Journal of Combinatorial Mathematics and Combinatorial Computing, 122: 361–370 [DOI:10.61091/jcmcc122-30](http://dx.doi.org/10.61091/jcmcc122-30) <http://www.combinatorialpress.com/jcmcc> Received 11 May 2020, Accepted 16 December 2020, Published 30 September 2024

Article

The *λ***-fold Spectrum Problem for the Orientations of the 6-Cycle**

Peter Adams¹*,*[∗] **, Ryan C. Bunge**² **, Jordan Dulowski**² **, Saad I. El-Zanati**² **,** $\mathbf M$ addillon $\mathbf K$ enney², Uğur Odabaşı³, and $\mathbf K$ aitlyn $\mathbf Z$ ale²

- ¹ The University of Queensland, QLD 4072, Australia
- 2 Illinois State University, Normal, IL 61790-4520, USA
- 3 Istanbul University-Cerrahpasa, Istanbul, 34320, Turkey

* **Correspondence:** p.adams@uq.edu.au

Abstract: The *λ*-fold complete symmetric directed graph of order *v*, denoted λK_v^* , is the directed graph on *v* vertices and *λ* directed edges in each direction between each pair of vertices. For a given directed graph *D*, the set of all *v* for which λK_v^* admits a *D*-decomposition is called the *λ*-fold spectrum of *D*. In this paper, we settle the *λ*-fold spectrum of each of the nine non-isomorphic orientations of a 6-cycle.

Keywords: Spectrum problem, Directed graph, Directed cycl

1. Introduction

If *a* and *b* are integers with $a \leq b$, we let [*a*, *b*] denote the set $\{a, a+1, \ldots, b\}$. For a graph (or directed graph) *D*, we use $V(D)$ and $E(D)$ to denote the vertex set of *D* and the edge set (or arc set) of *D*, respectively. Furthermore, we use λD to denote the multigraph (or directed multigraph) with vertex set $V(D)$ and λ copies of each edge (or arc) in $E(D)$. For a simple graph *G*, we use G^* to denote the symmetric digraph with vertex set $V(G^*) = V(G)$ and arc set $E(G^*) = \bigcup_{\{u,v\} \in E(G)} \left\{(u,v), (v,u)\right\}$. Hence, ${}^{\lambda}K_v^*$ is the *λ*-fold complete symmetric directed graph of order *v*.

A *decomposition* of a directed multigraph *K* is a collection $\Delta = \{D_1, D_2, \ldots, D_t\}$ of subgraphs of *K* such that each directed edge, or arc, of *K* appears in exactly one $D_i \in \Delta$. If each D_i in Δ is isomorphic to a given digraph *D*, the decomposition is called a *D-decomposition* of *K*. A *D*-decomposition of *K* is also known as a (K, D) -design. The set of all *v* for which K_v^* admits a *D*-decomposition is called the *spectrum of D*. Similarly, the set of all *v* for which ${}^{\lambda}K_v^*$ admits a *D*-decomposition is called the *λ-fold spectrum of D*.

The *reverse orientation* of *D*, denoted Rev *D*, is the digraph with vertex set $V(D)$ and arc set $\{(v, u) : (u, v) \in E(D)\}.$ We note that the existence of a *D*-decomposition of *K* necessarily implies the existence of a Rev *D*-decomposition of Rev *K*. Since K_v^* is its own reverse orientation, we note that the spectrum of *D* is equal to the spectrum of Rev *D*.

The necessary conditions for a digraph *D* to decompose $\lambda_{K_v^*}$ include

(a) $|V(D)| \leq v$, (b) $|E(D)|$ divides $\lambda v(v-1)$, and

(c) gcd{outdegree(*x*) : $x \in V(D)$ } and gcd{indegree(*x*) : $x \in V(D)$ } both divide $\lambda(v-1)$. The spectrum problem for certain subgraphs (both bipartite and non-bipartite) of *K*[∗] ⁴ has already been studied. When *D* is a cyclic orientation of K_3 , then a (K_v^*, D) -design is known as a Mendelsohn triple system. The spectrum for Mendelsohn triple systems was found independently by Mendelsohn [\[1\]](#page-8-0) and Bermond [\[2\]](#page-8-1). When *D* is a transitive orientation of *K*3, then a (K_v^*, D) -design is known as a transitive triple system. The spectrum for transitive triple systems was found by Hung and Mendelsohn [\[3\]](#page-8-2). There are exactly four orientations of a 4-cycle (i.e., a quadrilateral). It was shown in [\[4\]](#page-8-3) that if *D* is a cyclic orientation of a 4-cycle, then a (K_v^*, D) -design exists if and only if $v \equiv 0$ or 1 (mod 4) and $v \neq 4$. The spectrum problem for the remaining three orientations of a 4-cycle were setled in [\[5\]](#page-8-4). In [\[6\]](#page-8-5), Alspach et al. showed that K_v^* can be decomposed into each of the four orientations of a 5-cycle (i.e., a pentagon) if and only if $v \equiv 0$ or 1 (mod 5). In [\[7\]](#page-9-0), it is shown that for positive integers m and v with $2 \leq m \leq v$ the directed graph K_v^* can be decomposed into directed cycles (i.e., with all the edges being oriented in the same direction) of length *m* if and only if *m* divides the number of arcs in K_v^* and $(v, m) \notin \{(4, 4), (6, 3), (6, 6)\}.$ Also recently [\[8\]](#page-9-1), Odabaşı settled the spectrum problem for all possible orientations of a 7-cycle.

