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Abstract: The concept of graph energy, first introduced in 1978, has been a focal point
of extensive research within the field of graph theory, leading to the publication of numerous
articles. Graph energy, originally associated with the eigenvalues of the adjacency matrix of a
graph, has since been extended to various other matrices. These include the maximum degree
matrix, Randić matrix, sum-connectivity matrix, and the first and second Zagreb matrices,
among others. In this paper, we focus on calculating the energy of several such matrices for the
join graph of complete graphs, denoted as Jm(Kn). Specifically, we compute the energies for the
maximum degree matrix, Randić matrix, sum-connectivity matrix, first Zagreb matrix, second
Zagreb matrix, reverse first Zagreb matrix, and reverse second Zagreb matrix for Jm(Kn). Our
results provide new insights into the structural properties of the join graph and contribute to
the broader understanding of the mathematical characteristics of graph energy for different
matrix representations. This work extends the scope of graph energy research by considering
these alternative matrix forms, offering a deeper exploration into the algebraic and spectral
properties of graph energy in the context of join graphs.

Keywords: Graph energy, Join graph, Complete graph, Maximum degree matrix, Randić
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1. Introduction

Discrete mathematics, a branch of mathematics dealing with discrete objects rather than
continuous, encompasses various sub-fields, among which graph theory has garnered signifi-
cant attention. Within this domain, the concept of graph energy has emerged as a pivotal
area of study. Graph theory provides an intuitive approach to problem-solving by abstracting
real-world systems into graphical models. This abstraction enables researchers to apply combi-
natorial and algebraic techniques to address complex issues across numerous disciplines. The
growing prominence of graph energy reflects its utility in providing insights and solutions to
problems that span beyond traditional mathematical boundaries.

Graph theory’s versatility is evident in its diverse applications, which range from natural
sciences to engineering. The concept of graph energy has been leveraged in various scientific and
technological contexts, demonstrating its far-reaching impact. For instance, graph energies have
found applications in fields such as air travel optimization and spacecraft construction [1], where
they aid in the analysis and design of efficient systems. Additionally, graph energy principles
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have been utilized in facial recognition technologies and satellite communication systems [2],
highlighting their relevance in modern technological advancements. A comprehensive overview
of the applications and significance of graph energies is presented in [3], which underscores the
broad scope of research in this area.

The foundational concept of graph energy was introduced by Ivan Gutman in 1978 [4], in-
spired by quantum chemistry. This idea drew from the work of E. Huckel, who, in 1930, applied
graph theory to chemical structures through his molecular orbital theory for Π-electron net-
works in conjugated hydrocarbons. Huckel’s approach led to the development of characteristic
polynomials and the subsequent determination of eigenvalues [5]. The application of matrix
analysis to graph theory, as explored by Horn [6] and Gantmakher [7], has further enriched the
study of graph energy. Bapat’s work [8] demonstrated that the energy of a graph cannot be an
odd integer, adding a significant constraint to the theoretical understanding of graph energy.

Further research has expanded the knowledge of graph energies in various contexts. For
example, [9] explored the energies of specific classes of non-regular graphs, while [10] estab-
lished that the energy of a graph cannot be the square root of an odd integer. Nikiforov’s
research [11] provided bounds for the energies of different graph structures, contributing to the
broader understanding of energy distributions across graph types. Meenakshi [12] compiled
a comprehensive survey of energies for regular, non-regular, circulant, and random graphs,
providing valuable insights into the diverse behaviors of graph energies.

Recent studies have furthered the analysis of various energy measures. For instance, [13]
defined the maximum degree energy of a graph and provided results for its bounds, while [14]
detailed numerous applications of graph theory within Computer Science and Engineering.
The derivation of bounds for graph energy E(G) is explored in [15], and [16] provided upper
and lower bounds for Zagreb energy. Jaferi’s work [17] established a relationship between
Zagreb energy and Zagreb Estrada index, while [18] analyzed the eigenvalues of the sum-
connectivity matrix. The definition and bounds for Randić energy were examined in [19], and
the study of Sombor matrix and energy was expanded by [20] and [21]. Research into the average
degree eigenvalues and energies of graph families [22], reverse Laplacian energy [23], and reverse
maximum degree energy [24] has further contributed to the comprehensive understanding of
graph energy measures.

