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Abstract: The λ-fold complete symmetric directed graph of order v, denoted λK∗
v , is the

directed graph on v vertices and λ directed edges in each direction between each pair of vertices.
For a given directed graph D, the set of all v for which λK∗

v admits a D-decomposition is called
the λ-fold spectrum of D. In this paper, we settle the λ-fold spectrum of each of the nine
non-isomorphic orientations of a 6-cycle.
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1. Introduction

If a and b are integers with a ≤ b, we let [a, b] denote the set {a, a + 1, . . . , b}. For a graph
(or directed graph) D, we use V (D) and E(D) to denote the vertex set of D and the edge set
(or arc set) of D, respectively. Furthermore, we use λD to denote the multigraph (or directed
multigraph) with vertex set V (D) and λ copies of each edge (or arc) in E(D). For a simple
graph G, we use G∗ to denote the symmetric digraph with vertex set V (G∗) = V (G) and arc
set E(G∗) = ⋃

{u,v}∈E(G)
{
(u, v), (v, u)

}
. Hence, λK∗

v is the λ-fold complete symmetric directed
graph of order v.

A decomposition of a directed multigraph K is a collection ∆ = {D1, D2, . . . , Dt} of sub-
graphs of K such that each directed edge, or arc, of K appears in exactly one Di ∈ ∆. If each
Di in ∆ is isomorphic to a given digraph D, the decomposition is called a D-decomposition
of K. A D-decomposition of K is also known as a (K, D)-design. The set of all v for which K∗

v

admits a D-decomposition is called the spectrum of D. Similarly, the set of all v for which λK∗
v

admits a D-decomposition is called the λ-fold spectrum of D.
The reverse orientation of D, denoted Rev D, is the digraph with vertex set V (D) and

arc set
{
(v, u) : (u, v) ∈ E(D)

}
. We note that the existence of a D-decomposition of K

necessarily implies the existence of a Rev D-decomposition of Rev K. Since K∗
v is its own

reverse orientation, we note that the spectrum of D is equal to the spectrum of Rev D.
The necessary conditions for a digraph D to decompose λK∗

v include

(a) |V (D)| ≤ v,
(b) |E(D)| divides λv(v − 1), and
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(c) gcd{outdegree(x) : x ∈ V (D)} and gcd{indegree(x) : x ∈ V (D)} both divide λ(v − 1).

The spectrum problem for certain subgraphs (both bipartite and non-bipartite) of K∗
4 has

already been studied. When D is a cyclic orientation of K3, then a (K∗
v , D)-design is known as

a Mendelsohn triple system. The spectrum for Mendelsohn triple systems was found indepen-
dently by Mendelsohn [1] and Bermond [2]. When D is a transitive orientation of K3, then a
(K∗

v , D)-design is known as a transitive triple system. The spectrum for transitive triple sys-
tems was found by Hung and Mendelsohn [3]. There are exactly four orientations of a 4-cycle
(i.e., a quadrilateral). It was shown in [4] that if D is a cyclic orientation of a 4-cycle, then a
(K∗

v , D)-design exists if and only if v ≡ 0 or 1 (mod 4) and v , 4. The spectrum problem for
the remaining three orientations of a 4-cycle were setled in [5]. In [6], Alspach et al. showed
that K∗

v can be decomposed into each of the four orientations of a 5-cycle (i.e., a pentagon)
if and only if v ≡ 0 or 1 (mod 5). In [7], it is shown that for positive integers m and v with
2 ≤ m ≤ v the directed graph K∗

v can be decomposed into directed cycles (i.e., with all the
edges being oriented in the same direction) of length m if and only if m divides the number of
arcs in K∗

v and (v, m) <
{
(4, 4), (6, 3), (6, 6)

}
. Also recently [8], Odabaşı settled the spectrum

problem for all possible orientations of a 7-cycle.
There are nine non-isomorphic orientations of a 6-cycle. We denote these with D1, D2, . . . ,

D9 as seen in Figure 1. The λ-fold spectrum problem was settled for the directed 6-cycle (i.e.,
D1) in [9]. In this work, we settle this problem for the remaining eight orientations. Our main
result, which is proved in Section 3, is as follows.
Theorem 1. Let D be an orientation of a 6-cycle and let λ and v be positive integers such
that v ≥ 6. There exists a D-decomposition of λK∗

v if and only if λv(v − 1) ≡ 0 (mod 3) and
neither of the following hold

• (D, λ, v) = (D1, 1, 6) or
• D = D9 and λ(v − 1) is odd.
From the necessary conditions stated earlier, we have the following.

