the vertices {m; : 1 < g < n} in the planar graph,
Sy, as the m-vertices, and the vertices {07 : 1 < ¢ < n} in the planar graph, S, as the o-cycle
vertices. For our purpose, we can write j1 = Jpi1, k1 = kpa1, I =
01 = 0p+1. In the following result, we investigate the EMD of S,,.

lny1, mi = My, and

Theorem 3. dimg(S,) =4, where n > 6 is a positive integer.

Proof. 1t is easy to check for 6 < n < 11 that the EMD of S, is 4. The position of the edge basis
vertices (color in red) can be found in Figure 1, for all n > 6. Now, for n > 12, we divide our
proof into two cases i.e., when n is even (n = 0 (mod 2)) and when it is odd (n =1 (mod 2)).

Case (slowromancapi@) n =0 (mod 2)

Then, for the natural n, we have n = 2h, where h € N and h > 6. Suppose Rgp =
{k1, ko, kny1,01} C V(S,). Next, we give edge metric representation to every edge of S, con-
cerning the set Rp.

For the edges of j-cycle {e; = jsjs+1/d = 1,2,3,...,n}, the edge codes are

ve(eg = jgjg+1|REe)

Rp = {k1, ko, kps1,01}

ve(egRe):(g=1)

(I,1,h —q+1,4)

ve(eq|Re):(q = 2)

(q_1717h_6+174>

Ve(eg Bp):(3 < g < h)

ve(eq|Be):(q=h+1)

(q__lvq__2717q+1)

ve(eg|RE):(h+2 < q < 2h)

(2h—q+1,2h—q+2,g—h—1,2h—q+4)

For the edges {ez = jskg, kgig+1, kglg, lgmg, mglgs1, mgog|q = 1,2,3, ..., n}, the edge codes are

VE(eq = Jokq| RE) Rp = {k1, k2, kny1, 01}

Ye(eg|Re):(q =1) (0,2, h,3)

YE €q|RE):((_7=2) (G—1,0,h—q+2,3)
ve(eglRe):(3 < g <h) (—1,4—2h—q+2,q+1)
ve(eg|REg):(@=h+1) (G—1,4—2,0,g+1)
ve(eg| Re):(@=h+2) (2h —q+2,§—2,g—h—1,2h—q+4)

ve(eg|Rg):(h+3<qg<2h)| (2h—q+2,2h—q+3,g—h—1,2h—q+4)
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Ye(eq = kgjg+1| RE) Rp = {ki, ks, knt1,01}

IYE(GQ|RE) (C] — 1) (Oa 17 h — q + 1a 3)

V5(€eq|RE):(q = 2) (7,0,h—q+1,3)
ve(eg|Re):(3 < g < h) (G,q—1,h—q+1,q+1)
ve(eg|RE): (g =h+1) (2h—q+1,g—1,0,g+1)

ve(eg|Re):(h+2 < g < 2h)

(2h—q+1,2h—q+2,q—

h,2h — g+ 4)

7E<€q = kqlq‘RE)

Rp = {k1,k2,kh+1,01}

fYE(eq|RE) (C] — 1) (07 2>h B q+ 2a2)

VE(eq Rip):(q = 2) (¢,0,h—q+2,2)
VE(eg|RE):(3 < g < h) (3,4 —1,h—q+2,q)
Ve(eq RE):(@=h+1) (¢ —1,0,9)
VE(eq|RE): (= h +2) (2h —q+2,§—1,§—h,2h —q+3)

ve(eg|Re):(h+3 < q < 2h)

(2h—q+2,2h —q+3,q —

h,2h — G+ 3)

ve(eq = lgmg| RE) Rp = {k1, ko, kpt1,01}
Ve(eq RE):(g=1) (1,2,h—q+3,9)
Ve(eq REp):(q = 2) (@+1,1L,h—q+3,9)

VE(eg| RE):3<g<h—1) (g+1,¢,h—q+3,q)
VE(quRE)i(CY =h) (@+1,42,9)

ve(eg|Re):(h 2§cj§2h—1) (2h—q+3,2h—qG+4,g—h+1,2h — g+ 2)

ve(eg|RE):(q = 2h) (2,2h—q+4,g—h+1,2h—q+2)
VE(eg = Mmglgi1|RE) Rp = {k1, ko, kpt1,01}

ve(eq|Bp): (g =1)