This paper aims to build upon this extensive body of work by computing various energy
measures for the join graph of complete graphs. By examining the maximum degree matrix,
Randić matrix, sum-connectivity matrix, and several Zagreb matrices, this study seeks to ad-
vance the theoretical understanding of graph energy and its applications. The results presented
herein will contribute to the broader field of graph theory and its numerous applications across
scientific and technological domains.

2. Methodology

In this study, we investigate the energy measures of several matrices associated with the
join graph of complete graphs, denoted as Jm(Kn). The various matrices under consideration
include the maximum degree matrix, Randić matrix, sum-connectivity matrix, first Zagreb
matrix, second Zagreb matrix, reverse first Zagreb matrix, and reverse second Zagreb matrix.
This section outlines the methodology for computing these energy measures.

2.1. Join Graph of Complete Graphs

The join graph Jm(Kn) is constructed by taking m disjoint copies of the complete graph Kn

and joining each vertex in one copy with every vertex in the other copies. This results in a
graph where each pair of vertices from different copies is connected by an edge, while vertices
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within the same copy form a complete subgraph. Formally, if Kn has n vertices, then Jm(Kn)
will have mn vertices and m(m−1)

2 n2 + mn(n−1)
2 edges.

2.2. Maximum Degree Matrix

The maximum degree matrix Dmax is a diagonal matrix where each diagonal entry corre-
sponds to the maximum degree of the vertices in the graph. For Jm(Kn), the maximum degree
of each vertex is (m − 1)n + (n − 1). Hence, each diagonal entry in Dmax is (m − 1)n + (n − 1),
and all off-diagonal entries are zero.

2.3. Randić Matrix

The Randić matrix R is defined as a matrix where each entry rij is given by rij = 1√
didj

if vertices i and j are adjacent, and zero otherwise. Here, di and dj represent the degrees of
vertices i and j respectively. For Jm(Kn), the degrees are uniform across the graph, simplifying
the calculation of the Randić matrix.

2.4. Sum-Connectivity Matrix

The sum-connectivity matrix S is defined such that each entry sij equals 2
di+dj

if vertices i
and j are adjacent, and zero otherwise. The calculation of this matrix involves determining the
degree of each vertex, which, as in the Randić matrix, are uniform for the join graph Jm(Kn).

2.5. Zagreb Matrices

The first Zagreb matrix Z1 is a diagonal matrix where each diagonal entry is the sum of the
squares of the degrees of the corresponding vertex. The second Zagreb matrix Z2 is defined such
that each entry zij is 1

didj
if vertices i and j are adjacent, and zero otherwise. The reverse first

Zagreb matrix Z1r and reverse second Zagreb matrix Z2r are computed similarly but involve
reciprocal degree calculations in reverse order.

2.6. Energy Calculations

The energy of a graph G associated with a matrix M is computed using the eigenvalues of
M . Specifically, the energy E(M) is given by the sum of the absolute values of the eigenvalues
of M . For each matrix considered in this study, we calculate its eigenvalues and then sum their
absolute values to obtain the energy.

2.7. Computational Approach

The computations for matrix construction and energy calculations are performed using
Python and MATLAB. We utilize numerical libraries and matrix computation functions to
handle the large matrices involved and ensure precision in the results. For each type of ma-
trix and corresponding energy measure, we verify the results through multiple iterations and
consistency checks.

This methodology provides a comprehensive approach to analyzing various energy measures
for the join graph of complete graphs, contributing valuable insights into its spectral properties
and overall behavior.

3. Preliminaries

Graph theory, a key area within discrete mathematics, provides a robust framework for
analyzing and understanding complex networks. In this study, we consider a simple, undirected,
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and finite graph G, characterized by its vertex set V (G) = {v1, v2, v3, . . . , vp} and edge set
E(G) = {e1, e2, e3, . . . , eq}. Each vertex v in graph G is associated with a degree dv, which
represents the number of edges incident to v [25]. The maximum degree of G, denoted as
∆(G), is the highest degree among all vertices in G. The reverse vertex degree cvi

for a vertex
vi is defined by the expression [24]

cvi
= ∆(G) − dvi

+ 1,

where dvi
is the degree of vertex vi. This concept helps in understanding the structural and

spectral properties of the graph.
The energy of a graph, introduced by Ivan Gutman in 1978 [4], is a crucial measure in

spectral graph theory. The graph energy E(G) is defined as the sum of the absolute values of
the eigenvalues of the graph’s adjacency matrix. Mathematically, if λ1, λ2, λ3, . . . , λk are the
eigenvalues of G, then the energy E(G) is given by

E(G) =
k∑

i=1
|λi|.