Lemma 1. Let D ∈ {D2, D3, . . . , D8} and let λ and v be positive integers such that v ≥ 6.
There exists a D-decomposition of λK∗

v only if λv(v − 1) ≡ 0 (mod 3). Furthermore, there
exists a D9-decomposition of λK∗

v only if λv(v − 1) ≡ 0 (mod 3) and λ(v − 1) ≡ 0 (mod 2).
In 1978, Bermond, Huang, and Sotteau [9] showed that with the exception that there is no

D1-decomposition of K∗
6 , these necessary conditions are sufficient for D1.

Theorem 2. For integers v ≥ 6 and λ ≥ 1, there exists a D1-decomposition of λK∗
v if and only

if λv(v − 1) ≡ 0 (mod 6) and (λ, v) , (1, 6).
The remainder of this paper is dedicated to establishing sufficiency of the above necessary

conditions. We achieve this by exhibiting constructions for the desired decompositions (see
Section 3) using certain small examples (see Section 2). Henceforth, each of the graphs in
Figure 1, with vertices labeled as in the figure, will be represented by Di[v1, v1, . . . , v6].

For m ≥ 2, the following result of Sotteau proves the existence of 2m-cycle decompositions
of complete bipartite graphs.
Theorem 3 ( [10]). Let x, y, and m be positive integers such that m ≥ 2. There exists a
2m-cycle decomposition of K2x,2y if and only if m | 2xy and min{2x, 2y} ≥ m.

Consider an orientation of a 6-cycle that is isomorphic to its own reverse, i.e. any Di in
Figure 1 such that i < {7, 8}. By definition of reverse orientation, the set {Di, Rev Di} is an
obvious Di-decomposition of C∗

6 (the symmetric digraph with a 6-cycle as the underlying simple
graph). Since a G-decomposition of a graph K necessarily implies a G∗-decomposition of the
digraph K∗, we get the following corollary from the case m = 3 in Theorem 3.
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Figure 1. The Nine Orientations of a 6-cycle

Corollary 1. Let D ∈ {D1, D2, D3, D4, D5, D6, D9}. There exists a D-decomposition of K∗
2x,2y

if 3 | xy and min{x, y} ≥ 2.

2. Examples of Small Designs

We first present several Di-decompositions of various graphs for i ∈ [2, 9]. Beyond establish-
ing existence of necessary base cases, these decompositions are used extensively in the general
constructions seen in Section 3.

If i, v1, v2, . . . , v6 are integers and D ∈ {D1, D2, . . . , D9}, we define D[v1, v2, . . . , v6] + i to
indicate D[v1 + i, v2 + i, . . . , v6 + i]. Similarly, if the vertices of D are ordered pairs in Zm ×Zn,
then D

[
(u1, v1), (u2, v2), . . . , (u6, v6)

]
+ (i, 0) means the digraph D

[
(u1 + i, v1), (u2 + i, v2), . . . ,

(u6 + i, v6)
]
. We also use the convention that both ∞ + i and ∞ + (i, 0) result in simply ∞.