(2717h_6+276)

ve(eq|Br):(q = 2)

ve(ez|Rg):(3<q¢<h-—1)

Ve(eq| RE):(q = h) (@+2,4+1,1,9)
7E<€q’RE) (q:h—i—l) (2h—§+ 2,2h—6j+3,2,6j)
veleglRg):(h+2<q¢<2h—1)| (2h—q+2,2h—q+3,§—h+2,2h—q+2)
’}/E(G,ﬂRE)((j:Q) (1,2h—cj+3,cj—h+2,2h—cj+2)
and
vE(eq = mgog| Ri) Rp = {k1, ko, kpt1,01}
Ve(eq| Re):(q=1) (2,2,h—q+3,qg-1)
Ve(eq| Re):(q = 2) (@+2,2,h—q+3,4—1)
(eq| Re):(3<qg<h—1) (+2,g+1,h—q+3,q—1)
f)/E(eli’RE) (q_: ) (q_+2aq_+1>2aq__1)
ve(eg|Re):(h + 2§q‘§2h—1) (2h—q+3,2h—q+4,g—h+2,2h—q+1)
ve(eg|RE):(q = 2h) (2,2h—q+4,g—h+2,2h—q+1)

Finally, for the edges of o-cycle {e; = 050541|0 = 1,2,3, ...,

n}, the edge codes are

’VE(eq 0g0q+1 |Rp)

Rp = {k1,k27k‘h+1,01}

V(e RE):(q = 1)

ve(eg|Re):(2<qg<h-—1)

ve(eglRe):(g = h) (+2,4+1,3,4—1)
ve(ez|RE): (h+1§§§2h—1) (2h—q+2,2h—q+3,§—h+2,2h—q)
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From these edge codes in S, we find that |4;] = n (1 < i < 8) and the sum of all of
these cardinalities is equal to |F(S,,)| and which is 8n. Moreover, all of these sets are pairwise
disjoint, and so we find that no pair of two distinct edges in .S,, are having the same edge metric
coordinates, which implies that dimg(S,) < 4. Now, to finish the proof for this case, we prove
that dim(S,) > 4 by proving that there is no set Rp with |Rg| = 3, which can resolve every
pair of edges in S,,. On the contrary, suppose dimg(S,) = 3. Then, we have the following to

be considered:

Edge Resolving Set

Contradictions

Rp = {p1,p2,p;};(3 < j < n)

Ye(@ip1|RE) = Ye(p1Gn| RE), for 3 < j < n, a contradiction.

Rg ={q1, 30, 3;};(3<7<n)

ve(@im1|RE) = Yve(P1q1|RE), for 3 <5 < h—1, and
ve(@ips| RE) = Ye(pa@s|REe), for h < j < n, a contradiction.

R ={ri,rs,7;1:(3 <5 <n)

Ye(P1pn|RE) = YE(P1@n| RE), for 3 < j < h —1, and
ve(@sps| Re) = YE(paGs| RE), for h < j < n, a contradiction.

Rp = {s1,52,5;};(3<j <n)

Ye(P1pn|RE) = YE(P1@n| RE), for 3 < j < h —2, and
ve(@ups|RE) = Ye(ps@5|RE), for h — 1 < j < n, a contradiction.

Rp = {t1,t5,1;};(3 < j < n)

ve(ris1|Reg) = ve(rase|RE), for 3 < j < n, a contradiction.

R =A{p1,pj,@1};(2 < j <n)

ve(r181|RE) = ve(r1s.| REg), for 2 < j < n, a contradiction.

ve(ris1|Re) = ve(ris.|RE), for 2 < j < n, a contradiction.

RE = {plvpjarl};(z Sj S n)
Rp ={p1,pj,51};(2<j <n)

Ye(P1pn|RE) = YE(P1Gn| RE), for 2 < j < h —1, and
ve(@ups|RE) = YE(pa@3| RE), for h < j < n, a contradiction.

Rp ={p1,pj,t1};(2 < j <n)

ve(p2@2|RE) = Ye(Qip2| RE), for 2 < j < n, a contradiction.

