Journal of Combinatorial Mathematics and Combinatorial Computing, 122: 361–370 DOI:10.61091/jcmcc122-30 http://www.combinatorialpress.com/jcmcc Received 11 May 2020, Accepted 16 December 2020, Published 30 September 2024

Article

The λ -fold Spectrum Problem for the Orientations of the 6-Cycle

Peter Adams^{1,*}, Ryan C. Bunge², Jordan Dulowski², Saad I. El-Zanati², Maddillon Kenney², Uğur Odabaşı³, and Kaitlyn Zale²

- 1 The University of Queensland, QLD 4072, Australia
- 2 Illinois State University, Normal, IL 61790-4520, USA
- ³ Istanbul University-Cerrahpasa, Istanbul, 34320, Turkey

* Correspondence: p.adams@uq.edu.au

Abstract: The λ -fold complete symmetric directed graph of order v, denoted ${}^{\lambda}K_{v}^{*}$, is the directed graph on v vertices and λ directed edges in each direction between each pair of vertices. For a given directed graph D, the set of all v for which ${}^{\lambda}K_{v}^{*}$ admits a D-decomposition is called the λ -fold spectrum of D. In this paper, we settle the λ -fold spectrum of each of the nine non-isomorphic orientations of a 6-cycle.

Keywords: Spectrum problem, Directed graph, Directed cycl

1. Introduction

If a and b are integers with $a \leq b$, we let [a, b] denote the set $\{a, a + 1, \ldots, b\}$. For a graph (or directed graph) D, we use V(D) and E(D) to denote the vertex set of D and the edge set (or arc set) of D, respectively. Furthermore, we use ${}^{\lambda}D$ to denote the multigraph (or directed multigraph) with vertex set V(D) and λ copies of each edge (or arc) in E(D). For a simple graph G, we use G^* to denote the symmetric digraph with vertex set $V(G^*) = V(G)$ and arc set $E(G^*) = \bigcup_{\{u,v\}\in E(G)} \{(u,v),(v,u)\}$. Hence, ${}^{\lambda}K_v^*$ is the λ -fold complete symmetric directed graph of order v.

A decomposition of a directed multigraph K is a collection $\Delta = \{D_1, D_2, \ldots, D_t\}$ of subgraphs of K such that each directed edge, or arc, of K appears in exactly one $D_i \in \Delta$. If each D_i in Δ is isomorphic to a given digraph D, the decomposition is called a D-decomposition of K. A D-decomposition of K is also known as a (K, D)-design. The set of all v for which K_v^* admits a D-decomposition is called the spectrum of D. Similarly, the set of all v for which ${}^{\lambda}K_v^*$ admits a D-decomposition is called the λ -fold spectrum of D.

The reverse orientation of D, denoted Rev D, is the digraph with vertex set V(D) and arc set $\{(v, u) : (u, v) \in E(D)\}$. We note that the existence of a D-decomposition of K necessarily implies the existence of a Rev D-decomposition of Rev K. Since K_v^* is its own reverse orientation, we note that the spectrum of D is equal to the spectrum of Rev D.

The necessary conditions for a digraph D to decompose ${}^{\lambda}K_{v}^{*}$ include

(a) $|V(D)| \le v$, (b) |E(D)| divides $\lambda v(v-1)$, and

362

(c) $gcd{outdegree}(x) : x \in V(D)$ and $gcd{indegree}(x) : x \in V(D)$ both divide $\lambda(v-1)$. The spectrum problem for certain subgraphs (both bipartite and non-bipartite) of K_4^* has already been studied. When D is a cyclic orientation of K_3 , then a (K_v^*, D) -design is known as a Mendelsohn triple system. The spectrum for Mendelsohn triple systems was found independently by Mendelsohn [1] and Bermond [2]. When D is a transitive orientation of K_3 , then a (K_v^*, D) -design is known as a transitive triple system. The spectrum for transitive triple systems was found by Hung and Mendelsohn [3]. There are exactly four orientations of a 4-cycle (i.e., a quadrilateral). It was shown in [4] that if D is a cyclic orientation of a 4-cycle, then a

 (K_v^*, D) -design exists if and only if $v \equiv 0$ or 1 (mod 4) and $v \neq 4$. The spectrum problem for the remaining three orientations of a 4-cycle were setled in [5]. In [6], Alspach et al. showed that K_v^* can be decomposed into each of the four orientations of a 5-cycle (i.e., a pentagon) if and only if $v \equiv 0$ or 1 (mod 5). In [7], it is shown that for positive integers m and v with $2 \leq m \leq v$ the directed graph K_v^* can be decomposed into directed cycles (i.e., with all the edges being oriented in the same direction) of length m if and only if m divides the number of arcs in K_v^* and $(v,m) \notin \{(4,4), (6,3), (6,6)\}$. Also recently [8], Odabaşı settled the spectrum problem for all possible orientations of a 7-cycle.

There are nine non-isomorphic orientations of a 6-cycle. We denote these with D_1, D_2, \ldots , D_9 as seen in Figure 1. The λ -fold spectrum problem was settled for the directed 6-cycle (i.e., D_1 in [9]. In this work, we settle this problem for the remaining eight orientations. Our main result, which is proved in Section 3, is as follows.

Theorem 1. Let D be an orientation of a 6-cycle and let λ and v be positive integers such that $v \ge 6$. There exists a D-decomposition of ${}^{\lambda}K_v^*$ if and only if $\lambda v(v-1) \equiv 0 \pmod{3}$ and neither of the following hold

- $(D, \lambda, v) = (D_1, 1, 6)$ or
- $D = D_9$ and $\lambda(v-1)$ is odd.