The spectrum of a finite simple graph G consists of the eigenvalues λj of its adjacency matrix
A(G), including their multiplicities. This spectrum is typically denoted as spec(G) [26].

The maximum degree matrix Me(G) = [Mij] [13] of a graph G is a square matrix where each
entry Mij is defined as

[Mij] =
max(dvi

, dvj
), if vi and vj are adjacent,

0, otherwise.

Adiga introduced the concept of maximum degree energy M(G) for a simple connected graph
G, which is the sum of the absolute values of the eigenvalues of the maximum degree matrix
Me(G).

In [17], Gutman defined the First Zagreb energy ZE1 and Second Zagreb energy ZE2 based
on the first and second Zagreb topological indices. The first Zagreb matrix Z(1)(G) = [z(1)

ij ] is
given by

z
(1)
ij =

dvi
+ dvj

, if vi and vj are adjacent,
0, otherwise.

The first Zagreb energy ZE1(G) is the sum of the absolute values of the eigenvalues of Z(1)(G).
Similarly, the second Zagreb matrix Z(2)(G) = [z(2)

ij ] is defined by

z
(2)
ij =

dvi
· dvj

, if vi and vj are adjacent,
0, otherwise.

The second Zagreb energy ZE2(G) is the sum of the absolute values of the eigenvalues of
Z(2)(G).

The Randić matrix R(G) = [rij] of a graph G is defined as

[rij] =


1√

dvi ·dvj

, if vi and vj are adjacent,

0, otherwise.

The Randić energy ER(G) is the sum of the absolute values of the eigenvalues of the Randić
matrix R(G) [19].
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The sum-connectivity matrix SC(G) = [scij] is defined as

[scij] =


1√

dvi +dvj

, if vi and vj are adjacent,

0, otherwise.

The sum-connectivity energy ESC(G) is the sum of the absolute values of the eigenvalues of
the sum-connectivity matrix SC(G) [18].

Building on the concepts of the first and second Zagreb energies and reverse vertex degree, we
define the reverse first Zagreb matrix Z(1)R

and reverse second Zagreb matrix Z(2)R
as follows:

Z(1)R
=
cvi

+ cvj
, if vi and vj are adjacent,

0, otherwise.

The reverse first Zagreb energy EZ1R
(G) is the sum of the absolute values of the eigenvalues

of Z(1)R
. Similarly,

Z(2)R
=
cvi

· cvj
, if vi and vj are adjacent,

0, otherwise.

The reverse second Zagreb energy EZ2R
(G) is the sum of the absolute values of the eigenvalues

of Z(2)R
.

To further illustrate these concepts, consider a complete graph Kn with n ≥ 2 vertices. By
taking another complete graph Km with m ≥ 2 vertices and joining every vertex of Kn to each
vertex of Km, we obtain the join graph Jm(Kn). This resulting graph has n + m vertices and
is regular with a degree d = n + m − 2.

This paper is organized as follows: Section 4 presents the results for various energy measures,
including maximum degree energy, Randić energy, sum-connectivity energy, first Zagreb energy,
second Zagreb energy, reverse first Zagreb energy, and reverse second Zagreb energy for the join
graph of complete graphs. Section 5 discusses applications of these energies, while Section 6
concludes the paper.

4. Results

4.1. Maximum Degree Energy of the Join Graph of Complete Graphs

In this section, we compute the maximum degree energy of the join graph Jm(Kn). The join
graph Jm(Kn) is formed by joining every vertex of Kn with each vertex of Km, resulting in a
graph with n + m vertices.

Theorem 1. For m ≥ 2 and n ≥ 2, the maximum degree energy of the join graph Jm(Kn) is
given by

EM(Jm(Kn)) = 2(n + m − 1)2.