RE == {q_17Qj7r1};(2 S ] S n)

Ye(P1pn|RE) = YE(P1@n| RE), for 2 < j < h —1, and
ve(@sps| Re) = Ye(paGs| RE), for h < j < n, a contradiction.

RE = {(117q_jasl};(2 S] < n)

Ye(P1pn| RE) = YE(P18n| RE), for 2 < j < h —1, and
ve(@sps| RE) = YE(paGs| RE), for h < j < n, a contradiction.

RE == {q_lvq_jatl};(2 S ] S TL)

Ye(P1on|RE) = YE(P1Gn| RE), for 2 < j < h;
Ye(peps|Re) = ve(p1n|RE), for j = h + 1;
Ye(p2ps|RE) = ve(p1p2| RE), for j = h + 2, and
YE(Dhi2Pnts|RE) = YE(Phiaqniz| Re), for h+ 3 < j < n, a contradiction.

Rg={ri,r;,s1}:2<j<n)

YE(Gn-1Pn|RE) = VE(Pndn| RE), for 2 < j <n —2, and
ve(@ipa|RE) = Ye(pags|RE), for n — 1 < j < n, a contradiction.

Rp={r,rj,t1};(2<j <n)

Ve(P1Pa| RE) = YE(P1Gn| RE), for 2 < j < h;
ve(p2ps| RE) = Ye(P1pa| RE), for j = h + 1;
Ye(p2ps|Re) = ve(pip2| Re), for j = h 42, and
ve(p3qs|Re) = ve(psps|RE), for h + 3 < j < n, a contradiction.

Rp ={s1,5;,t1};(2<j <n)

ve(@ir1|RE) = ve(ris,|RE), for 2 < j < h;
’YE(tltn|RE) = ’}/E(tlt2|RE), fOI‘ j = h + 1;
ve(Gor2|RE) = vE(ress| Re), for h 4+ 2 < j < n, a contradiction.

Edge Resolving Set

Contradictions

Re ={p1,qi,mns; 15(1 < j <)

Ye(@3ps|Re) = v6(Geps|Ri), for j = 1;
Ye(@2p2| RE) = ve(paps| Ri), for 2< j < h +1;
Ve(P1pn| RE) = vE(P1Gn| RE), for h+2 < j < n, a contradiction.

Rp ={p1, @1, 504+ 1:(1 < j <)

YE(Pndn|RE) = VE(@n-10n| RE), for j = 1,2, .. h =3, h — LA+ 1,h +2,...,n, and vg(gaps| Re) = e(pads| Re),

for j = h and h — 2, a contradiction.

Rp = {Plﬁhthﬂ}‘«,(l <j< n)

Ye(Phi2Gni1|RE) = YE(Ghi2Phse| RE), for j = 1;
ve(P2ps|Re) = vB(G2p2| RE), for 2 < j < by
Ye(P1on|RE) = YE(P14n] RE), for h+1<j <n—1;
YE(@npri1|RE) = YE(Pha1@ns1|RE), for j = n, a contradiction.

Rg ={q,r, 8011 <j <n)

Ye(psGs|RE) = ve(@pa| REe), for j = 1,2, ., h+ 1, h+ 3, h +5,...,n, and Ye(Gupu| Re) = YE(PuGn-1|RE),

for j = h+ 2 and h + 4, a contradiction.

Rg = {q,m1,ths; ;(1 < j <n)

ve(m1@1|Re) = ve(@ip2| RE), for 1 < j < n, a contradiction.

By the symmetry S,,, other relations can be considered, and they will produce the same kind
of contradictions. As a result, it can be found that dimg(S,,) = 4, when n is even.
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Case (slowromancapii@) n =1 (mod 2)

Then, for the natural n, we have n = 2h + 1, where h € N and h > 6.