There are nine non-isomorphic orientations of a 6-cycle. We denote these with D_1, D_2, \ldots , D_9 as seen in Figure [1.](#page-2-0) The λ -fold spectrum problem was settled for the directed 6-cycle (i.e., *D*₁) in [\[9\]](#page-9-2). In this work, we settle this problem for the remaining eight orientations. Our main result, which is proved in Section [3,](#page-6-0) is as follows.

Theorem 1. Let D be an orientation of a 6-cycle and let λ and v be positive integers such *that* $v \ge 6$ *. There exists a D-decomposition of* ${}^{\lambda}K_v^*$ *if and only if* $\lambda v(v-1) \equiv 0 \pmod{3}$ *and neither of the following hold*

- $(D, \lambda, v) = (D_1, 1, 6)$ *or*
- $D = D_9$ *and* $\lambda(v-1)$ *is odd.*

From the necessary conditions stated earlier, we have the following.

Lemma 1. Let $D \in \{D_2, D_3, \ldots, D_8\}$ and let λ and v be positive integers such that $v \geq 6$. *There exists a D-decomposition of* ${}^{\lambda}K_v^*$ *only if* $\lambda v(v-1) \equiv 0 \pmod{3}$ *. Furthermore, there exists a D*₉*-decomposition of* ${}^{\lambda}K_v^*$ *only if* $\lambda v(v-1) \equiv 0 \pmod{3}$ *and* $\lambda(v-1) \equiv 0 \pmod{2}$ *.*

In 1978, Bermond, Huang, and Sotteau [\[9\]](#page-9-2) showed that with the exception that there is no D_1 -decomposition of K_6^* , these necessary conditions are sufficient for D_1 .

Theorem 2. For integers $v \ge 6$ and $\lambda \ge 1$, there exists a D_1 -decomposition of ${}^{\lambda}K_v^*$ if and only $if \lambda v(v-1) \equiv 0 \pmod{6}$ and $(\lambda, v) \neq (1, 6)$ *.*

The remainder of this paper is dedicated to establishing sufficiency of the above necessary conditions. We achieve this by exhibiting constructions for the desired decompositions (see Section [3\)](#page-6-0) using certain small examples (see Section [2\)](#page-2-1). Henceforth, each of the graphs in Figure [1,](#page-2-0) with vertices labeled as in the figure, will be represented by $D_i[v_1, v_1, \ldots, v_6]$.

For $m \geq 2$, the following result of Sotteau proves the existence of $2m$ -cycle decompositions of complete bipartite graphs.

Theorem 3 ([\[10\]](#page-9-3)). Let *x*, *y*, and *m* be positive integers such that $m \geq 2$. There exists a 2*m*-cycle decomposition of $K_{2x,2y}$ if and only if $m \mid 2xy$ and $\min\{2x, 2y\} \geq m$.

Consider an orientation of a 6-cycle that is isomorphic to its own reverse, i.e. any D_i in Figure [1](#page-2-0) such that $i \notin \{7, 8\}$. By definition of reverse orientation, the set $\{D_i, \text{Rev } D_i\}$ is an obvious D_i -decomposition of C_6^* (the symmetric digraph with a 6-cycle as the underlying simple graph). Since a *G*-decomposition of a graph *K* necessarily implies a *G*[∗] -decomposition of the digraph K^* , we get the following corollary from the case $m = 3$ in Theorem [3.](#page-1-0)

Figure 1. The Nine Orientations of a 6-cycle

Corollary 1. Let $D \in \{D_1, D_2, D_3, D_4, D_5, D_6, D_9\}$. There exists a *D*-decomposition of $K_{2x,2y}^*$ *if* $3 | xy$ *and* $\min\{x, y\} \ge 2$ *.*

2. Examples of Small Designs

We first present several D_i -decompositions of various graphs for $i \in [2, 9]$. Beyond establishing existence of necessary base cases, these decompositions are used extensively in the general constructions seen in Section [3.](#page-6-0)

If i, v_1, v_2, \ldots, v_6 are integers and $D \in \{D_1, D_2, \ldots, D_9\}$, we define $D[v_1, v_2, \ldots, v_6] + i$ to indicate $D[v_1 + i, v_2 + i, \ldots, v_6 + i]$. Similarly, if the vertices of *D* are ordered pairs in $\mathbb{Z}_m \times \mathbb{Z}_n$, then $D[(u_1, v_1), (u_2, v_2), \ldots, (u_6, v_6)] + (i, 0)$ means the digraph $D[(u_1 + i, v_1), (u_2 + i, v_2), \ldots,$ $(u_6 + i, v_6)$. We also use the convention that both $\infty + i$ and $\infty + (i, 0)$ result in simply ∞ .

Example 1. *Let* $V(K_6^*) = \mathbb{Z}_5 \cup \{\infty\}$ *and let*

$$
\Delta_2 = \{D_2[0, 3, 4, 2, 1, \infty] + i : i \in \mathbb{Z}_5\},
$$

\n
$$
\Delta_3 = \{D_3[0, 4, 1, 3, 2, \infty] + i : i \in \mathbb{Z}_5\},
$$

\n
$$
\Delta_4 = \{D_4[0, 1, 2, 4, \infty, 3] + i : i \in \mathbb{Z}_5\},
$$

\n
$$
\Delta_5 = \{D_5[0, 1, 3, 2, \infty, 4], D_5[1, 3, 4, \infty, 2, 0], D_5[2, 4, 1, \infty, 3, 0],
$$