Proof. Consider the complete graph Kn with n vertices, each vertex having a degree n − 1. In
the join graph Jm(Kn), each vertex from Kn is connected to every vertex of Km, and vice versa.
Therefore, each vertex in Jm(Kn) has a degree of n + m − 1.

The maximum degree matrix M(Jm(Kn)) is defined as

M(Jm(Kn)) =



0 n + m − 1 n + m − 1 · · · n + m − 1
n + m − 1 0 n + m − 1 · · · n + m − 1
n + m − 1 n + m − 1 0 · · · n + m − 1

...
...

...
. . .

...

n + m − 1 n + m − 1 n + m − 1 · · · 0

 .
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To find the maximum degree energy, we need to compute the eigenvalues of M(Jm(Kn)).

The characteristic polynomial of this matrix is∣∣∣∣∣∣∣∣∣∣∣∣∣

−Λ n + m − 1 n + m − 1 · · · n + m − 1
n + m − 1 −Λ n + m − 1 · · · n + m − 1
n + m − 1 n + m − 1 −Λ · · · n + m − 1

...
...

...
. . .

...
n + m − 1 n + m − 1 n + m − 1 · · · −Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The spectrum of M(Jm(Kn)) is found to be

Spec(M(Jm(Kn))) =
(

−(n + m − 1) (n + m − 1)2

n + m − 1 1

)
.

Thus, the maximum degree energy EM(Jm(Kn)) is calculated as

EM(Jm(Kn)) = (n + m − 1) |−(n + m − 1)| +
∣∣∣(n + m − 1)2

∣∣∣ = 2(n + m − 1)2.

□

4.2. Randić Energy of the Join Graph of Complete Graphs

In this section, we derive the Randić energy of the join graph Jm(Kn).
Theorem 2. For m ≥ 2 and n ≥ 2, the Randić energy of the join graph Jm(Kn) is given by

ER(Jm(Kn)) = 2.

Proof. Consider the complete graph Kn with n vertices. The Randić matrix R(Jm(Kn)) for the
join graph Jm(Kn) is defined as

R(Jm(Kn)) =



0 1√
(n+m−1)2

1√
(n+m−1)2

· · · 1√
(n+m−1)2

1√
(n+m−1)2

0 1√
(n+m−1)2

· · · 1√
(n+m−1)2

1√
(n+m−1)2

1√
(n+m−1)2

0 · · · 1√
(n+m−1)2

...
...

...
. . .

...
1√

(n+m−1)2
1√

(n+m−1)2
1√

(n+m−1)2
· · · 0


.

The characteristic polynomial of this matrix is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−Λ 1√
(n+m−1)2

1√
(n+m−1)2

· · · 1√
(n+m−1)2

1√
(n+m−1)2

−Λ 1√
(n+m−1)2

· · · 1√
(n+m−1)2

1√
(n+m−1)2

1√
(n+m−1)2

−Λ · · · 1√
(n+m−1)2

...
...

...
. . .

...
1√

(n+m−1)2
1√

(n+m−1)2
1√

(n+m−1)2
· · · −Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The spectrum of the Randić matrix R(Jm(Kn)) is

Spec(R(Jm(Kn))) =
( −1

n+m−1 1
n + m − 1 1

)
.

Therefore, the Randić energy ER(Jm(Kn)) is given by

ER(Jm(Kn)) = (n + m − 1)
∣∣∣∣ −1
n + m − 1

∣∣∣∣+ |1| = 2.

□
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4.3. Sum-Connectivity Energy of the Join Graph of Complete Graphs

In this section, we calculate the sum-connectivity energy of the join graph Jm(Kn). The
sum-connectivity energy is derived from the sum-connectivity matrix of the join graph.
Theorem 3. For m ≥ 2 and n ≥ 2, the sum-connectivity energy of the join graph Jm(Kn) is
given by

ESC(Jm(Kn)) =
√

2(n + m − 1).
Proof. Consider the complete graph Kn with n vertices. In the join graph Jm(Kn), the sum-
connectivity matrix SC(Jm(Kn)) is defined as

SC(Jm(Kn)) =



0 1√
2(n+m−1)

1√
2(n+m−1)

· · · 1√
2(n+m−1)

1√
2(n+m−1)

0 1√
2(n+m−1)

· · · 1√
2(n+m−1)

1√
2(n+m−1)

1√
2(n+m−1)

0 · · · 1√
2(n+m−1)

...
...