Rr = {ki, ko, kni1,01} C V(S,). Next, we give edge metric representation to every edge

codes are

Suppose

of S,, concerning the set Rp. For the edges of j-cycle {e; = jgzjg+1|¢ = 1,2,3,...,n}, the edge

'YE(eq = jqqu‘RE) Rg = {ki, ka, knt1,01}
’}/E(etI‘RE) (q_l) (1717h_q_+174)
ve(€q|RE):(q = 2) (—1L,1Lh—qg+1,4)

7E<€§’RE) (3§qgh) (q_—l,c]—Q,h—(j—i—l,cf—l-l)

7E(€q|RE)(q_:h+1) (cj—l,@—?,l,cj—% 1)

ve(eg|RE):(q = h +2) (2h—q+2,q—2,q—h—1,2h—q+5)

veleg|Rg):(h+3<q¢<2h+1)| 2h—q+2,2h—qG+3,q—h—1,2h—q+5)

For the edges {Gq = jqk’q, k(jj(i—l—h qulq, lqmq, mqlq+1, quq|Cj = 1, 2, 3, ceey

n}, the edge codes are

WE(6q=]5k5| Rg) Rg = {ki, ko, kpi1,01}
ve(eq|Re):(¢=1) (0,2,h —q+2,3)
Ve(eq RE):(q = 2) (¢—1,0,h—q+2,3)

(equE (3<qg<h) (G—1,G—2,h—q+2,q+1)
'yE(eq\RE).(cj:h—l—l) (G—1,4—2,0,g+1)
ve(eg|RE):(q = h+2) (2h—q+3,q—2,g—h—1,2h—G+5)

veleg|Rg):(h+3<q¢<2h+1)| 2h—q+3,2h—qG+4,q—h—1,2h—q+5)

'YE(eq = kqjq-l-l'RE)

Rp = {k17k27/€h+1,01}

ve(eglRe):(g=1)

(0,1,h —q+1,3)

ve(eglREe):(q = 2)

(ijoah_q_+173)

V(e Bp):(3 < g <h)

(ijq_lvoag—'—l)

ve(eq| Re):(h

(el Re):(@ = h+ 1)
q

(2h—q+2,2h—q+3,q—

h,2h — G+ 5)

75(cq = kqlg| Ri)

Rg = {ki, ko, kpi1,01}

VE(eq|RE> (q = 1)

(0,2,h —q+2,2)

ve(eq|Rp):(q = 2)

(q,0,h—q+2,2)

ve(egRe):(3 < g < h)

(¢.4—1,h—q+2,q)

Ye(egRe):(q = h+1) (2.9 1 0,q)
Ye(eq Re):(q = h+2) (2h—q+3,§—1,§—h,2h — G+ 4)
*yE(eg]RE):(h+3§§§2h—l—1) (2h—cj—|—3,2h—cj—|—4,cj—h,2h—§—i—4)

Ye(eq = lgme| RE) Rp = {ki, ko, kpi1,01}
VE(eg|RE):(q=1) (1,2,h—q+3,9)
’VE(€§|RE)(QZ 2) (q+1717h’_6+375)
’YE(66|RE)(3§q_Sh_1) (§+1,§,h—§+3,q_)
ve(eg|Re):(q = h) (G+1,4,2,q)
V5(eq|RE):(¢=h+1) (7+1,4,1,9)
ve(eg|RE):(q = h + 2) (2h —q+4,4,g—h+1,2h — g+ 3)
ve(eg|Re):(h+2<q<2h) | 2h—q+4,2h—q+5,q—h+1,2h—q+ 3)
ve(eg|RE):(q = 2h + 1) (2,2h —q+4,§—h+1,2h —q+3)
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VE(@(} = mqlq+1|RE) Rp = {k’h ko, kpsa, 01}
VE(eg|RE):(q=1) (2,1,h—q+2,9
Ve(eq RE):(q = 2) (G+2,2,h—q+2,q)
Ve(eq Rp):(3<g<h—1) (§+2,4+1,h—G+2,7)
VE(eglRE):(q = h) ((+2,q+1,1,9)
ve(eg|RE):(q =h+1) (2h—q+3,q+1,2,9)
ve(eg|Re):(h+2<q<2h) | 2h—q+3,2h—q+4,§—h+2,2h— G+ 3)
ve(eg|RE):(q = 2h + 1) (1,2h — G+ 4,h + 2,2h — G+ 3)
and
vE(eg = mgo4| Ri) Rp = {ki1, ka, knt1,01}
Ve(eq RE):(g=1) (2,2,h—q+3,4-1)
VE(eq|RE):(q = 2) (@+2,2,h—q+3,4-1)
ve(eg|Rg):(3< g < h—1) (@+2,q+1,h—q+3,g—1)
V5(€q|RE):(q = h) (G+2,q+1,2,g—1)
15(6q|RE):(¢=h+1) (G+2,q+1,2,g—1)
ve(eg|Re):(h+2<q<2h) | 2h—q+4,2h—q+5,q—h+2,2h—q+2)
ve(eg|REg):(q = 2h + 1) (2,2h —q+5,§—h+2,2h — G+ 2)