From the necessary conditions stated earlier, we have the following.

Lemma 1. Let $D \in \{D_2, D_3, \ldots, D_8\}$ and let λ and v be positive integers such that $v \geq 6$. There exists a D-decomposition of ${}^{\lambda}K_{v}^{*}$ only if $\lambda v(v-1) \equiv 0 \pmod{3}$. Furthermore, there exists a D_9 -decomposition of ${}^{\lambda}K_v^*$ only if $\lambda v(v-1) \equiv 0 \pmod{3}$ and $\lambda(v-1) \equiv 0 \pmod{2}$.

In 1978, Bermond, Huang, and Sotteau [9] showed that with the exception that there is no D_1 -decomposition of K_6^* , these necessary conditions are sufficient for D_1 .

Theorem 2. For integers $v \ge 6$ and $\lambda \ge 1$, there exists a D_1 -decomposition of ${}^{\lambda}K_v^*$ if and only if $\lambda v(v-1) \equiv 0 \pmod{6}$ and $(\lambda, v) \neq (1, 6)$.

The remainder of this paper is dedicated to establishing sufficiency of the above necessary conditions. We achieve this by exhibiting constructions for the desired decompositions (see Section 3) using certain small examples (see Section 2). Henceforth, each of the graphs in Figure 1, with vertices labeled as in the figure, will be represented by $D_i[v_1, v_1, \ldots, v_6]$.

For $m \geq 2$, the following result of Sotteau proves the existence of 2*m*-cycle decompositions of complete bipartite graphs.

Theorem 3 ([10]). Let x, y, and m be positive integers such that $m \ge 2$. There exists a 2*m*-cycle decomposition of $K_{2x,2y}$ if and only if $m \mid 2xy$ and $\min\{2x,2y\} \geq m$.

Consider an orientation of a 6-cycle that is isomorphic to its own reverse, i.e. any D_i in Figure 1 such that $i \notin \{7, 8\}$. By definition of reverse orientation, the set $\{D_i, \text{Rev } D_i\}$ is an obvious D_i -decomposition of C_6^* (the symmetric digraph with a 6-cycle as the underlying simple graph). Since a G-decomposition of a graph K necessarily implies a G^* -decomposition of the digraph K^* , we get the following corollary from the case m = 3 in Theorem 3.

Figure 1. The Nine Orientations of a 6-cycle

Corollary 1. Let $D \in \{D_1, D_2, D_3, D_4, D_5, D_6, D_9\}$. There exists a D-decomposition of $K^*_{2x,2y}$ if $3 \mid xy$ and $\min\{x, y\} \geq 2$.

2. Examples of Small Designs

We first present several D_i -decompositions of various graphs for $i \in [2, 9]$. Beyond establishing existence of necessary base cases, these decompositions are used extensively in the general constructions seen in Section 3.

If i, v_1, v_2, \ldots, v_6 are integers and $D \in \{D_1, D_2, \ldots, D_9\}$, we define $D[v_1, v_2, \ldots, v_6] + i$ to indicate $D[v_1 + i, v_2 + i, \ldots, v_6 + i]$. Similarly, if the vertices of D are ordered pairs in $\mathbb{Z}_m \times \mathbb{Z}_n$, then $D[(u_1, v_1), (u_2, v_2), \ldots, (u_6, v_6)] + (i, 0)$ means the digraph $D[(u_1 + i, v_1), (u_2 + i, v_2), \ldots, (u_6 + i, v_6)]$. We also use the convention that both $\infty + i$ and $\infty + (i, 0)$ result in simply ∞ .

Example 1. Let $V(K_6^*) = \mathbb{Z}_5 \cup \{\infty\}$ and let

$$\begin{split} &\Delta_2 = \{D_2[0, 3, 4, 2, 1, \infty] + i : i \in \mathbb{Z}_5\}, \\ &\Delta_3 = \{D_3[0, 4, 1, 3, 2, \infty] + i : i \in \mathbb{Z}_5\}, \\ &\Delta_4 = \{D_4[0, 1, 2, 4, \infty, 3] + i : i \in \mathbb{Z}_5\}, \\ &\Delta_5 = \{D_5[0, 1, 3, 2, \infty, 4], D_5[1, 3, 4, \infty, 2, 0], D_5[2, 4, 1, \infty, 3, 0] \\ &D_5[4, 1, 2, 3, \infty, 0], D_5[3, 0, \infty, 1, 2, 4]\}, \\ &\Delta_6 = \{D_6[0, 1, 3, 2, 4, \infty] + i : i \in \mathbb{Z}_5\}, \\ &\Delta_7 = \{D_7[0, 1, 3, 4, 2, \infty] + i : i \in \mathbb{Z}_5\}, \\ &\Delta_8 = \{D_8[0, \infty, 1, 3, 2, 4] + i : i \in \mathbb{Z}_5\}. \end{split}$$

Then Δ_i is a D_i -decomposition of K_6^* for $i \in [2, 8]$.

Example 2. Let $V({}^{2}K_{6}^{*}) = \mathbb{Z}_{5} \cup \{\infty\}$ and let

$$\Delta_9 = \bigcup_{i \in \mathbb{Z}_5} \Big\{ D_9[0, 1, 2, 3, 4, \infty] + i, \ D_9[\infty, 0, 2, 4, 1, 3] + i \Big\}.$$

Then Δ_9 is a D_9 -decomposition of ${}^2K_6^*$.