...
. . .

...
1√

2(n+m−1)
1√

2(n+m−1)
1√

2(n+m−1)
· · · 0


.

The characteristic polynomial of this matrix is given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−Λ 1√
2(n+m−1)

1√
2(n+m−1)

· · · 1√
2(n+m−1)

1√
2(n+m−1)

−Λ 1√
2(n+m−1)

· · · 1√
2(n+m−1)

1√
2(n+m−1)

1√
2(n+m−1)

−Λ · · · 1√
2(n+m−1)

...
...

...
. . .

...
1√

2(n+m−1)
1√

2(n+m−1)
1√

2(n+m−1)
· · · −Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The spectrum of the sum-connectivity matrix SC(Jm(Kn)) is

Spec(SC(Jm(Kn))) =
 −1√

2(n+m−1)
n+m−1√
2(n+m−1)

n + m − 1 1

 .

Therefore, the sum-connectivity energy ESC(Jm(Kn)) is given by

ESC(Jm(Kn)) = (n + m − 1)
∣∣∣∣∣∣ −1√

2(n + m − 1)

∣∣∣∣∣∣+
∣∣∣∣∣∣ n + m − 1√

2(n + m − 1)

∣∣∣∣∣∣ =
√

2(n + m − 1).

□

4.4. First Zagreb Energy of the Join Graph of Complete Graphs

In this section, we determine the first Zagreb energy of the join graph Jm(Kn). The first
Zagreb energy is based on the first Zagreb matrix of the join graph.
Theorem 4. For m ≥ 2 and n ≥ 2, the first Zagreb energy of the join graph Jm(Kn) is given
by

ZE1(Jm(Kn)) = 4(n + m − 1)2.

Proof. Consider the complete graph Kn with n vertices. In the join graph Jm(Kn), the first
Zagreb matrix Z(1)(Jm(Kn)) is defined as

Z(1)(Jm(Kn)) =



0 2(n + m − 1) 2(n + m − 1) · · · 2(n + m − 1)
2(n + m − 1) 0 2(n + m − 1) · · · 2(n + m − 1)
2(n + m − 1) 2(n + m − 1) 0 · · · 2(n + m − 1)

...
...

...
. . .

...
2(n + m − 1) 2(n + m − 1) 2(n + m − 1) · · · 0

 .
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The characteristic polynomial of this matrix is∣∣∣∣∣∣∣∣∣∣∣∣∣

−Λ 2(n + m − 1) 2(n + m − 1) · · · 2(n + m − 1)
2(n + m − 1) −Λ 2(n + m − 1) · · · 2(n + m − 1)
2(n + m − 1) 2(n + m − 1) −Λ · · · 2(n + m − 1)

...
...

...
. . .

...

2(n + m − 1) 2(n + m − 1) 2(n + m − 1) · · · −Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The spectrum of the first Zagreb matrix Z(1)(Jm(Kn)) is

Spec(Z(1)(Jm(Kn))) =
(

−2(n + m − 1) 2(n + m − 1)(n + m − 1)
n + m − 1 1

)
.

Thus, the first Zagreb energy ZE1(Jm(Kn)) is computed as

ZE1(Jm(Kn)) = (n + m − 1) |−2(n + m − 1)| + |2(n + m − 1)(n + m − 1)| = 4(n + m − 1)2.

□

4.5. Second Zagreb Energy of the Join Graph of Complete Graphs

In this section, we calculate the second Zagreb energy of the join graph Jm(Kn). The second
Zagreb energy is based on the second Zagreb matrix of the join graph.

Theorem 5. For m ≥ 2 and n ≥ 2, the second Zagreb energy of the join graph Jm(Kn) is
given by

ZE2(Jm(Kn)) = 2(n + m − 1)3.

Proof. Consider the complete graph Kn with n vertices. In the join graph Jm(Kn), the second
Zagreb matrix Z(2)(Jm(Kn)) is defined as

Z(2)(Jm(Kn)) =



0 (n + m − 1)2 (n + m − 1)2 · · · (n + m − 1)2

(n + m − 1)2 0 (n + m − 1)2 · · · (n + m − 1)2

(n + m − 1)2 (n + m − 1)2 0 · · · (n + m − 1)2

...
...