\n
$$
D_5[4, 1, 2, 3, \infty, 0], D_5[3, 0, \infty, 1, 2, 4]\},
$$

\n
$$
\Delta_6 = \{D_6[0, 1, 3, 2, 4, \infty] + i : i \in \mathbb{Z}_5\},
$$

\n
$$
\Delta_7 = \{D_7[0, 1, 3, 4, 2, \infty] + i : i \in \mathbb{Z}_5\},
$$

\n
$$
\Delta_8 = \{D_8[0, \infty, 1, 3, 2, 4] + i : i \in \mathbb{Z}_5\}.
$$

Then Δ_i *is a* D_i *-decomposition of* K_6^* *for* $i \in [2, 8]$ *.*

Example 2. *Let* $V(^{2}K_{6}^{*}) = \mathbb{Z}_{5} \cup \{\infty\}$ *and let*

$$
\Delta_9 = \bigcup_{i \in \mathbb{Z}_5} \left\{ D_9[0, 1, 2, 3, 4, \infty] + i, D_9[\infty, 0, 2, 4, 1, 3] + i \right\}.
$$

Then Δ_9 *is a D*₉*-decomposition of* ² K_6^* .

Example 3. Let $V(K_7^*) = \mathbb{Z}_7$ and let $\Delta_2 = \{D_2[0,1,4,6,5,2], D_2[0,4,1,5,3,6], D_2[0,5,4,2,6,3],$ *D*2[1*,* 6*,* 4*,* 3*,* 2*,* 5]*, D*2[4*,* 0*,* 3*,* 1*,* 6*,* 2]*, D*2[5*,* 0*,* 1*,* 2*,* 3*,* 4]*,* $D_2[6, 0, 2, 1, 3, 5]$, $\Delta_3 = \{D_3[3, 1, 0, 6, 2, 4], D_3[4, 5, 1, 0, 3, 6], D_3[2, 0, 6, 5, 3, 1],$ *D*3[1*,* 6*,* 5*,* 2*,* 0*,* 4]*, D*3[0*,* 5*,* 4*,* 2*,* 6*,* 3]*, D*3[5*,* 3*,* 2*,* 1*,* 4*,* 0]*,* $D_3[6, 4, 3, 2, 5, 1]$, $\Delta_4 = \{D_4[0, 1, 3, 2, 6, 4] + i : i \in \mathbb{Z}_7\},\$ $\Delta_5 = \{D_5[0, 1, 3, 6, 5, 2] + i : i \in \mathbb{Z}_7\},\$ $\Delta_6 = \{D_6[0, 1, 2, 3, 4, 5], D_6[0, 2, 1, 3, 5, 6], D_6[0, 3, 1, 6, 2, 4],$ *D*6[3*,* 2*,* 4*,* 5*,* 1*,* 6]*, D*6[3*,* 4*,* 6*,* 0*,* 2*,* 5]*, D*6[5*,* 1*,* 4*,* 0*,* 3*,* 6]*,* $D_6[6, 2, 5, 0, 1, 4]$, $\Delta_7 = \{D_7[0, 1, 3, 5, 2, 6] + i : i \in \mathbb{Z}_7\},\$ $\Delta_8 = \{D_8[0, 6, 2, 5, 3, 1] + i : i \in \mathbb{Z}_7\},\$ $\Delta_9 = \{D_9[0, 1, 2, 4, 6, 3] + i : i \in \mathbb{Z}_7\}.$

Then Δ_i *is a* D_i *-decomposition of* K_7^* *for* $i \in [2, 9]$ *.*

Example 4. *Let* $V(^{3}K_{8}^{*}) = \mathbb{Z}_{7} \cup \{\infty\}$ *and let*

$$
\Delta_2 = \bigcup_{i \in \mathbb{Z}_7} \left\{ D_2[0, 1, 2, 3, 5, 4] + i, D_2[0, 2, 1, 3, 6, \infty] + i, D_2[0, 3, 1, 5, 2, \infty] + i, D_2[0, 4, 2, 3, 5, \infty] + i \right\},\
$$

\n
$$
\Delta_3 = \bigcup_{i \in \mathbb{Z}_7} \left\{ D_3[0, 1, 2, 3, 5, 6] + i, D_3[0, 2, 3, 5, 1, \infty] + i, D_3[0, 3, 1, 6, 4, \infty] + i, D_3[0, 4, 1, 5, 2, \infty] + i \right\},\
$$

\n
$$
\Delta_4 = \bigcup_{i \in \mathbb{Z}_7} \left\{ D_4[0, 1, 2, 3, 5, 6] + i, D_4[0, 2, 1, 3, 6, \infty] + i, D_4[0, 3, 1, 5, 2, \infty] + i, D_4[0, 5, 2, 6, 1, \infty] + i \right\},\
$$

\n
$$
\Delta_5 = \bigcup_{i \in \mathbb{Z}_7} \left\{ D_5[0, 1, 2, 3, 5, 4] + i, D_5[0, 2, 1, 3, 6, \infty] + i, D_5[0, 3, 5, 2, 6, \infty] + i, D_5[0, 4, 6, 3, 2, \infty] + i \right\},\
$$

\n
$$
\Delta_6 = \bigcup_{i \in \mathbb{Z}_7} \left\{ D_6[0, 1, 2, 3, 4, 5] + i, D_6[0, 2, 4, 3, 6, \infty] + i, D_6[0, 3, 5, 2, 6, \infty] + i, D_6[0, 4, 2, 5, 1, \infty] + i \right\},\
$$

\n
$$
\Delta_7 = \bigcup_{i \in \mathbb{Z}_7} \left\{ D_7[0, 1, 2, 3, 5, 6] + i, D_7[0, 2, 3, 5, 1, \infty]
$$

Then Δ_i *is a* D_i *-decomposition of* ³ K_8^* *for* $i \in [2, 8]$ *.*

Example 5. *Let* $V({}^{6}K_8^*) = \mathbb{Z}_7 \cup \{\infty\}$ *and let*

$$
\Delta_9 = \bigcup_{i \in \mathbb{Z}_7} \left\{ D_9[0, 1, 2, 3, 4, 5] + i, D_9[0, 1, 2, 3, 4, 5] + i, D_9[0, 2, 6, 3, \infty, 5] + i, D_9[0, 2, 6, 3, \infty, 5] + i, D_9[0, 2, 6, 3, \infty, 5] + i, D_9[0, 3, 1, 6, 2, \infty] + i, D_9[0, 3, 1, 5, 6, \infty] + i, D_9[0, 3, 1, 5, 6, \infty] + i \right\}.
$$

Then Δ_9 *is a D*₉*-decomposition of* ⁶ K_8^* .