Example 3. Let $V(K_7^*) = \mathbb{Z}_7$ and let $\Delta_2 = \left\{ D_2[0, 1, 4, 6, 5, 2], D_2[0, 4, 1, 5, 3, 6], D_2[0, 5, 4, 2, 6, 3], \\D_2[1, 6, 4, 3, 2, 5], D_2[4, 0, 3, 1, 6, 2], D_2[5, 0, 1, 2, 3, 4], \\D_2[6, 0, 2, 1, 3, 5] \right\},$ $\Delta_3 = \left\{ D_3[3, 1, 0, 6, 2, 4], D_3[4, 5, 1, 0, 3, 6], D_3[2, 0, 6, 5, 3, 1], \\D_3[1, 6, 5, 2, 0, 4], D_3[0, 5, 4, 2, 6, 3], D_3[5, 3, 2, 1, 4, 0], \\D_3[6, 4, 3, 2, 5, 1] \right\},$ $\Delta_4 = \left\{ D_4[0, 1, 3, 2, 6, 4] + i : i \in \mathbb{Z}_7 \right\},$ $\Delta_5 = \left\{ D_5[0, 1, 3, 6, 5, 2] + i : i \in \mathbb{Z}_7 \right\},$ $\Delta_6 = \left\{ D_6[0, 1, 2, 3, 4, 5], D_6[0, 2, 1, 3, 5, 6], D_6[0, 3, 1, 6, 2, 4], \\D_6[3, 2, 4, 5, 1, 6], D_6[3, 4, 6, 0, 2, 5], D_6[5, 1, 4, 0, 3, 6], \\D_6[6, 2, 5, 0, 1, 4] \right\},$ $\Delta_7 = \left\{ D_7[0, 1, 3, 5, 2, 6] + i : i \in \mathbb{Z}_7 \right\},$ $\Delta_8 = \left\{ D_8[0, 6, 2, 5, 3, 1] + i : i \in \mathbb{Z}_7 \right\},$ $\Delta_9 = \left\{ D_9[0, 1, 2, 4, 6, 3] + i : i \in \mathbb{Z}_7 \right\}.$

Then Δ_i is a D_i -decomposition of K_7^* for $i \in [2, 9]$.

Example 4. Let $V({}^{3}K_{8}^{*}) = \mathbb{Z}_{7} \cup \{\infty\}$ and let

$$\begin{split} \Delta_2 &= \bigcup_{i \in \mathbb{Z}_7} \Big\{ D_2[0, 1, 2, 3, 5, 4] + i, \ D_2[0, 2, 1, 3, 6, \infty] + i, \\ D_2[0, 3, 1, 5, 2, \infty] + i, \ D_2[0, 4, 2, 3, 5, \infty] + i \Big\}, \\ \Delta_3 &= \bigcup_{i \in \mathbb{Z}_7} \Big\{ D_3[0, 1, 2, 3, 5, 6] + i, \ D_3[0, 2, 3, 5, 1, \infty] + i, \\ D_3[0, 3, 1, 6, 4, \infty] + i, \ D_3[0, 4, 1, 5, 2, \infty] + i \Big\}, \\ \Delta_4 &= \bigcup_{i \in \mathbb{Z}_7} \Big\{ D_4[0, 1, 2, 3, 5, 6] + i, \ D_4[0, 2, 1, 3, 6, \infty] + i, \\ D_4[0, 3, 1, 5, 2, \infty] + i, \ D_4[0, 5, 2, 6, 1, \infty] + i \Big\}, \\ \Delta_5 &= \bigcup_{i \in \mathbb{Z}_7} \Big\{ D_5[0, 1, 2, 3, 5, 4] + i, \ D_5[0, 2, 1, 3, 6, \infty] + i, \\ D_5[0, 3, 5, 2, 6, \infty] + i, \ D_5[0, 4, 6, 3, 2, \infty] + i \Big\}, \\ \Delta_6 &= \bigcup_{i \in \mathbb{Z}_7} \Big\{ D_6[0, 1, 2, 3, 4, 5] + i, \ D_6[0, 2, 4, 3, 6, \infty] + i, \\ D_6[0, 3, 5, 2, 6, \infty] + i, \ D_6[0, 4, 2, 5, 1, \infty] + i \Big\}, \\ \Delta_7 &= \bigcup_{i \in \mathbb{Z}_7} \Big\{ D_7[0, 1, 2, 3, 5, 6] + i, \ D_7[0, 2, 3, 5, 1, \infty] + i, \\ D_7[0, 3, 1, 2, 4, \infty] + i, \ D_7[0, 4, 1, 5, 2, \infty] + i \Big\}, \\ \Delta_8 &= \bigcup_{i \in \mathbb{Z}_7} \Big\{ D_8[0, 1, 2, 3, 4, 5] + i, \ D_8[0, 2, 6, \infty, 4, 3] + i, \\ D_8[0, 3, 1, \infty, 5, 2] + i, \ D_8[0, 3, 1, \infty, 5, 2] + i \Big\}. \end{split}$$

Then Δ_i is a D_i -decomposition of ${}^{3}K_{8}^{*}$ for $i \in [2, 8]$.