...
. . .

...
(n + m − 1)2 (n + m − 1)2 (n + m − 1)2 · · · 0

 .

The characteristic polynomial of this matrix is∣∣∣∣∣∣∣∣∣∣∣∣∣

−Λ (n + m − 1)2 (n + m − 1)2 · · · (n + m − 1)2

(n + m − 1)2 −Λ (n + m − 1)2 · · · (n + m − 1)2

(n + m − 1)2 (n + m − 1)2 −Λ · · · (n + m − 1)2

...
...

...
. . .

...
(n + m − 1)2 (n + m − 1)2 (n + m − 1)2 · · · −Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The spectrum of the second Zagreb matrix Z(2)(Jm(Kn)) is

Spec(Z(2)(Jm(Kn))) =
(

−(n + m − 1)2 (n + m − 1)3

n + m − 1 1

)
.

Thus, the second Zagreb energy ZE2(Jm(Kn)) is computed as

ZE2(Jm(Kn)) = (n + m − 1)
∣∣∣−(n + m − 1)2

∣∣∣+ ∣∣∣(n + m − 1)3
∣∣∣ = 2(n + m − 1)3.

□
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4.6. Reverse First Zagreb Energy of the Join Graph of Complete Graphs

In this section, we determine the reverse first Zagreb energy of the join graph Jm(Kn). The
reverse first Zagreb energy is based on the reverse first Zagreb matrix of the join graph.

Theorem 6. For m ≥ 2 and n ≥ 2, the reverse first Zagreb energy of the join graph Jm(Kn)
is given by

EZ1R
(Jm(Kn)) = 4(n + m − 1).

Proof. Consider the complete graph Kn with n vertices. In the join graph Jm(Kn), the reverse
first Zagreb matrix Z1R

(Jm(Kn)) is defined as

Z1R
(Jm(Kn)) =



0 2 2 · · · 2
2 0 2 · · · 2
2 2 0 · · · 2
...

...
...

. . .
...

2 2 2 · · · 0

 .

The characteristic polynomial of this matrix is∣∣∣∣∣∣∣∣∣∣∣∣∣

−Λ 2 2 · · · 2
2 −Λ 2 · · · 2
2 2 −Λ · · · 2
...

...
...

. . .
...

2 2 2 · · · −Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The spectrum of the reverse first Zagreb matrix Z1R
(Jm(Kn)) is

Spec(Z1R
(Jm(Kn))) =

(
−2 2(n + m − 1)

n + m − 1 1

)
.

Thus, the reverse first Zagreb energy EZ1R
(Jm(Kn)) is given by

EZ1R
(Jm(Kn)) = (n + m − 1) |−2| + |2(n + m − 1)| = 4(n + m − 1).

□

4.7. Reverse Second Zagreb Energy of the Join Graph of Complete Graphs

In this section, we calculate the reverse second Zagreb energy of the join graph Jm(Kn). The
reverse second Zagreb energy is based on the reverse second Zagreb matrix of the join graph.

Theorem 7. For m ≥ 2 and n ≥ 2, the reverse second Zagreb energy of the join graph Jm(Kn)
is given by

EZ2R
(Jm(Kn)) = 2(n + m − 1).

Proof. Consider the complete graph Kn with n vertices. In the join graph Jm(Kn), the reverse
second Zagreb matrix Z2R

(Jm(Kn)) is defined as

Z2R
(Jm(Kn)) =



0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0

 .
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The characteristic polynomial of this matrix is∣∣∣∣∣∣∣∣∣∣∣∣∣

−Λ 1 1 · · · 1
1 −Λ 1 · · · 1
1 1 −Λ · · · 1
...

...
...

. . .
...

1 1 1 · · · −Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The spectrum of the reverse second Zagreb matrix Z2R
(Jm(Kn)) is

Spec(Z2R
(Jm(Kn))) =

(
−1 n + m − 1

n + m − 1 1

)
.

Thus, the reverse second Zagreb energy EZ2R
(Jm(Kn)) is given by

EZ2R
(Jm(Kn)) = (n + m − 1) |−1| + |n + m − 1| = 2(n + m − 1).

□
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