Example 1. Let V
(
K∗

6

)
= Z5 ∪ {∞} and let

∆2 = {D2[0, 3, 4, 2, 1, ∞] + i : i ∈ Z5},

∆3 = {D3[0, 4, 1, 3, 2, ∞] + i : i ∈ Z5},

∆4 = {D4[0, 1, 2, 4, ∞, 3] + i : i ∈ Z5},

∆5 =
{
D5[0, 1, 3, 2, ∞, 4], D5[1, 3, 4, ∞, 2, 0], D5[2, 4, 1, ∞, 3, 0],

D5[4, 1, 2, 3, ∞, 0], D5[3, 0, ∞, 1, 2, 4]
}
,

∆6 = {D6[0, 1, 3, 2, 4, ∞] + i : i ∈ Z5},

∆7 = {D7[0, 1, 3, 4, 2, ∞] + i : i ∈ Z5},

∆8 = {D8[0, ∞, 1, 3, 2, 4] + i : i ∈ Z5}.

Then ∆i is a Di-decomposition of K∗
6 for i ∈ [2, 8].

Example 2. Let V
(

2K∗
6

)
= Z5 ∪ {∞} and let

∆9 = ⋃
i∈Z5

{
D9[0, 1, 2, 3, 4, ∞] + i, D9[∞, 0, 2, 4, 1, 3] + i

}
.

Then ∆9 is a D9-decomposition of 2K∗
6 .
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Example 3. Let V

(
K∗

7

)
= Z7 and let

∆2 =
{
D2[0, 1, 4, 6, 5, 2], D2[0, 4, 1, 5, 3, 6], D2[0, 5, 4, 2, 6, 3],
D2[1, 6, 4, 3, 2, 5], D2[4, 0, 3, 1, 6, 2], D2[5, 0, 1, 2, 3, 4],
D2[6, 0, 2, 1, 3, 5]

}
,

∆3 =
{
D3[3, 1, 0, 6, 2, 4], D3[4, 5, 1, 0, 3, 6], D3[2, 0, 6, 5, 3, 1],
D3[1, 6, 5, 2, 0, 4], D3[0, 5, 4, 2, 6, 3], D3[5, 3, 2, 1, 4, 0],
D3[6, 4, 3, 2, 5, 1]

}
,

∆4 = {D4[0, 1, 3, 2, 6, 4] + i : i ∈ Z7},

∆5 = {D5[0, 1, 3, 6, 5, 2] + i : i ∈ Z7},

∆6 =
{
D6[0, 1, 2, 3, 4, 5], D6[0, 2, 1, 3, 5, 6], D6[0, 3, 1, 6, 2, 4],
D6[3, 2, 4, 5, 1, 6], D6[3, 4, 6, 0, 2, 5], D6[5, 1, 4, 0, 3, 6],
D6[6, 2, 5, 0, 1, 4]

}
,

∆7 = {D7[0, 1, 3, 5, 2, 6] + i : i ∈ Z7},

∆8 = {D8[0, 6, 2, 5, 3, 1] + i : i ∈ Z7},

∆9 = {D9[0, 1, 2, 4, 6, 3] + i : i ∈ Z7}.

Then ∆i is a Di-decomposition of K∗
7 for i ∈ [2, 9].