Example 6. Let $V(K_9^*) = (\mathbb{Z}_4 \times \mathbb{Z}_2) \cup \{\infty\}$. For brevity we use i_j to denote the ordered pair $(i, j) \in V(K_9^*)$, and we (continue to) use the convention that $\infty + i_0 = \infty$. Let

$$
\Delta_2 = \bigcup_{i \in \mathbb{Z}_4} \left\{ D_2[0_0, 3_0, \infty, 3_1, 1_1, 1_0] + i_0, D_2[0_0, 2_0, 3_1, \infty, 3_0, 2_1] + i_0, D_2[0_1, 3_1, 2_1, 1_0, 1_1, 2_0] + i_0 \right\},\
$$

\n
$$
\Delta_3 = \bigcup_{i \in \mathbb{Z}_4} \left\{ D_3[0_0, 3_1, 0_1, 3_0, 2_1, \infty] + i_0, D_3[0_0, 2_0, 1_0, \infty, 3_1, 0_1] + i_0, D_3[0_1, 2_0, 3_0, 3_1, 1_0, 2_1] + i_0 \right\},\
$$

\n
$$
\Delta_4 = \bigcup_{i \in \mathbb{Z}_4} \left\{ D_4[0_0, 3_0, 2_0, 0_1, 1_1, 3_1] + i_0, D_4[0_1, 3_0, 1_0, \infty, 1_1, 0_0] + i_0, D_4[0_1, 1_1, \infty, 3_0, 2_1, 2_0] + i_0 \right\},\
$$

\n
$$
\Delta_5 = \bigcup_{i \in \mathbb{Z}_4} \left\{ D_5[0_0, 3_0, 0_1, 2_0, 2_1, 3_1] + i_0, D_5[0_0, 2_0, 1_0, 1_1, 2_1, \infty] + i_0, D_5[0_1, 2_1, 1_0, 3_1, 0_0, \infty] + i_0 \right\},\
$$

\n
$$
\Delta_6 = \bigcup_{i \in \mathbb{Z}_4} \left\{ D_6[0_0, 1_1, 2_0, \infty, 2_1, 3_1] + i_0, D_6[\infty, 3_0, 0_0, 0_1, 2_0, 3_1] + i_0, D_6[0_1, 0_0, 2_0, 1_0, 3_1, 1_1] + i_0 \right\},\
$$

\n
$$
\Delta_7 =
$$

Then Δ_i *is a* D_i *-decomposition of* K_9^* *for* $i \in [2, 9]$ *.*

Example 7. Let $V(K_{10}^*) = \mathbb{Z}_5 \times \mathbb{Z}_2$. For brevity we use i_j to denote the ordered pair $(i, j) \in$ $V(K_{10}^*)$. Let

$$
\Delta_2 = \bigcup_{i \in \mathbb{Z}_5} \left\{ D_2[0_0, 1_1, 1_0, 0_1, 4_1, 2_1] + i_0, D_2[0_0, 1_0, 4_1, 1_1, 2_1, 3_0] + i_0, \right\}
$$

\n
$$
D_2[0_1, 3_0, 1_0, 2_1, 4_0, 0_0] + i_0 \right\},\
$$

\n
$$
\Delta_3 = \bigcup_{i \in \mathbb{Z}_5} \left\{ D_3[0_0, 4_1, 1_1, 2_1, 1_0, 4_0] + i_0, D_3[0_1, 0_0, 1_0, 3_0, 4_1, 1_1] + i_0, \right\}
$$

\n
$$
D_3[0_1, 1_0, 3_1, 0_0, 2_1, 2_0] + i_0 \right\},
$$

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 361–370

$$
\Delta_4 = \bigcup_{i \in \mathbb{Z}_5} \left\{ D_4[0_0, 4_1, 0_1, 2_0, 1_1, 3_0] + i_0, D_4[0_0, 2_0, 3_1, 3_0, 0_1, 2_1] + i_0, \right. \\
\left. D_4[0_0, 1_0, 2_0, 3_1, 2_1, 0_1] + i_0 \right\}, \\
\Delta_5 = \bigcup_{i \in \mathbb{Z}_5} \left\{ D_5[0_0, 4_0, 2_0, 3_1, 4_1, 2_1] + i_0, D_5[0_0, 3_0, 2_1, 3_1, 1_1, 1_0] + i_0, \right. \\
\left. D_5[0_0, 4_1, 3_0, 1_1, 1_0, 3_1] + i_0 \right\}, \\
\Delta_6 = \bigcup_{i \in \mathbb{Z}_5} \left\{ D_6[0_0, 4_0, 2_1, 1_0, 3_0, 0_1] + i_0, D_6[0_0, 1_1, 1_0, 0_1, 4_1, 2_1] + i_0, \right. \\
\left. D_6[0_1, 4_1, 2_1, 4_0, 3_0, 1_0] + i_0 \right\}, \\
\Delta_7 = \bigcup_{i \in \mathbb{Z}_5} \left\{ D_7[0_0, 1_0, 0_1, 3_1, 4_1, 3_0] + i_0, D_7[0_0, 2_1, 3_0, 0_1, 2_0, 3_1] + i_0, \right. \\
\left. D_7[0_0, 0_1, 4_1, 1_1, 1_0, 4_0] + i_0 \right\}, \\
\Delta_8 = \bigcup_{i \in \mathbb{Z}_5} \left\{ D_8[0_0, 1_0, 1_1, 0_1, 2_1, 2_0] + i_0, D_8[0_0, 4_1, 1_1, 2_1, 1_0, 4_0] + i_0, \right. \\
\left. D_8[0_1, 4_0, 2_1, 0_0, 4_1, 2_0] + i_0 \right\}.
$$