Example 5. Let $V({}^{6}K_{8}^{*}) = \mathbb{Z}_{7} \cup \{\infty\}$ and let

$$\Delta_{9} = \bigcup_{i \in \mathbb{Z}_{7}} \Big\{ D_{9}[0, 1, 2, 3, 4, 5] + i, D_{9}[0, 1, 2, 3, 4, 5] + i, \\ D_{9}[0, 2, 6, 3, \infty, 5] + i, D_{9}[0, 2, 6, 3, \infty, 5] + i, \\ D_{9}[0, 2, 6, 3, \infty, 5] + i, D_{9}[0, 3, 1, 6, 2, \infty] + i, \\ D_{9}[0, 3, 1, 5, 6, \infty] + i, D_{9}[0, 3, 1, 5, 6, \infty] + i \Big\}$$

Then Δ_9 is a D_9 -decomposition of ${}^6K_8^*$.

Example 6. Let $V(K_9^*) = (\mathbb{Z}_4 \times \mathbb{Z}_2) \cup \{\infty\}$. For brevity we use i_j to denote the ordered pair $(i, j) \in V(K_9^*)$, and we (continue to) use the convention that $\infty + i_0 = \infty$. Let

$$\begin{split} \Delta_2 &= \bigcup_{i \in \mathbb{Z}_4} \Big\{ D_2[0_0, 3_0, \infty, 3_1, 1_1, 1_0] + i_0, D_2[0_0, 2_0, 3_1, \infty, 3_0, 2_1] + i_0, \\ D_2[0_1, 3_1, 2_1, 1_0, 1_1, 2_0] + i_0 \Big\}, \\ \Delta_3 &= \bigcup_{i \in \mathbb{Z}_4} \Big\{ D_3[0_0, 3_1, 0_1, 3_0, 2_1, \infty] + i_0, D_3[0_0, 2_0, 1_0, \infty, 3_1, 0_1] + i_0, \\ D_3[0_1, 2_0, 3_0, 3_1, 1_0, 2_1] + i_0 \Big\}, \\ \Delta_4 &= \bigcup_{i \in \mathbb{Z}_4} \Big\{ D_4[0_0, 3_0, 2_0, 0_1, 1_1, 3_1] + i_0, D_4[0_1, 3_0, 1_0, \infty, 1_1, 0_0] + i_0, \\ D_4[0_1, 1_1, \infty, 3_0, 2_1, 2_0] + i_0 \Big\}, \\ \Delta_5 &= \bigcup_{i \in \mathbb{Z}_4} \Big\{ D_5[0_0, 3_0, 0_1, 2_0, 2_1, 3_1] + i_0, D_5[0_0, 2_0, 1_0, 1_1, 2_1, \infty] + i_0, \\ D_5[0_1, 2_1, 1_0, 3_1, 0_0, \infty] + i_0 \Big\}, \\ \Delta_6 &= \bigcup_{i \in \mathbb{Z}_4} \Big\{ D_6[0_0, 1_1, 2_0, \infty, 2_1, 3_1] + i_0, D_6[\infty, 3_0, 0_0, 0_1, 2_0, 3_1] + i_0, \\ D_6[0_1, 0_0, 2_0, 1_0, 3_1, 1_1] + i_0 \Big\}, \\ \Delta_7 &= \bigcup_{i \in \mathbb{Z}_4} \Big\{ D_7[0_0, 3_0, 0_1, 2_0, 2_1, 3_1] + i_0, D_7[0_0, 2_0, 3_0, 3_1, 0_1, \infty] + i_0, \\ D_7[0_1, 2_1, 1_0, 3_1, 0_0, \infty] + i_0 \Big\}, \\ \Delta_8 &= \bigcup_{i \in \mathbb{Z}_4} \Big\{ D_8[0_0, \infty, 0_1, 2_1, 1_0, 3_1] + i_0, D_8[0_1, 3_0, 0_0, 3_1, 2_1, 2_0] + i_0, \\ D_8[0_1, \infty, 0_0, 2_0, 3_0, 3_1] + i_0 \Big\}, \\ \Delta_9 &= \bigcup_{i \in \mathbb{Z}_4} \Big\{ D_9[0_0, \infty, 2_1, 3_0, 0_1, 3_1] + i_0, D_9[0_0, 3_0, 1_1, 3_1, 2_0, 0_1] + i_0, \\ D_9[0_1, 0_0, 3_0, 1_0, \infty, 1_1] + i_0 \Big\}. \end{split}$$

Then Δ_i is a D_i -decomposition of K_9^* for $i \in [2, 9]$.

Example 7. Let $V(K_{10}^*) = \mathbb{Z}_5 \times \mathbb{Z}_2$. For brevity we use i_j to denote the ordered pair $(i, j) \in V(K_{10}^*)$. Let

$$\begin{split} \Delta_2 &= \bigcup_{i \in \mathbb{Z}_5} \Big\{ D_2[0_0, 1_1, 1_0, 0_1, 4_1, 2_1] + i_0, \ D_2[0_0, 1_0, 4_1, 1_1, 2_1, 3_0] + i_0, \\ D_2[0_1, 3_0, 1_0, 2_1, 4_0, 0_0] + i_0 \Big\}, \\ \Delta_3 &= \bigcup_{i \in \mathbb{Z}_5} \Big\{ D_3[0_0, 4_1, 1_1, 2_1, 1_0, 4_0] + i_0, \ D_3[0_1, 0_0, 1_0, 3_0, 4_1, 1_1] + i_0, \\ D_3[0_1, 1_0, 3_1, 0_0, 2_1, 2_0] + i_0 \Big\}, \end{split}$$