Example 4. Let V
(

3K∗
8

)
= Z7 ∪ {∞} and let

∆2 = ⋃
i∈Z7

{
D2[0, 1, 2, 3, 5, 4] + i, D2[0, 2, 1, 3, 6, ∞] + i,

D2[0, 3, 1, 5, 2, ∞] + i, D2[0, 4, 2, 3, 5, ∞] + i
}
,

∆3 = ⋃
i∈Z7

{
D3[0, 1, 2, 3, 5, 6] + i, D3[0, 2, 3, 5, 1, ∞] + i,

D3[0, 3, 1, 6, 4, ∞] + i, D3[0, 4, 1, 5, 2, ∞] + i
}
,

∆4 = ⋃
i∈Z7

{
D4[0, 1, 2, 3, 5, 6] + i, D4[0, 2, 1, 3, 6, ∞] + i,

D4[0, 3, 1, 5, 2, ∞] + i, D4[0, 5, 2, 6, 1, ∞] + i
}
,

∆5 = ⋃
i∈Z7

{
D5[0, 1, 2, 3, 5, 4] + i, D5[0, 2, 1, 3, 6, ∞] + i,

D5[0, 3, 5, 2, 6, ∞] + i, D5[0, 4, 6, 3, 2, ∞] + i
}
,

∆6 = ⋃
i∈Z7

{
D6[0, 1, 2, 3, 4, 5] + i, D6[0, 2, 4, 3, 6, ∞] + i,

D6[0, 3, 5, 2, 6, ∞] + i, D6[0, 4, 2, 5, 1, ∞] + i
}
,

∆7 = ⋃
i∈Z7

{
D7[0, 1, 2, 3, 5, 6] + i, D7[0, 2, 3, 5, 1, ∞] + i,

D7[0, 3, 1, 2, 4, ∞] + i, D7[0, 4, 1, 5, 2, ∞] + i
}
,

∆8 = ⋃
i∈Z7

{
D8[0, 1, 2, 3, 4, 5] + i, D8[0, 2, 6, ∞, 4, 3] + i,

D8[0, 3, 1, ∞, 5, 2] + i, D8[0, 3, 1, ∞, 5, 2] + i
}
.

Then ∆i is a Di-decomposition of 3K∗
8 for i ∈ [2, 8].
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Example 5. Let V

(
6K∗

8

)
= Z7 ∪ {∞} and let

∆9 = ⋃
i∈Z7

{
D9[0, 1, 2, 3, 4, 5] + i, D9[0, 1, 2, 3, 4, 5] + i,

D9[0, 2, 6, 3, ∞, 5] + i, D9[0, 2, 6, 3, ∞, 5] + i,

D9[0, 2, 6, 3, ∞, 5] + i, D9[0, 3, 1, 6, 2, ∞] + i,

D9[0, 3, 1, 5, 6, ∞] + i, D9[0, 3, 1, 5, 6, ∞] + i
}
.

Then ∆9 is a D9-decomposition of 6K∗
8 .

Example 6. Let V
(
K∗

9

)
= (Z4 × Z2) ∪ {∞}. For brevity we use ij to denote the ordered pair

(i, j) ∈ V
(
K∗

9

)
, and we (continue to) use the convention that ∞ + i0 = ∞. Let

∆2 = ⋃
i∈Z4

{
D2[00, 30, ∞, 31, 11, 10] + i0, D2[00, 20, 31, ∞, 30, 21] + i0,

D2[01, 31, 21, 10, 11, 20] + i0
}
,

∆3 = ⋃
i∈Z4

{
D3[00, 31, 01, 30, 21, ∞] + i0, D3[00, 20, 10, ∞, 31, 01] + i0,

D3[01, 20, 30, 31, 10, 21] + i0
}
,

∆4 = ⋃
i∈Z4

{
D4[00, 30, 20, 01, 11, 31] + i0, D4[01, 30, 10, ∞, 11, 00] + i0,

D4[01, 11, ∞, 30, 21, 20] + i0
}
,

∆5 = ⋃
i∈Z4

{
D5[00, 30, 01, 20, 21, 31] + i0, D5[00, 20, 10, 11, 21, ∞] + i0,

D5[01, 21, 10, 31, 00, ∞] + i0
}
,

∆6 = ⋃
i∈Z4

{
D6[00, 11, 20, ∞, 21, 31] + i0, D6[∞, 30, 00, 01, 20, 31] + i0,

D6[01, 00, 20, 10, 31, 11] + i0
}
,

∆7 = ⋃
i∈Z4

{
D7[00, 30, 01, 20, 21, 31] + i0, D7[00, 20, 30, 31, 01, ∞] + i0,

D7[01, 21, 10, 31, 00, ∞] + i0
}
,

∆8 = ⋃
i∈Z4

{
D8[00, ∞, 01, 21, 10, 31] + i0, D8[01, 30, 00, 31, 21, 20] + i0,

D8[01, ∞, 00, 20, 30, 31] + i0
}
,

∆9 = ⋃
i∈Z4

{
D9[00, ∞, 21, 30, 01, 31] + i0, D9[00, 30, 11, 31, 20, 01] + i0,

D9[01, 00, 30, 10, ∞, 11] + i0
}
.

Then ∆i is a Di-decomposition of K∗
9 for i ∈ [2, 9].