Then Δ_i *is a* D_i *-decomposition of* K_{10}^* *for* $i \in [2, 8]$ *.*

Example 8. *Let* $V(^{2}K_{10}^{*}) = \mathbb{Z}_{10}$ *and let*

$$
\Delta_9 = \bigcup_{i \in \mathbb{Z}_{10}} \left\{ D_9[0, 4, 8, 7, 9, 1] + i, D_9[0, 5, 2, 3, 1, 4] + i, D_9[0, 9, 2, 7, 1, 8] + i \right\}.
$$

Then Δ_9 *is a D*₉*-decomposition of* ${}^2K_{10}^*$.

Example 9. Let $V({}^{3}K_{11}^{*}) = \mathbb{Z}_{11}$ and let

$$
\Delta_2 = \bigcup_{i \in \mathbb{Z}_{11}} \Big\{ D_2[0, 5, 1, 2, 4, 7] + i, D_2[0, 5, 1, 2, 4, 7] + i, D_2[0, 5, 1, 2, 4, 7] + i, D_2[0, 2, 1, 10, 9, 3] + i, D_2[0, 4, 1, 6, 3, 2] + i \Big\},\
$$

$$
\Delta_3 = \bigcup_{i \in \mathbb{Z}_{11}} \Big\{ D_3[0, 2, 1, 3, 6, 5] + i, D_3[0, 2, 1, 3, 6, 5] + i, D_3[0, 2, 1, 3, 6, 5] + i, D_3[0, 2, 1, 5, 9, 3] + i, D_3[0, 1, 7, 2, 10, 6] + i, D_3[0, 3, 1, 8, 4, 7] + i \Big\},\
$$

$$
\Delta_4 = \bigcup_{i \in \mathbb{Z}_{11}} \Big\{ D_4[0, 1, 7, 10, 2, 6] + i, D_4[0, 1, 7, 10, 2, 6] + i, D_4[0, 4, 6, 10, 1, 2] + i, D_4[0, 9, 10, 3, 1, 2] + i \Big\},\
$$

$$
\Delta_5 = \bigcup_{i \in \mathbb{Z}_{11}} \Big\{ D_5[0, 1, 2, 5, 10, 4] + i, D_5[0, 1, 2, 5, 10, 4] + i, D_5[0, 2, 4, 1, 3, 7] + i, D_5[0, 2, 4, 1, 10, 3] + i \Big\},\
$$

$$
\Delta_6 = \bigcup_{i \in \mathbb{Z}_{11}} \Big\{ D_6[0, 1, 3, 6, 10, 4] + i, D_6[0, 1, 3, 6, 10
$$

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 122, 361-370

The *λ*-fold Spectrum Problem for the Orientations of the 6-Cycle 367

$$
\Delta_7 = \bigcup_{i \in \mathbb{Z}_{11}} \left\{ D_7[0, 1, 3, 6, 10, 7] + i, D_7[0, 1, 3, 6, 10, 7] + i, D_7[0, 1, 3, 6, 10, 7] + i, D_7[0, 6, 5, 10, 4, 9] + i, D_7[0, 10, 4, 5, 3, 9] + i \right\},\
$$
\n
$$
\Delta_8 = \bigcup_{i \in \mathbb{Z}_{11}} \left\{ D_8[0, 1, 3, 6, 2, 5] + i, D_8[0, 1, 3, 6, 2, 5] + i, D_8[0, 6, 4, 8, 10, 9] + i, D_8[0, 6, 5, 9, 3, 10] + i \right\},\
$$
\n
$$
\Delta_9 = \bigcup_{i \in \mathbb{Z}_{11}} \left\{ D_9[0, 1, 2, 4, 6, 3] + i, D_9[0, 1, 2, 4, 6, 3] + i, D_9[0, 5, 1, 8, 2, 6] + i, D_9[0, 5, 1, 8, 2, 6] + i, D_9[0, 5, 1, 8, 2, 7] + i \right\}.
$$

Then Δ_i *is a* D_i *-decomposition of* ${}^3K_{11}^*$ *for* $i \in [2, 9]$ *.*

Example 10. Let $V(K_{3,4}^{*}) = \mathbb{Z}_7$ with vertex partition $\{ \{0,1,2\}, \{3,4,5,6\} \}$ and let

$$
\Delta_7 = \{D_7[0, 3, 1, 4, 2, 6], D_7[3, 0, 5, 1, 6, 2], D_7[2, 5, 1, 6, 0, 4],
$$

\n
$$
D_7[5, 2, 3, 1, 4, 0]\},\
$$

\n
$$
\Delta_8 = \{D_8[0, 4, 2, 5, 1, 6], D_8[3, 2, 5, 0, 4, 1], D_8[1, 3, 0, 6, 2, 4],
$$