Journal of Combinatorial Mathematics and Combinatorial Computing

$$\begin{split} \Delta_4 &= \bigcup_{i \in \mathbb{Z}_5} \Big\{ D_4[0_0, 4_1, 0_1, 2_0, 1_1, 3_0] + i_0, D_4[0_0, 2_0, 3_1, 3_0, 0_1, 2_1] + i_0, \\ D_4[0_0, 1_0, 2_0, 3_1, 2_1, 0_1] + i_0 \Big\}, \\ \Delta_5 &= \bigcup_{i \in \mathbb{Z}_5} \Big\{ D_5[0_0, 4_0, 2_0, 3_1, 4_1, 2_1] + i_0, D_5[0_0, 3_0, 2_1, 3_1, 1_1, 1_0] + i_0, \\ D_5[0_0, 4_1, 3_0, 1_1, 1_0, 3_1] + i_0 \Big\}, \\ \Delta_6 &= \bigcup_{i \in \mathbb{Z}_5} \Big\{ D_6[0_0, 4_0, 2_1, 1_0, 3_0, 0_1] + i_0, D_6[0_0, 1_1, 1_0, 0_1, 4_1, 2_1] + i_0, \\ D_6[0_1, 4_1, 2_1, 4_0, 3_0, 1_0] + i_0 \Big\}, \\ \Delta_7 &= \bigcup_{i \in \mathbb{Z}_5} \Big\{ D_7[0_0, 1_0, 0_1, 3_1, 4_1, 3_0] + i_0, D_7[0_0, 2_1, 3_0, 0_1, 2_0, 3_1] + i_0, \\ D_7[0_0, 0_1, 4_1, 1_1, 1_0, 4_0] + i_0 \Big\}, \\ \Delta_8 &= \bigcup_{i \in \mathbb{Z}_5} \Big\{ D_8[0_0, 1_0, 1_1, 0_1, 2_1, 2_0] + i_0, D_8[0_0, 4_1, 1_1, 2_1, 1_0, 4_0] + i_0, \\ D_8[0_1, 4_0, 2_1, 0_0, 4_1, 2_0] + i_0 \Big\}. \end{split}$$

Then Δ_i is a D_i -decomposition of K_{10}^* for $i \in [2, 8]$.

Example 8. Let $V({}^{2}K_{10}^{*}) = \mathbb{Z}_{10}$ and let

$$\Delta_9 = \bigcup_{i \in \mathbb{Z}_{10}} \Big\{ D_9[0, 4, 8, 7, 9, 1] + i, \ D_9[0, 5, 2, 3, 1, 4] + i, \\ D_9[0, 9, 2, 7, 1, 8] + i \Big\}.$$

Then Δ_9 is a D_9 -decomposition of ${}^2K_{10}^*$.

Example 9. Let $V({}^{3}K_{11}^{*}) = \mathbb{Z}_{11}$ and let

$$\begin{split} \Delta_2 &= \bigcup_{i \in \mathbb{Z}_{11}} \Big\{ D_2[0,5,1,2,4,7] + i, \ D_2[0,5,1,2,4,7] + i, \\ D_2[0,6,1,2,4,7] + i, \ D_2[0,2,1,10,9,3] + i, \\ D_2[0,4,1,6,3,2] + i \Big\}, \\ \Delta_3 &= \bigcup_{i \in \mathbb{Z}_{11}} \Big\{ D_3[0,2,1,3,6,5] + i, \ D_3[0,2,1,3,6,5] + i, \\ D_3[0,2,1,5,9,3] + i, \ D_3[0,1,7,2,10,6] + i, \\ D_3[0,3,1,8,4,7] + i \Big\}, \\ \Delta_4 &= \bigcup_{i \in \mathbb{Z}_{11}} \Big\{ D_4[0,1,7,10,2,6] + i, \ D_4[0,1,7,10,2,6] + i, \\ D_4[0,9,10,3,1,2] + i \Big\}, \\ \Delta_5 &= \bigcup_{i \in \mathbb{Z}_{11}} \Big\{ D_5[0,1,2,5,10,4] + i, \ D_5[0,1,2,5,10,4] + i, \\ D_5[0,2,4,1,10,3] + i \Big\}, \\ \Delta_6 &= \bigcup_{i \in \mathbb{Z}_{11}} \Big\{ D_6[0,1,3,6,10,4] + i, \ D_6[0,1,3,6,10,4] + i, \\ D_6[0,10,4,2,5,8] + i \Big\}, \end{split}$$

Journal of Combinatorial Mathematics and Combinatorial Computing

The λ -fold Spectrum Problem for the Orientations of the 6-Cycle

$$\begin{split} \Delta_7 &= \bigcup_{i \in \mathbb{Z}_{11}} \Big\{ D_7[0, 1, 3, 6, 10, 7] + i, \ D_7[0, 1, 3, 6, 10, 7] + i, \\ D_7[0, 1, 3, 6, 10, 7] + i, \ D_7[0, 6, 5, 10, 4, 9] + i, \\ D_7[0, 10, 4, 5, 3, 9] + i \Big\}, \\ \Delta_8 &= \bigcup_{i \in \mathbb{Z}_{11}} \Big\{ D_8[0, 1, 3, 6, 2, 5] + i, \ D_8[0, 1, 3, 6, 2, 5] + i, \\ D_8[0, 1, 3, 6, 2, 5] + i, \ D_8[0, 6, 4, 8, 10, 9] + i, \\ D_8[0, 6, 5, 9, 3, 10] + i \Big\}, \\ \Delta_9 &= \bigcup_{i \in \mathbb{Z}_{11}} \Big\{ D_9[0, 1, 2, 4, 6, 3] + i, \ D_9[0, 1, 2, 4, 6, 3] + i, \\ D_9[0, 5, 1, 8, 2, 7] + i \Big\}. \end{split}$$

Then Δ_i is a D_i -decomposition of ${}^{3}K_{11}^*$ for $i \in [2,9]$.