Example 7. Let V
(
K∗

10

)
= Z5 × Z2. For brevity we use ij to denote the ordered pair (i, j) ∈

V
(
K∗

10

)
. Let

∆2 = ⋃
i∈Z5

{
D2[00, 11, 10, 01, 41, 21] + i0, D2[00, 10, 41, 11, 21, 30] + i0,

D2[01, 30, 10, 21, 40, 00] + i0
}
,

∆3 = ⋃
i∈Z5

{
D3[00, 41, 11, 21, 10, 40] + i0, D3[01, 00, 10, 30, 41, 11] + i0,

D3[01, 10, 31, 00, 21, 20] + i0
}
,
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∆4 = ⋃

i∈Z5

{
D4[00, 41, 01, 20, 11, 30] + i0, D4[00, 20, 31, 30, 01, 21] + i0,

D4[00, 10, 20, 31, 21, 01] + i0
}
,

∆5 = ⋃
i∈Z5

{
D5[00, 40, 20, 31, 41, 21] + i0, D5[00, 30, 21, 31, 11, 10] + i0,

D5[00, 41, 30, 11, 10, 31] + i0
}
,

∆6 = ⋃
i∈Z5

{
D6[00, 40, 21, 10, 30, 01] + i0, D6[00, 11, 10, 01, 41, 21] + i0,

D6[01, 41, 21, 40, 30, 10] + i0
}
,

∆7 = ⋃
i∈Z5

{
D7[00, 10, 01, 31, 41, 30] + i0, D7[00, 21, 30, 01, 20, 31] + i0,

D7[00, 01, 41, 11, 10, 40] + i0
}
,

∆8 = ⋃
i∈Z5

{
D8[00, 10, 11, 01, 21, 20] + i0, D8[00, 41, 11, 21, 10, 40] + i0,

D8[01, 40, 21, 00, 41, 20] + i0
}
.

Then ∆i is a Di-decomposition of K∗
10 for i ∈ [2, 8].

Example 8. Let V
(

2K∗
10

)
= Z10 and let

∆9 = ⋃
i∈Z10

{
D9[0, 4, 8, 7, 9, 1] + i, D9[0, 5, 2, 3, 1, 4] + i,

D9[0, 9, 2, 7, 1, 8] + i
}
.

Then ∆9 is a D9-decomposition of 2K∗
10.

Example 9. Let V
(

3K∗
11

)
= Z11 and let

∆2 = ⋃
i∈Z11

{
D2[0, 5, 1, 2, 4, 7] + i, D2[0, 5, 1, 2, 4, 7] + i,

D2[0, 6, 1, 2, 4, 7] + i, D2[0, 2, 1, 10, 9, 3] + i,

D2[0, 4, 1, 6, 3, 2] + i
}
,

∆3 = ⋃
i∈Z11

{
D3[0, 2, 1, 3, 6, 5] + i, D3[0, 2, 1, 3, 6, 5] + i,

D3[0, 2, 1, 5, 9, 3] + i, D3[0, 1, 7, 2, 10, 6] + i,

D3[0, 3, 1, 8, 4, 7] + i
}
,

∆4 = ⋃
i∈Z11

{
D4[0, 1, 7, 10, 2, 6] + i, D4[0, 1, 7, 10, 2, 6] + i,

D4[0, 1, 7, 10, 2, 6] + i, D4[0, 4, 6, 10, 1, 2] + i,

D4[0, 9, 10, 3, 1, 2] + i
}
,

∆5 = ⋃
i∈Z11

{
D5[0, 1, 2, 5, 10, 4] + i, D5[0, 1, 2, 5, 10, 4] + i,

D5[0, 1, 2, 5, 10, 4] + i, D5[0, 2, 4, 1, 3, 7] + i,

D5[0, 2, 4, 1, 10, 3] + i
}
,

∆6 = ⋃
i∈Z11

{
D6[0, 1, 3, 6, 10, 4] + i, D6[0, 1, 3, 6, 10, 4] + i,

D6[0, 1, 3, 6, 10, 4] + i, D6[0, 5, 3, 2, 4, 10] + i,

D6[0, 10, 4, 2, 5, 8] + i
}
,
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∆7 = ⋃