\n
$$
D_8[6, 2, 3, 0, 5, 1]\}.
$$

Then Δ_i *is a* D_i *-decomposition of* $K_{3,4}^*$ *for* $i \in \{7,8\}$ *.*

Example 11. Let $V(K_{6,6}^*) = \mathbb{Z}_6 \times \mathbb{Z}_2$ with the obvious vertex bipartition. For brevity we use i_j *to denote the ordered pair* $(i, j) \in V(K_{6,6}^*)$ *. Let*

$$
\Delta_7 = \bigcup_{i \in \mathbb{Z}_6} \left\{ D_7[0_0, 5_1, 1_0, 1_1, 5_0, 2_1] + i_0, D_7[0_1, 5_0, 3_1, 0_0, 1_1, 1_0] + i_0 \right\},\
$$

$$
\Delta_8 = \bigcup_{i \in \mathbb{Z}_6} \left\{ D_8[0_0, 4_1, 5_0, 1_1, 4_0, 0_1] + i_0, D_8[0_1, 0_0, 5_1, 4_0, 2_1, 5_0] + i_0 \right\}.
$$

Then Δ_i *is a* D_i *-decomposition of* $K_{6,6}^*$ *for* $i \in \{7,8\}$ *.*

3. General Constructions

For two edge-disjoint graphs (or digraphs) *G* and *H*, we use $G \cup H$ to denote the graph (or digraph) with vertex set $V(G) \cup V(H)$ and edge (or arc) set $E(G) \cup E(H)$. Furthermore, given a positive integer *x*, we use xG to denote the edge-disjoint union of *x* copies of *G*, which are not necessarily vertex-joint. If *G* and *H* are vertex-disjoint, then we use $G \vee H$ to denote the *join* of *G* and *H*, which has vertex set $V(G) \cup V(H)$ and edge (or arc) set *E*(*G*) ∪ *E*(*H*) ∪ { {*u, v*} : *u* ∈ *V*(*G*)*, v* ∈ *V*(*H*)}. To illustrate the different types of notation described here, consider that K_{13} can be viewed as $(K_6 \cup K_6) \vee K_1 \cup K_{6,6} = K_7 \cup K_7 \cup K_{6,6}$. (Note that the join precedes the union in the order of operations.)

We first prove a result about decompositions of $K_{4,6}^*$, $K_{6,6}^*$, and $K_{6,8}^*$.

Lemma 2. For $D \in \{D_2, D_3, \ldots, D_9\}$, then there exists a *D*-decomposition of $K_{4,6}^*$, $K_{6,6}^*$ and *K*[∗] 6*,*8 *.*

Proof. Let $D \in \{D_2, D_3, \ldots, D_9\}$. The result follows from Corollary [1](#page-2-2) for $D \notin \{D_7, D_8\}$. For $i \in \{7, 8\}$, a *D*_{*i*}-decomposition of $K_{3,4}^*$ (and hence of $K_{6,4}^*$ and $K_{6,8}^*$) exists by Example [10.](#page-6-1) Moreover, D_7 - and D_8 -decompositions of $K_{6,6}^*$ are given in Example [11.](#page-6-2) □

We now give our constructions for decompositions of λK_v^* in the following lemmas, which cover values of *v* working modulo 6. The main result is summarized in Theorem [4.](#page-8-6)

Lemma 3. Let λ and v be positive integers such that $v \equiv 0 \pmod{6}$. If $D \in \{D_2, D_3, \ldots, D_8\}$, *then there exists a D-decomposition of* ${}^{\lambda}K_v^*$. Furthermore, if λ *is even, then there exists a* D_9 *-decomposition of* λK_v^* .

Proof. Let $D \in \{D_2, D_3, \ldots, D_9\}$. If $v = 6$ and $D \neq D_9$, then the result follows from λ copies of a *D*-decomposition of K_6^* (see Example [1\)](#page-2-3). If $v = 6$, λ is even, and $D = D_9$, then the result follows from $\lambda/2$ copies of a *D*₉-decomposition of ² K_6^* (see Example [2\)](#page-2-4). For the remainder of the proof, we let $v = 6x$ for some integer $x \geq 2$, and we assume λ is even whenever $D = D_9$. Finally,

we note that $K_{6x} = xK_6 \cup {x \choose 2}$ $\binom{x}{2} K_{6,6}$. Thus ${}^{\lambda}K_{6x}^{*} = x({}^{\lambda}K_{6}^{*}) \cup \binom{x}{2}$ $\binom{x}{2} \binom{\lambda}{K_{6,6}^*}$, and the result follows from the existence of *D*-decompositions of ${}^{\lambda}K_{6}^{*}$ and ${}^{\lambda}K_{6,6}^{*}$, where the latter decomposition follows from λ copies of a *D*-decomposition of $K_{6,6}^*$ (see Lemma [2\)](#page-6-3).

Lemma 4. Let λ and v be positive integers such that $v \equiv 1 \pmod{6}$ and $v \geq 7$. If $D \in$ ${D_2, D_3, \ldots, D_9}$ *, then there exists a D-decomposition of* ${}^{\lambda}K_v^*$.

Proof. If $v = 7$, then the result follows from λ copies of a *D*-decomposition of K_7^* (see Exam-ple [3\)](#page-3-0). For the remainder of the proof, we let $v = 6x + 1$ for some integer $x \ge 2$. We note that $K_{6x+1} = (xK_6) \vee K_1 \cup {x \choose 2}$ $\binom{x}{2}K_{6,6} = xK_7 \cup \binom{x}{2}$ $\binom{x}{2} K_{6,6}$. Thus ${}^{\lambda} \! K_{6x+1}^* = x \binom{\lambda}{} K_7^* \bigcup \binom{x}{2}$ $\binom{x}{2}$ $\binom{\lambda}{K_{6,6}^*}$, and the result follows from the existence of *D*-decompositions of ${}^{\lambda}K_{7}^{*}$ and ${}^{\lambda}K_{6,6}^{*}$.