Example 10. Let $V(K_{3,4}^*) = \mathbb{Z}_7$ with vertex partition $\{\{0, 1, 2\}, \{3, 4, 5, 6\}\}$ and let

$$\Delta_{7} = \left\{ D_{7}[0,3,1,4,2,6], D_{7}[3,0,5,1,6,2], D_{7}[2,5,1,6,0,4], \\ D_{7}[5,2,3,1,4,0] \right\},$$

$$\Delta_{8} = \left\{ D_{8}[0,4,2,5,1,6], D_{8}[3,2,5,0,4,1], D_{8}[1,3,0,6,2,4], \\ D_{8}[6,2,3,0,5,1] \right\}.$$

Then Δ_i is a D_i -decomposition of $K_{3,4}^*$ for $i \in \{7, 8\}$.

Example 11. Let $V(K_{6,6}^*) = \mathbb{Z}_6 \times \mathbb{Z}_2$ with the obvious vertex bipartition. For brevity we use i_j to denote the ordered pair $(i, j) \in V(K_{6,6}^*)$. Let

$$\Delta_{7} = \bigcup_{i \in \mathbb{Z}_{6}} \Big\{ D_{7}[0_{0}, 5_{1}, 1_{0}, 1_{1}, 5_{0}, 2_{1}] + i_{0}, D_{7}[0_{1}, 5_{0}, 3_{1}, 0_{0}, 1_{1}, 1_{0}] + i_{0} \Big\},\$$
$$\Delta_{8} = \bigcup_{i \in \mathbb{Z}_{6}} \Big\{ D_{8}[0_{0}, 4_{1}, 5_{0}, 1_{1}, 4_{0}, 0_{1}] + i_{0}, D_{8}[0_{1}, 0_{0}, 5_{1}, 4_{0}, 2_{1}, 5_{0}] + i_{0} \Big\}.$$

Then Δ_i is a D_i -decomposition of $K_{6,6}^*$ for $i \in \{7, 8\}$.

3. General Constructions

For two edge-disjoint graphs (or digraphs) G and H, we use $G \cup H$ to denote the graph (or digraph) with vertex set $V(G) \cup V(H)$ and edge (or arc) set $E(G) \cup E(H)$. Furthermore, given a positive integer x, we use xG to denote the edge-disjoint union of x copies of G, which are not necessarily vertex-joint. If G and H are vertex-disjoint, then we use $G \vee H$ to denote the *join* of G and H, which has vertex set $V(G) \cup V(H)$ and edge (or arc) set $E(G) \cup E(H) \cup \{\{u, v\} : u \in V(G), v \in V(H)\}$. To illustrate the different types of notation described here, consider that K_{13} can be viewed as $(K_6 \cup K_6) \vee K_1 \cup K_{6,6} = K_7 \cup K_7 \cup K_{6,6}$. (Note that the join precedes the union in the order of operations.)

We first prove a result about decompositions of $K_{4,6}^*$, $K_{6,6}^*$, and $K_{6,8}^*$.

Lemma 2. For $D \in \{D_2, D_3, ..., D_9\}$, then there exists a *D*-decomposition of $K_{4,6}^*$, $K_{6,6}^*$ and $K_{6,8}^*$.

Proof. Let $D \in \{D_2, D_3, \ldots, D_9\}$. The result follows from Corollary 1 for $D \notin \{D_7, D_8\}$. For $i \in \{7, 8\}$, a D_i -decomposition of $K_{3,4}^*$ (and hence of $K_{6,4}^*$ and $K_{6,8}^*$) exists by Example 10. Moreover, D_7 - and D_8 -decompositions of $K_{6,6}^*$ are given in Example 11. □

We now give our constructions for decompositions of ${}^{\lambda}K_v^*$ in the following lemmas, which cover values of v working modulo 6. The main result is summarized in Theorem 4.

Lemma 3. Let λ and v be positive integers such that $v \equiv 0 \pmod{6}$. If $D \in \{D_2, D_3, \ldots, D_8\}$, then there exists a D-decomposition of ${}^{\lambda}K_v^*$. Furthermore, if λ is even, then there exists a D_9 -decomposition of ${}^{\lambda}K_v^*$.

Proof. Let $D \in \{D_2, D_3, \ldots, D_9\}$. If v = 6 and $D \neq D_9$, then the result follows from λ copies of a *D*-decomposition of K_6^* (see Example 1). If v = 6, λ is even, and $D = D_9$, then the result follows from $\lambda/2$ copies of a D_9 -decomposition of ${}^2K_6^*$ (see Example 2). For the remainder of the proof, we let v = 6x for some integer $x \geq 2$, and we assume λ is even whenever $D = D_9$. Finally,

we note that $K_{6x} = xK_6 \cup {\binom{x}{2}}K_{6,6}$. Thus ${}^{\lambda}K_{6x}^* = x ({}^{\lambda}K_6^*) \cup {\binom{x}{2}} ({}^{\lambda}K_{6,6}^*)$, and the result follows from the existence of *D*-decompositions of ${}^{\lambda}K_6^*$ and ${}^{\lambda}K_{6,6}^*$, where the latter decomposition follows from λ copies of a *D*-decomposition of $K_{6,6}^*$ (see Lemma 2).