i∈Z11

{
D7[0, 1, 3, 6, 10, 7] + i, D7[0, 1, 3, 6, 10, 7] + i,

D7[0, 1, 3, 6, 10, 7] + i, D7[0, 6, 5, 10, 4, 9] + i,

D7[0, 10, 4, 5, 3, 9] + i
}
,

∆8 = ⋃
i∈Z11

{
D8[0, 1, 3, 6, 2, 5] + i, D8[0, 1, 3, 6, 2, 5] + i,

D8[0, 1, 3, 6, 2, 5] + i, D8[0, 6, 4, 8, 10, 9] + i,

D8[0, 6, 5, 9, 3, 10] + i
}
,

∆9 = ⋃
i∈Z11

{
D9[0, 1, 2, 4, 6, 3] + i, D9[0, 1, 2, 4, 6, 3] + i,

D9[0, 1, 2, 4, 6, 3] + i, D9[0, 5, 1, 8, 2, 6] + i,

D9[0, 5, 1, 8, 2, 7] + i
}
.

Then ∆i is a Di-decomposition of 3K∗
11 for i ∈ [2, 9].

Example 10. Let V
(
K∗

3,4

)
= Z7 with vertex partition

{
{0, 1, 2}, {3, 4, 5, 6}

}
and let

∆7 =
{
D7[0, 3, 1, 4, 2, 6], D7[3, 0, 5, 1, 6, 2], D7[2, 5, 1, 6, 0, 4],

D7[5, 2, 3, 1, 4, 0]
}
,

∆8 =
{
D8[0, 4, 2, 5, 1, 6], D8[3, 2, 5, 0, 4, 1], D8[1, 3, 0, 6, 2, 4],

D8[6, 2, 3, 0, 5, 1]
}
.

Then ∆i is a Di-decomposition of K∗
3,4 for i ∈ {7, 8}.

Example 11. Let V
(
K∗

6,6

)
= Z6 × Z2 with the obvious vertex bipartition. For brevity we use

ij to denote the ordered pair (i, j) ∈ V
(
K∗

6,6

)
. Let

∆7 = ⋃
i∈Z6

{
D7[00, 51, 10, 11, 50, 21] + i0, D7[01, 50, 31, 00, 11, 10] + i0

}
,

∆8 = ⋃
i∈Z6

{
D8[00, 41, 50, 11, 40, 01] + i0, D8[01, 00, 51, 40, 21, 50] + i0

}
.

Then ∆i is a Di-decomposition of K∗
6,6 for i ∈ {7, 8}.

3. General Constructions

For two edge-disjoint graphs (or digraphs) G and H, we use G ∪ H to denote the graph
(or digraph) with vertex set V (G) ∪ V (H) and edge (or arc) set E(G) ∪ E(H). Furthermore,
given a positive integer x, we use xG to denote the edge-disjoint union of x copies of G,
which are not necessarily vertex-joint. If G and H are vertex-disjoint, then we use G ∨ H

to denote the join of G and H, which has vertex set V (G) ∪ V (H) and edge (or arc) set
E(G) ∪ E(H) ∪ { {u, v} : u ∈ V (G), v ∈ V (H)}. To illustrate the different types of notation
described here, consider that K13 can be viewed as

(
K6 ∪ K6

)
∨ K1 ∪ K6,6 = K7 ∪ K7 ∪ K6,6.

(Note that the join precedes the union in the order of operations.)
We first prove a result about decompositions of K∗

4,6, K∗
6,6, and K∗

6,8.
Lemma 2. For D ∈ {D2, D3, . . . , D9}, then there exists a D-decomposition of K∗

4,6, K∗
6,6 and

K∗
6,8.