□

Lemma 5. Let λ and v be positive integers such that $\lambda \equiv 0 \pmod{3}$, $v \equiv 2 \pmod{6}$ *, and* $v \geq 8$ *. If* $D \in \{D_2, D_3, \ldots, D_8\}$, then there exists a *D-decomposition of* ${}^{\lambda}K_v^*$ *. Furthermore, if* $\lambda \equiv 0 \pmod{6}$, then there exists a *D*₉-decomposition of ${}^{\lambda}K_v^*$.

Proof. Let $D \in \{D_2, D_3, \ldots, D_9\}$. If $v = 8$ and $D \neq D_9$, then the result follows from $\lambda/3$ copies of a *D*-decomposition of ³ K_8^* (see Example [4\)](#page-3-1). If $v = 8$, $\lambda \equiv 0 \pmod{6}$, and $D = D_9$, then the result follows from $\lambda/6$ copies of a D_9 -decomposition of ⁶ K_8^* (see Example [5\)](#page-4-0).

Next, for $v = 14$, we note that ${}^{\lambda}K_{14}^* = {}^{\lambda}K_8^* \cup {}^{\lambda}K_{6}^* \cup {}^{\lambda}K_{8,6}^*$. Thus the result follows from the existence of *D*-decompositions of ${}^{\lambda}K_8^*$, ${}^{\lambda}K_6^*$ and and ${}^{\lambda}K_{8,6}^*$.

For the remainder of the proof, we let $v = 6x + 8$ for some integer $x \ge 2$ and $\lambda = 3y$ for some integer $y \ge 1$, and we assume *y* is even whenever $D = D_9$. Finally, we note that *K*_{6*x*+8} = *K*₈∪*xK*₆∪*xK*_{8,6}∪($\frac{x}{2}$ $\left(\frac{x}{2}\right)K_{6,6}$. Thus ${}^{\lambda}K_{6x+8}^{*} = {}^{\lambda}K_{8}^{*} \cup x\left({}^{\lambda}K_{6}^{*}\right) \cup x\left({}^{\lambda}K_{8,6}^{*}\right) \cup \left(\frac{x}{2}\right)$ $\binom{x}{2}$ $\binom{\lambda}{K_{6,6}^*}$, and the result follows from the existence of *D*-decompositions of ${}^{\lambda}K_{8}^{*}$, ${}^{\lambda}K_{6}^{*}$, ${}^{\lambda}K_{8,6}^{*}$, and ${}^{\lambda}K_{6,6}^{*}$ \Box

Lemma 6. Let λ and v be positive integers such that $v \equiv 3 \pmod{6}$ and $v \geq 9$. If $D \in$ ${D_2, D_3, \ldots, D_9}$ *, then there exists a D-decomposition of* ${}^{\lambda}K_v^*$.

Proof. If $v = 9$, then the result follows from λ copies of a *D*-decomposition of K_9^* (see Exam-ple [6\)](#page-4-1). For $v = 15$, we note that ${}^{\lambda}K_{15}^* = \left({}^{\lambda}K_8^* \cup {}^{\lambda}K_6^*\right) \vee {}^{\lambda}K_1^* \cup {}^{\lambda}K_{8,6}^* = {}^{\lambda}K_9^* \cup {}^{\lambda}K_7^* \cup {}^{\lambda}K_{8,6}^*$, and the result follows from the existence of *D*-decompositions of $^{\lambda}K_{9}^{*}$, $^{\lambda}K_{7}^{*}$ (see Lemma [4\)](#page-7-0), and $^{\lambda}K_{8,6}^{*}$.

For the remainder of the proof, we let $v = 6x + 9$ for some integer $x \geq 2$. Finally, we note that $K_{6x+9} = (K_8 \cup xK_6) \vee K_1 \cup xK_{8,6} \cup {x \choose 2}$ $\binom{x}{2}K_{6,6} = K_9 \cup xK_7 \cup xK_{8,6} \cup \binom{x}{2}$ $\binom{x}{2}K_{6,6}$. Thus ${}^{\lambda}K_{6x+9}^{*} = {}^{\lambda}K_{9}^{*} \cup x({}^{\lambda}K_{7}^{*}) \cup x({}^{\lambda}K_{8,6}^{*}) \cup {x \choose 2}$ $\binom{x}{2}$ (λ ^{k*}_{6,6}), and the result follows from the existence of D-decompositions of ${}^{\lambda}K_9^*$, ${}^{\lambda}K_7^*$, ${}^{\lambda}K_{8,6}^*$, and ${}^{\lambda}K_{6,6}^*$.

Lemma 7. Let λ and v be positive integers such that $v \equiv 4 \pmod{6}$ and $v \ge 10$. If $D \in$ ${D_2, D_3, \ldots, D_8}$, then there exists a *D*-decomposition of ${}^{\lambda}K_v^*$. Furthermore, if λ is even, then *there exists a D₉-decomposition of* ${}^{\lambda}K_v^*$.

Proof. Let $D \in \{D_2, D_3, \ldots, D_9\}$. If $v = 10$ and $D \neq D_9$, then the result follows from λ copies of a *D*-decomposition of K_{10}^* (see Example [7\)](#page-4-2). If $v = 10$, λ is even, and $D = D_9$, then the result follows from $\lambda/2$ copies of a D_9 -decomposition of ${}^2K_{10}^*$ (see Example [8\)](#page-5-0). For the remainder of the proof, we let $v = 6x + 4$ for some integer $x \ge 2$, and we assume λ is even whenever $D = D_9$.