Finally, for the edges of o-cycle {e; = 0705+1]|¢ = 1,2, 3, ...,n}, the edge codes are

VE(€g = 070g+1| RE) Rg = {ki, ko, kps1,01}
PYE(eq,RE)(q_: 1) ((j+2737h_6+27q__ 1)
’YE(eq|RE)-( — ) (+2,q+1,3,g-1)
ve(eg|RE):(@ =h+1) (2h—q+3,g+1,g—h+22h—q+1)
VE(eq|RE) (h+2<q<2h)|(2h—qG+3,2h—q+4,g—h+2,2h—q+1)
VE(eq|RE) (G=2h+1) (3,2h—q+4,h+2,2h—q+1)

From these edge codes in S,, we find that |[A;] = n (1 < i < 8) and the sum of all of these
cardinalities is equal to |E(S,)| and which is 8n. Moreover, all of these sets are pairwise
disjoint, and so we find that no pair of two distinct edges in .S,, are having the same edge metric
coordinates, which implies that dimg(S,) < 4 as well in this case.

Now, on assuming that dimg(S,) = 3, there are the same possibilities as discussed in
Case (slowromancapi@) and a contradiction can be deduced similarly. Therefore, we have
dimg(S,) = 4 as well in this case, which proofs the theorem. o

Corollary 1. The minimum independent edge resolving set for S, has cardinality four, for
every n > 6.

Remark 1. dim(S,) < dimg(S,), for every n > 6.

In the next section, we consider second family of convex polytope graph T}, for which we have
E(T,) = {Jjgjg1, Jaka, kgjg1s kglg, lglgr1 : 1 < ¢ < n} (see Figure 2). We denote the sets of edge
metric co-ordinates for the edges of T}, by Ay, Ay, A3, Ay, and Aj, where Ay = {ve(jzjg+1|RE) :
1 < q <}, A = {ye(skdRe) : 1 < ¢ < n}, A3 = {ve(kgjgri|Re) : 1 < ¢ < n},
Ay ={ye(kilg|Re) : 1 < ¢ < n}, and A5 = {ye(lglgn|Re) 1 1 < ¢ < n}.

4. Edge Metric Dimension of T,
In this section, we study some of the basic properties and the EMD of T;,.
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The Graph T,

The convex polytope T), [8] consists of 3n and n number of vertices and edges respectively.
It has n cycles with 3-sides, n cycles with 5-sides, and two cycles with n-sides (see Figure
2). The set of edges and vertices of T,, are denoted separately by E(Tn) and V(T,,), where
E(T,) = {Jajar1, Jaka kadgrs kalg, lglgra - 1 < @ < n} and V(T,,) = {jg, kg, [ : 1 < ¢ < n}.

Figure 2. The Graph T,

We name the vertices {j; : 1 < ¢ < n} in the planar graph, T, as the j-cycle vertices,
the vertices {k; : 1 < ¢ < n} in the planar graph, T,, as the k-vertices, and the vertices
{lz : 1 < ¢ < n} in the planar graph, T,, as the [-cycle vertices. For our purpose, we can write
J1 = Jns1, k1 = kny1, and Iy = [, 1. In the present section, we consider a family of convex
polytope graph T,, for which we have E(T,) = {jgzjg+1,Jakq, kgigr1, kalg, lglg = 1 < @ < n}.
We denote the sets of edge metric co-ordinates for the edges of T,, by A, B, and C, where
A = {ve(jjar|Re), ve(jika BE) : 1 < ¢ < n}, B = {yp(kgjg1|Re), ve(ksls Rp) : 1 < ¢ < n},
and C = {vp(lzlz+1|REr) : 1 < @ < n}. In the following result, we investigate the EMD of T,,.