Lemma 4. Let λ and v be positive integers such that $v \equiv 1 \pmod{6}$ and $v \geq 7$. If $D \in \{D_2, D_3, \ldots, D_9\}$, then there exists a D-decomposition of ${}^{\lambda}K_v^*$.

Proof. If v = 7, then the result follows from λ copies of a *D*-decomposition of K_7^* (see Example 3). For the remainder of the proof, we let v = 6x + 1 for some integer $x \ge 2$. We note that $K_{6x+1} = (xK_6) \lor K_1 \cup {x \choose 2} K_{6,6} = xK_7 \cup {x \choose 2} K_{6,6}$. Thus ${}^{\lambda}K_{6x+1}^* = x {\binom{\lambda}{K_7}} \cup {x \choose 2} {\binom{\lambda}{K_{6,6}}}$, and the result follows from the existence of *D*-decompositions of ${}^{\lambda}K_7^*$ and ${}^{\lambda}K_{6,6}^*$.

Lemma 5. Let λ and v be positive integers such that $\lambda \equiv 0 \pmod{3}$, $v \equiv 2 \pmod{6}$, and $v \geq 8$. If $D \in \{D_2, D_3, \ldots, D_8\}$, then there exists a D-decomposition of ${}^{\lambda}K_v^*$. Furthermore, if $\lambda \equiv 0 \pmod{6}$, then there exists a D₉-decomposition of ${}^{\lambda}K_v^*$.

Proof. Let $D \in \{D_2, D_3, \ldots, D_9\}$. If v = 8 and $D \neq D_9$, then the result follows from $\lambda/3$ copies of a *D*-decomposition of ${}^{3}K_{8}^{*}$ (see Example 4). If v = 8, $\lambda \equiv 0 \pmod{6}$, and $D = D_9$, then the result follows from $\lambda/6$ copies of a D_9 -decomposition of ${}^{6}K_{8}^{*}$ (see Example 5).

Next, for v = 14, we note that ${}^{\lambda}K_{14}^* = {}^{\lambda}K_8^* \cup {}^{\lambda}K_6^* \cup {}^{\lambda}K_{8,6}^*$. Thus the result follows from the existence of *D*-decompositions of ${}^{\lambda}K_8^*$, ${}^{\lambda}K_6^*$ and and ${}^{\lambda}K_{8,6}^*$.

For the remainder of the proof, we let v = 6x + 8 for some integer $x \ge 2$ and $\lambda = 3y$ for some integer $y \ge 1$, and we assume y is even whenever $D = D_9$. Finally, we note that $K_{6x+8} = K_8 \cup x K_6 \cup x K_{8,6} \cup {x \choose 2} K_{6,6}$. Thus ${}^{\lambda}K_{6x+8}^* = {}^{\lambda}K_8^* \cup x ({}^{\lambda}K_6^*) \cup x ({}^{\lambda}K_{8,6}^*) \cup {x \choose 2} ({}^{\lambda}K_{6,6}^*)$, and the result follows from the existence of D-decompositions of ${}^{\lambda}K_8^*$, ${}^{\lambda}K_6^*$, ${}^{\lambda}K_{8,6}^*$, and ${}^{\lambda}K_{6,6}^*$.

Lemma 6. Let λ and v be positive integers such that $v \equiv 3 \pmod{6}$ and $v \geq 9$. If $D \in \{D_2, D_3, \ldots, D_9\}$, then there exists a D-decomposition of ${}^{\lambda}K_v^*$.

Proof. If v = 9, then the result follows from λ copies of a *D*-decomposition of K_9^* (see Example 6). For v = 15, we note that ${}^{\lambda}K_{15}^* = ({}^{\lambda}K_8^* \cup {}^{\lambda}K_6^*) \vee {}^{\lambda}K_1^* \cup {}^{\lambda}K_{8,6}^* = {}^{\lambda}K_9^* \cup {}^{\lambda}K_7^* \cup {}^{\lambda}K_{8,6}^*$, and the result follows from the existence of *D*-decompositions of ${}^{\lambda}K_9^*$, ${}^{\lambda}K_7^*$ (see Lemma 4), and ${}^{\lambda}K_{8,6}^*$.

For the remainder of the proof, we let v = 6x + 9 for some integer $x \ge 2$. Finally, we note that $K_{6x+9} = (K_8 \cup xK_6) \lor K_1 \cup xK_{8,6} \cup {x \choose 2}K_{6,6} = K_9 \cup xK_7 \cup xK_{8,6} \cup {x \choose 2}K_{6,6}$. Thus ${}^{\lambda}K^*_{6x+9} = {}^{\lambda}K^*_9 \cup x ({}^{\lambda}K^*_7) \cup x ({}^{\lambda}K^*_{8,6}) \cup {x \choose 2} ({}^{\lambda}K^*_{6,6})$, and the result follows from the existence of *D*-decompositions of ${}^{\lambda}K^*_9$, ${}^{\lambda}K^*_7$, ${}^{\lambda}K^*_{8,6}$, and ${}^{\lambda}K^*_{6,6}$.

Lemma 7. Let λ and v be positive integers such that $v \equiv 4 \pmod{6}$ and $v \geq 10$. If $D \in \{D_2, D_3, \ldots, D_8\}$, then there exists a D-decomposition of λK_v^* . Furthermore, if λ is even, then there exists a D_9 -decomposition of λK_v^* .