Proof. Let D ∈ {D2, D3, . . . , D9}. The result follows from Corollary 1 for D < {D7, D8}. For
i ∈ {7, 8}, a Di-decomposition of K∗

3,4 (and hence of K∗
6,4 and K∗

6,8) exists by Example 10.
Moreover, D7- and D8-decompositions of K∗

6,6 are given in Example 11. □
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We now give our constructions for decompositions of λK∗

v in the following lemmas, which
cover values of v working modulo 6. The main result is summarized in Theorem 4.

Lemma 3. Let λ and v be positive integers such that v ≡ 0 (mod 6). If D ∈ {D2, D3, . . . , D8},
then there exists a D-decomposition of λK∗

v . Furthermore, if λ is even, then there exists a
D9-decomposition of λK∗

v .

Proof. Let D ∈ {D2, D3, . . . , D9}. If v = 6 and D , D9, then the result follows from λ copies
of a D-decomposition of K∗

6 (see Example 1). If v = 6, λ is even, and D = D9, then the result
follows from λ/2 copies of a D9-decomposition of 2K∗

6 (see Example 2). For the remainder of
the proof, we let v = 6x for some integer x ≥ 2, and we assume λ is even whenever D = D9.
Finally,

we note that K6x = xK6 ∪
(

x
2

)
K6,6. Thus λK∗

6x = x
(

λK∗
6

)
∪

(
x
2

)(
λK∗

6,6

)
, and the result follows

from the existence of D-decompositions of λK∗
6 and λK∗

6,6, where the latter decomposition follows
from λ copies of a D-decomposition of K∗

6,6 (see Lemma 2). □

Lemma 4. Let λ and v be positive integers such that v ≡ 1 (mod 6) and v ≥ 7. If D ∈
{D2, D3, . . . , D9}, then there exists a D-decomposition of λK∗

v .

Proof. If v = 7, then the result follows from λ copies of a D-decomposition of K∗
7 (see Exam-

ple 3). For the remainder of the proof, we let v = 6x + 1 for some integer x ≥ 2. We note that
K6x+1 = (xK6) ∨ K1 ∪

(
x
2

)
K6,6 = xK7 ∪

(
x
2

)
K6,6. Thus λK∗

6x+1 = x
(

λK∗
7

)
∪

(
x
2

)(
λK∗

6,6

)
, and the

result follows from the existence of D-decompositions of λK∗
7 and λK∗

6,6.
□

Lemma 5. Let λ and v be positive integers such that λ ≡ 0 (mod 3), v ≡ 2 (mod 6), and
v ≥ 8. If D ∈ {D2, D3, . . . , D8}, then there exists a D-decomposition of λK∗

v . Furthermore, if
λ ≡ 0 (mod 6), then there exists a D9-decomposition of λK∗

v .

Proof. Let D ∈ {D2, D3, . . . , D9}. If v = 8 and D , D9, then the result follows from λ/3 copies
of a D-decomposition of 3K∗

8 (see Example 4). If v = 8, λ ≡ 0 (mod 6), and D = D9, then the
result follows from λ/6 copies of a D9-decomposition of 6K∗

8 (see Example 5).
Next, for v = 14, we note that λK∗

14 = λK∗
8 ∪ λK∗

6 ∪ λK∗
8,6. Thus the result follows from the

existence of D-decompositions of λK∗
8 , λK∗

6 and and λK∗
8,6.

For the remainder of the proof, we let v = 6x + 8 for some integer x ≥ 2 and λ = 3y

for some integer y ≥ 1, and we assume y is even whenever D = D9. Finally, we note that
K6x+8 = K8 ∪xK6 ∪xK8,6 ∪

(
x
2

)
K6,6. Thus λK∗

6x+8 = λK∗
8 ∪x

(
λK∗

6

)
∪x

(
λK∗

8,6

)
∪

(
x
2

)(
λK∗

6,6

)
, and

the result follows from the existence of D-decompositions of λK∗
8 , λK∗

6 , λK∗
8,6, and λK∗

6,6. □

Lemma 6. Let λ and v be positive integers such that v ≡ 3 (mod 6) and v ≥ 9. If D ∈
{D2, D3, . . . , D9}, then there exists a D-decomposition of λK∗

v .