Theorem 4. Forn > 6, we have

3, ifn=2hheN;

dimg(T,) =
ims(In) {4, if n=2h+1heN.

Proof. 1t is easy to check for 6 < n < 11 that the EMD of T,, is 3 and 4, when the natural n is
even and odd respectively. The position of the edge basis vertices (color in green) can be found

in Figure 2, for all n > 6. Now, for n > 12, we divide our proof into two cases i.e., when n is
even (n =0 (mod 2)) and when it is odd (n =1 (mod 2)).

Case (slowromancapi@) n =0 (mod 2)
Then, for the natural n, we have n = 2h, where h € N and h > 6. Suppose Rgp =

{j1, Jn+1, 12} C V(T,). Next, we give edge metric representation to every edge of T;, concerning
the set Rp. For the edges of j-cycle {ez = jzjs+1/¢ = 1,2,3,...,n}, the edge codes are

ve(eg|RE) Rp = {jl,jh+1,l2}
Ve(eg Re):(1 < g <2) (q—1,h—q,2)
VE(eg| RE):(3 < ¢ < h) (q—1,h— q—l)
VE(eglRe): (¢ =h+1) (2h—q,q—h—1,q—1)
ve(egRe):(h+2<q¢<2h) | 2h—q,q—h—1,2h—q+3)
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For the edges {e; =

and

Finally, for the edges of l-cycle {e; = lzlz11|q =

jqkq, k(jj(j+1> kqlq*’q - 1, 2, 3, ceey

n}, the edge codes are

ve(eq = joka RE)

RE = {jlajh+17 l2}

16 (eqlFip) (1 = 1)

((j—l,h—(j—i—l,Q)

ve(eg|Re):(2 < g < h+1)

ve(eq RE):(q = h+2)

2h—q+1,g—h—-1,q—1)

'yE(eq|RE) (h + 3 < q < Qh)

h—q+1,§—h—1,2h—q+3)

Ye(eg = kgjar1|RE)

RE = {jlujh+17 l2}

VE(egRE):(q=1) (¢.h—q,2)
ve(eg Re):(2 < g < h) (,h—q,q—1)
PyE(e,j]RE)(cj: h+1) (2h—cj,_ h q_— 1)

ve(eg|Rp):(h+2<q<2h) | (2h—q,q—h,2h — §+3)
ve(eq = kilg| RE) Re = {j1, jns1, 2}
vE(quRE).(q =1) (,h—q+1,1)
ve(eg|Re):(2 < q<h) (G h—q+1,q—2)
VE(eg|RE):(@=h+1) (2h—q+1,4—h,q—2)
ve(eg|Re):(h+2<g<2h) | (2h—q+1,§—h,2h —q+2)

1,2,3,...,n}, the edge codes are

')/E(eq lg lq+1’RE>

Re = {j1, jn+1, la}

ve(eglREe):(g=1)

(G+1,h—q+1,0)

Ye(eg Re):(2 < g < h—1)

ve(eq| )7 = h)

ve(eq Re):(g=h+1)

Ch—g+1,4—h+1,q-2)

ve(eg|RE):(h+2 < g<2h—1)

(2h—q+1,—h+1,2h—q—+1)

ve(eq| Re):(q = 2h)

(2, 4—h+1,2h—g+1)

From these edge codes in T,,, we find that |[A;] = n (1 < i < 5) and the sum of all of these
is bn. Moreover, all of these sets are pairwise

cardinalities is equal to |F(T),)| and which

disjoint, and so we find that no pair of two distinct edges in 7}, are having the same edge metric
coordinates, which implies that dimg(T,) < 3. Using proposition 3 we obtain dimg(T,) = 3,
in this case.

Case (slowromancapii@) n =1 (mod 2)

From this, we have n = 2h + 1, where h € N and h > 6. Suppose Rg = {J1, jnt1, l2, kni2} C
V(T,). Next, we give edge metric representation to every edge of 7,, with respect to the set

RE.