Proof. Let $D \in \{D_2, D_3, \ldots, D_9\}$. If v = 10 and $D \neq D_9$, then the result follows from λ copies of a *D*-decomposition of K_{10}^* (see Example 7). If v = 10, λ is even, and $D = D_9$, then the result follows from $\lambda/2$ copies of a D_9 -decomposition of ${}^2K_{10}^*$ (see Example 8). For the remainder of the proof, we let v = 6x + 4 for some integer $x \geq 2$, and we assume λ is even whenever $D = D_9$.

Next, we note that $K_{6x+4} = K_4 \cup x K_6 \cup x K_{4,6} \cup \begin{pmatrix} x \\ 2 \end{pmatrix} K_{6,6} = K_{10} \cup (x-1) K_6 \cup (x-1) K_{4,6} \cup \begin{pmatrix} x \\ 2 \end{pmatrix} K_{6,6}$. Thus ${}^{\lambda}K_{6x+4}^* = {}^{\lambda}K_{10}^* \cup (x-1) ({}^{\lambda}K_6^*) \cup (x-1) ({}^{\lambda}K_{4,6}^*) \cup \begin{pmatrix} x \\ 2 \end{pmatrix} ({}^{\lambda}K_{6,6}^*)$, and the result follows from the existence of *D*-decompositions of ${}^{\lambda}K_{10}^*$, ${}^{\lambda}K_6^*$ (see Lemma 3), ${}^{\lambda}K_{4,6}^*$, and ${}^{\lambda}K_{6,6}^*$.

Lemma 8. Let λ and v be positive integers such that $\lambda \equiv 0 \pmod{3}$, $v \equiv 5 \pmod{6}$, and $v \geq 11$. If $D \in \{D_2, D_3, \ldots, D_9\}$, then there exists a D-decomposition of ${}^{\lambda}K_v^*$.

Proof. If v = 11, then the result follows from $\lambda/3$ copies of a *D*-decomposition of ${}^{3}K_{11}^{*}$ (see Example 9). For the remainder of the proof, we let v = 6x + 5 for some integer $x \ge 2$. Finally, we note that $K_{6x+5} = (K_4 \cup xK_6) \vee K_1 \cup xK_{4,6} \cup {\binom{x}{2}} K_{6,6} = K_{11} \cup (x-1)K_7 \cup (x-1)K_{4,6} \cup {\binom{x}{2}} K_{6,6}$. Thus ${}^{\lambda}K_{6x+5}^* = {}^{\lambda}K_{11}^* \cup (x-1)({}^{\lambda}K_7^*) \cup (x-1)({}^{\lambda}K_{4,6}^*) \cup {\binom{x}{2}}({}^{\lambda}K_{6,6}^*)$, and the result follows from the existence of *D*-decompositions of ${}^{\lambda}K_{11}^*$, ${}^{\lambda}K_7^*$ (see Lemma 4), ${}^{\lambda}K_{4,6}^*$, and ${}^{\lambda}K_{6,6}^*$.

Combining the previous results from Lemmas 3 through 8 with Theorem 2 and Lemma 1, we obtain our main theorem, which we restate here.

Theorem 4. Let D be an orientation of a 6-cycle and let λ and v be positive integers such that $v \geq 6$. There exists a D-decomposition of ${}^{\lambda}K_v^*$ if and only if $\lambda v(v-1) \equiv 0 \pmod{3}$ and neither of the following hold

- $(D, \lambda, v) = (D_1, 1, 6)$ or
- $D = D_9$ and $\lambda(v 1)$ is odd.

References

- Mendelsohn, N. S., 1971. A generalization of Steiner triple systems. In A. O. L. Atkin & J. B. Birch (Eds.), *Computers in Number Theory* (pp. 323–339). Academic Press.
- Bermond, J. C., 1974. An application of the solution of Kirkman's schoolgirl problem: The decomposition of the symmetric oriented complete graph into 3-circuits. *Discrete Mathematics*, 8, pp.301–304.
- Hung, H. Y. and Mendelsohn, N. S., 1973. Directed triple systems. Journal of Combinatorial Theory, Series B, 14, pp.310–318.
- 4. Schönheim, J., 1975. Partition of the edges of the directed complete graph into 4-cycles. *Discrete Mathematics*, 11, pp.67–70.
- Harary, F., Heinrich, K. and Wallis, W. D., 1978. Decomposition of complete symmetric digraph into the four oriented quadrilaterals. In *Springer Lecture Notes in Mathematics* (Vol. 686, pp. 165–173).
- Alspach, B., Heinrich, K. and Varma, B. N., 1979. Decompositions of complete symmetric digraphs into the oriented pentagons. *Journal of the Australian Mathematical Society, Series* A, 28, pp.353–361.

- Alspach, B., Gavlas, H., Šajna, M. and Verrall, H., 2003. Cycle decompositions IV: Complete directed graphs and fixed length directed cycles. *Journal of Combinatorial Theory, Series* A, 103, pp.165–208.
- 8. Odabaşı, U. The spectrum problem for the orientations of the 7-cycle. Preprint.
- 9. Bermond, J. C., Huang, C. and Sotteau, D., 1978. Balanced cycle and circuit design: Even cases. Ars Combinatoria, 5, pp.293–318.
- 10. Sotteau, D., 1981. Decomposition of $K_{m,n}$ into cycles (circuits) of length 2k. Journal of Combinatorial Theory, Series B, 30, pp.75–81.

 $\odot 2024$ the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)