Proof. If v = 9, then the result follows from λ copies of a D-decomposition of K∗
9 (see Exam-

ple 6). For v = 15, we note that λK∗
15 =

(
λK∗

8 ∪ λK∗
6

)
∨ λK∗

1 ∪ λK∗
8,6 = λK∗

9 ∪ λK∗
7 ∪ λK∗

8,6, and the
result follows from the existence of D-decompositions of λK∗

9 , λK∗
7 (see Lemma 4), and λK∗

8,6.
For the remainder of the proof, we let v = 6x + 9 for some integer x ≥ 2. Finally, we

note that K6x+9 =
(
K8 ∪ xK6

)
∨ K1 ∪ xK8,6 ∪

(
x
2

)
K6,6 = K9 ∪ xK7 ∪ xK8,6 ∪

(
x
2

)
K6,6. Thus

λK∗
6x+9 = λK∗

9 ∪ x
(

λK∗
7

)
∪ x

(
λK∗

8,6

)
∪

(
x
2

)(
λK∗

6,6

)
, and the result follows from the existence of

D-decompositions of λK∗
9 , λK∗

7 , λK∗
8,6, and λK∗

6,6.
□
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Lemma 7. Let λ and v be positive integers such that v ≡ 4 (mod 6) and v ≥ 10. If D ∈
{D2, D3, . . . , D8}, then there exists a D-decomposition of λK∗

v . Furthermore, if λ is even, then
there exists a D9-decomposition of λK∗

v .

Proof. Let D ∈ {D2, D3, . . . , D9}. If v = 10 and D , D9, then the result follows from λ copies
of a D-decomposition of K∗

10 (see Example 7). If v = 10, λ is even, and D = D9, then the result
follows from λ/2 copies of a D9-decomposition of 2K∗

10 (see Example 8). For the remainder of
the proof, we let v = 6x+4 for some integer x ≥ 2, and we assume λ is even whenever D = D9.

Next, we note that K6x+4 = K4∪xK6∪xK4,6∪
(

x
2

)
K6,6 = K10∪(x−1)K6∪(x−1)K4,6∪

(
x
2

)
K6,6.

Thus λK∗
6x+4 = λK∗

10 ∪ (x − 1)
(

λK∗
6

)
∪ (x − 1)

(
λK∗

4,6

)
∪

(
x
2

)(
λK∗

6,6

)
, and the result follows from

the existence of D-decompositions of λK∗
10, λK∗

6 (see Lemma 3), λK∗
4,6, and λK∗

6,6.
□

Lemma 8. Let λ and v be positive integers such that λ ≡ 0 (mod 3), v ≡ 5 (mod 6), and
v ≥ 11. If D ∈ {D2, D3, . . . , D9}, then there exists a D-decomposition of λK∗

v .

Proof. If v = 11, then the result follows from λ/3 copies of a D-decomposition of 3K∗
11 (see

Example 9). For the remainder of the proof, we let v = 6x + 5 for some integer x ≥ 2. Finally,
we note that K6x+5 =

(
K4∪xK6

)
∨K1∪xK4,6∪

(
x
2

)
K6,6 = K11∪(x−1)K7∪(x−1)K4,6∪

(
x
2

)
K6,6.

Thus λK∗
6x+5 = λK∗

11 ∪ (x − 1)
(

λK∗
7

)
∪ (x − 1)

(
λK∗

4,6

)
∪

(
x
2

)(
λK∗

6,6

)
, and the result follows from

the existence of D-decompositions of λK∗
11, λK∗

7 (see Lemma 4), λK∗
4,6, and λK∗

6,6.
□

Combining the previous results from Lemmas 3 through 8 with Theorem 2 and Lemma 1,
we obtain our main theorem, which we restate here.

Theorem 4. Let D be an orientation of a 6-cycle and let λ and v be positive integers such
that v ≥ 6. There exists a D-decomposition of λK∗

v if and only if λv(v − 1) ≡ 0 (mod 3) and
neither of the following hold

• (D, λ, v) = (D1, 1, 6) or
• D = D9 and λ(v − 1) is odd.
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