For the edges of j-cycle {e; = jgjg+1lq =1,2,3, ...,

Journal of Combinatorial Mathematics and Combinatorial Computing

n}, the edge codes are

vE(eq| ) Rp = {71, Jns1, L2, ko }

VE(6Q|RE) (Cj 1) (q_ 1ah_6ja 27 h)

VE(eq| Rr):(q = 2) (—1,h—q,2,h—q+2)
ve(eglRE):(3 < g <h) (—-1L,h—qq—1,h—q+2)
Ve(eg|Re):(g=h+1) (G—1,qg—h—-1,4—1,h—q+2)
ve(eg|RE):(q = h+2) 2h—q+1,g—h—1,4—1,1)

ve(eg|RE):(h+3<q¢<2h+1)| (2h—q+1,—h—1,2h—qg+4,q—h—2)
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For the edges {e; =

Jakg, kqjgr1, kalglq =

1,2,3,...,n}, the edge codes are

Ve(eq = Jjgkq RE)

RE = {jlvjh-‘rb l27 kh+2}

16(eql Fop) (3 = 1)

(q_lvh_q+172vh)

ve(eg|Rg):(2 < g < h+1)

Ve(eq Re):(q=h+2)

(2h—q+2,g—h—1,4—1,0)

ve(egRp):(h+3 < g < 2h + 1)

Ch—q+2,—h—12h—G+4,4—h—2)

ve(eg = kgjz|RE) Ri = {j1: jn+1, b2, Knga }
ve(eg| Re):(q=1) (3,h—q,2,h —q+2)
Ve(eg RE):(2 < g < h) (Gh—q,q—1,h—q+2)
ve(eg|RE):(q=h+1) (2h—q+1,g—h,g—1,h—q+2)
ve(eg|RE):(q = h + 2) (2h—q+1,q—h,q—1,0)
ve(es|Re):(h+3<q<2h)| (2h—q+1,4—h,2h—q+4,g—h—1)
ve(eg|RE):(q = 2h + 1) (2h—q+1,h,2h—G+4,§—h—1)

and

ve(eg = kilz| Re)

RE = {jlvjh-‘rl) l27 kh+2}

7E(€q|RE) @— 1)

(G, h—q+1,1,h+1)

ve(eg|Re):(2 < g < h) (G, h—q+1,§—2,h—q+3)

VE(eg|Rp):(¢=h+1) (¢.—h,q—2,h—q+3)

ve(eg|RE): (@ = h + 2) (2h—q+2,q—h,q—2,0)
v(calRe):(h +3<q<2h+1) | @h—q+2.4—h2h—q+3.q—h—1)

Finally, for the edges of I-cycle {ez = lzlz+1|l0 = 1,2,3, ...,

n}, the edge codes are

ve(eg = lglgi1|REe) Ri = {1, jn+1, lo, knyo}
ve(eg|Re):(q =1) (G+1,h—q+1,0,h —q+2)
Ve(eglRe):(2<g<h—1) (@+Lh—q+1,4—2,h—q+2)
ve(eg|RE):(q = h) (+1,2,—2,h—q+2)
’)/E(eq|RE) ((j h‘l‘l) (2h—§+2,q-h+1,cj—2,h—(j+2)
ve(eg|Rg):(h+2<g<2h) | (2h—q+2,—h+1,2h—G+2,g—h—1)
ve(eg|Re): (G = 2h + 1) (2,h+1,2h—G+2,g—h—1)

From these edge codes in T,,, we find that |A;] = n (1 < i < 5) and the sum of all of these

cardinalities is equal to |E(

T,)| and which is 5n.

Moreover, all of these sets are pairwise

disjoint, and so we find that no pair of two distinct edges in 7,, are having the same edge
metric coordinates, which implies that dimg(7,) < 4. Now, to finish the proof for this case, we
prove that dimg(T,) > 4 by proving that there is no set Rp with |Rg| = 3, which can resolve
every pair of distinct edges in T),. On the contrary, suppose dimg(T,,) = 3. Then, we have the