Next, we note that $K_{6x+4} = K_4 \cup xK_6 \cup xK_{4,6} \cup \binom{x}{2}$ *x*²₂) $K_{6,6} = K_{10} \cup (x-1)K_6 \cup (x-1)K_{4,6} \cup {x \choose 2}$ $\binom{x}{2}K_{6,6}.$ Thus ${}^{\lambda}K_{6x+4}^{*} = {}^{\lambda}K_{10}^{*} \cup (x-1)\left({}^{\lambda}K_{6}^{*}\right) \cup (x-1)\left({}^{\lambda}K_{4,6}^{*}\right) \cup \left({}^{\frac{x}{2}}\right)$ $\binom{x}{2}$ ($\lambda K_{6,6}^*$), and the result follows from the existence of *D*-decompositions of ${}^{\lambda}K_{10}^*$, ${}^{\lambda}K_6^*$ (see Lemma [3\)](#page-7-1), ${}^{\lambda}K_{4,6}^*$, and ${}^{\lambda}K_{6,6}^*$.

Lemma 8. Let λ and v be positive integers such that $\lambda \equiv 0 \pmod{3}$, $v \equiv 5 \pmod{6}$, and $v \ge 11$ *. If* $D \in \{D_2, D_3, \ldots, D_9\}$ *, then there exists a D-decomposition of* ${}^{\lambda}K_v^*$ *.*

Proof. If $v = 11$, then the result follows from $\lambda/3$ copies of a *D*-decomposition of ${}^{3}K_{11}^{*}$ (see Example [9\)](#page-5-1). For the remainder of the proof, we let $v = 6x + 5$ for some integer $x \ge 2$. Finally, we note that $K_{6x+5} = (K_4 \cup xK_6) \vee K_1 \cup xK_{4,6} \cup \binom{x}{2}$ *x*²₂)*K*₆,6</sub> = *K*₁₁∪(*x*−1)*K*₇∪(*x*−1)*K*_{4,6}∪(^{*x*}₂) $\binom{x}{2}K_{6,6}.$ Thus ${}^{\lambda}K_{6x+5}^{*} = {}^{\lambda}K_{11}^{*} \cup (x-1) \left({}^{\lambda}K_{7}^{*}\right) \cup (x-1) \left({}^{\lambda}K_{4,6}^{*}\right) \cup \left({}^{\frac{x}{2}}_{2} \right)$ $\binom{x}{2}$ ($\lambda K_{6,6}^*$), and the result follows from the existence of *D*-decompositions of ${}^{\lambda}K_{11}^*$, ${}^{\lambda}K_7^*$ (see Lemma [4\)](#page-7-0), ${}^{\lambda}K_{4,6}^*$, and ${}^{\lambda}K_{6,6}^*$.

Combining the previous results from Lemmas [3](#page-7-1) through [8](#page-8-7) with Theorem [2](#page-1-1) and Lemma [1,](#page-1-2) we obtain our main theorem, which we restate here.

Theorem 4. Let D be an orientation of a 6-cycle and let λ and v be positive integers such *that* $v \ge 6$ *. There exists a D-decomposition of* ${}^{\lambda}K_v^*$ *if and only if* $\lambda v(v-1) \equiv 0 \pmod{3}$ *and neither of the following hold*

- $(D, \lambda, v) = (D_1, 1, 6)$ *or*
- $D = D_9$ *and* $\lambda(v-1)$ *is odd.*

References

- 1. Mendelsohn, N. S., 1971. A generalization of Steiner triple systems. In A. O. L. Atkin & J. B. Birch (Eds.), *Computers in Number Theory* (pp. 323–339). Academic Press.
- 2. Bermond, J. C., 1974. An application of the solution of Kirkman's schoolgirl problem: The decomposition of the symmetric oriented complete graph into 3-circuits. *Discrete Mathematics, 8*, pp.301–304.
- 3. Hung, H. Y. and Mendelsohn, N. S., 1973. Directed triple systems. *Journal of Combinatorial Theory, Series B, 14*, pp.310–318.
- 4. Schönheim, J., 1975. Partition of the edges of the directed complete graph into 4-cycles. *Discrete Mathematics, 11*, pp.67–70.
- 5. Harary, F., Heinrich, K. and Wallis, W. D., 1978. Decomposition of complete symmetric digraph into the four oriented quadrilaterals. In *Springer Lecture Notes in Mathematics* (Vol. 686, pp. 165–173).
- 6. Alspach, B., Heinrich, K. and Varma, B. N., 1979. Decompositions of complete symmetric digraphs into the oriented pentagons. *Journal of the Australian Mathematical Society, Series A, 28*, pp.353–361.

□

 \Box

- 7. Alspach, B., Gavlas, H., Šajna, M. and Verrall, H., 2003. Cycle decompositions IV: Complete directed graphs and fixed length directed cycles. *Journal of Combinatorial Theory, Series A, 103*, pp.165–208.
- 8. Odaba¸sı, U. The spectrum problem for the orientations of the 7-cycle. *Preprint*.
- 9. Bermond, J. C., Huang, C. and Sotteau, D., 1978. Balanced cycle and circuit design: Even cases. *Ars Combinatoria, 5*, pp.293–318.
- 10. Sotteau, D., 1981. Decomposition of *Km,n* into cycles (circuits) of length 2*k*. *Journal of Combinatorial Theory, Series B, 30*, pp.75–81.

©2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License [\(http://creativecommons.org/licenses/by/4.0\)](http://creativecommons.org/licenses/by/4.0)