following;:
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Edge Resolving Set Contradictions
Rp={j1.Ji.js}; 2<i<h+land3<g<n) ve(k1j2| RE) = 0r(joks|RE), for 2 <i < h+1and 3 < g <n, a contradiction.
Rg = {ki,ki,ky}; 2<i<h+1land3<g<n) VE(knju|RE) = 0E(jnkn-1|RE), for 2<i<h+land3<g<n-—2;
YE(kny2inss|Re) = 0E(jnisknis|Re), for 2<i<h+1andn—1< g <mn, a contradiction.
Rp={li,l;,l;}; 2<i<h+land3<g<n) ve(j1k1|RE) = ¢r(kija|RE), for 2 <i < h+1 and 3 < g < n, a contradiction.
Reg = {j1.ji,ks}; (2<i<h+land1<g<n) ve(knj1|RE) = ¢E(jnji|RE), for 2<i<h+1land 1< g <h;
ve(Jrkn|RE) = ©E(jrkn-1|RE), for 2<i < h+1and h+ 1 < g <n, a contradiction.
Rg ={j1.ji.lg}; 2<i<h+1land 1< g<n) ve(knj1|RE) = ¢E(jnji1|RE), for 2<i<h+1land1<g<n-1,

VE(Jnkn-1|RE) = ¢E(Jnin-1|RE), for 2 <i < h and g = n;
VE(Gn+1Jn+2| RE) = ©E(nt1kni1|RE), for i = h+ 1 and g = n, a contradiction.
Rg = {ki,ki,l;}; (2<i<h+land1<g<n) ve(knj1|RE) = E(jnji|RE), for 2<i<h+1land1<g<n-1,

VE(Jnkn-1|RE) = ©E(Jnjn-1|RE), for 2<i<h—1and g =mn;
Ye(ns1kni2|Re) = 0e(jniikni1|RE), for i = h and g = n;
ve(j1j2| RE) = ¢r(j1n|RE), for i = h+1 and g = n, a contradiction.

R ={li,l;j;}; 2<i<h+land1<g<n) ve(jng1|RE) = wEe(kyji|RE), for 2<i<hand 1 <g<h+1,
YE(jns1kn|RE) = @p(khsilpi1|RE), for 2 <i<hand h+2 < g <n;
ve(j2js|RE) = ¢r(keje|RE), for i=h+1and g=1,2,h +3,h+4,...,n;
VE(Gni2in+s| Re) = ¢(kniojnie| Re), for i = h+1 and 3 < g < h + 2, a contradiction.

Edge Resolving Set Contradictions

Rp={l,li,ks}; 2<i<h+land1<g<n) Ye(Gnj1|RE) = ¢p(knji|Re), for 2<i<h+4+land 1< g<h;
VE(nkn|RE) = ¢E(j1jn|RE), for 2<i<h+land h+1<g<n-1,
VE(Jnkn-1|RE) = ¢E(nin-1|RE), for 2<i<h—1and g = n;
YE(Gns1in+2|Re) = ©e(knyijnse|RE), for i = h and g = n;

VE(Jnr2jnr3|RE) = ¢r(kni2inis|Re), for i = h+ 1 and g = n, a contradiction.
Rg={j,ki,l;};1<i<h+land1<g<n) Ye(jnj1|RE) = ¢p(kuj1|Re), for 1 <i<hand 1<g<n-—1;

YE(nin-1|RE) = ©E(jnkn-1|RE), for i =1 and g = n;

ve(jik1|Re) = ¢E(j1jn|RE), for 2 <i < h and g = n;
VE(nt1kni1|RE) = @p(khi1ini2|Re), for i = h+1 and 1 < g < n, a contradiction.

By symmetry of T,,, other relations can be considered, and they will produce the same kind
of contradictions. As a result, it can be found that dimg(7),) = 4, when n is odd. o

Corollary 2. The minimum independent edge resolving set for T, has cardinality three (for
even n) and four (for odd n), for n > 6.

Remark 2. For odd integer n > 7, we have dim(T,,) < dimg(T,).

5. Conclusion and Discussion

In this article, the edge metric dimension of two graphs S, and 7, have been studied.
For these classes of convex polytopes, we proved that dimg(S,) = 4 and dimg(T,) = 3 or
4. We also found that dimg(S,) > dim(S,) for all n, dim(T,) < dimg(T,) for odd n, and
dim(T,,) = dimg(T,) for even n (a partial response to the problem reported in [14]). We also
determined that the minimum edge metric generators for all of these convex polytopes are
independent. In the future, we shall try to find the values for some other metric dimension
variants such as fault-tolerant edge and vertex metric dimension, mixed metric dimension, local
metric dimension etc. for the convex polytope families of graphs S, and T,, [26].
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