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Abstract: Let G be an undirected graph. A vertex tree cover of G is a collection of trees
such that every vertex of G is incident with at least one tree. Similarly, an edge tree cover is
a collection of trees such that every edge of G is contained in at least one tree. The tree cover
number is defined as the minimum number of trees required in such a cover. In this paper, we
demonstrate that when considering specific types of tree covers, only vertex permutations act
as linear operators that preserve the tree cover number of G.

Keywords: Tree Cover, Tree cover number, Maximim nullity, Linear preserver

1. Introduction

The tree cover number of a multigraph has been of interest lately due to it being a lower
bound on the maximum nullity of outer planar graphs, and that bound is conjectured to be true
for all multigraphs [1–4]. Our interest here is restricted to simple loopless undirected graphs,
so below we restrict our definitions, etc. to this case.

Let Gn denote the set of all simple loopless graphs on the vertex set V = {v1, v2, . . . , vn}. A
k-tree in Gn is an acyclic graph with n − k isolated vertices and is a connected graph on the k

nonisolated vertices. So an n-tree is a connected acyclic graph.
Concepts of connectedness, component, isolated vertex, etc. are as in [5]. Let U be a subset

of V . Given a graph G ∈ Gn, the subgraph induced by U is the graph in Gnwhose edge set is
the subset of the edge set of G consisting of all edges whose incident vertices are in U . Because
we concider only loopless graphs, any graph induced by a single vertex is an isolated vertex.

Let G ∈ Gn. Let S(G) denote the set of all real symmetric matrices (ai,j) satisfying:

1. ai,j = 0 if i , j and vi and vj are nonadjacent,
2. ai,j , 0 if vi and vj are adjacent, and
3. ai,j ∈ ℜ if i = j .

The maximum nullity of G is defined to be

M(G) = max{null(A) : A ∈ S(G)}.

The maximum nullity of a graph is equivalent to the maximum multiplicity of an eigenvalue
among all matrices in S(G).
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2. Tree Covers

2.1. What is a Tree?

In linear algebra, vector spaces are of primary interest. In this article our approach is via
linear algebraic techniques. The set of graphs, Gn, each with the fixed vertex set, V , forms
a Boolean vector space where addition of graphs is the union (of the edge sets) and scalar
multiplication is by the Boolean semiring, where 1 + 1 = 0 and all other arithmetic is as usual
(there is no subtraction or negatives), the zero is the edgeless graph. Since we will be dealing
only with graphs all having the same vertex set, we must define a tree as follows: A forest is an
acyclic graph and a tree is a forest with at most one nontrivial component. The usual definition
of a tree, being an acyclic connected graph would in our context, mean all trees had n−1 edges
and all n vertices conneted, an n-tree. A k-tree is a tree with the one nontrivial component
connecting k vertices.

An isolated vertex is a tree on one vertex so in Gn, the edgeless graph is a 1-tree. An edge
graph, E = (V, E(E)), is a graph where E(E) is a singleton and forms a 2-tree.

2.2. What is a Cover?

First we must specify which type of cover: a vertex cover or an edge cover. Let G ∈ Gn. A
set of graphs in Gn is a vertex cover of G if the set of vertices incident with at least one of the
edges of one of those graphs contains the set of vertices incident with an edge of G. An edge
cover of G is a set of graphs the union of whose edge sets contains the edge set of G.

2.3. Tree Covers

There are six concepts easily identified, the first three are vertex covers, the last three are
edge covers:

1. A set of n-trees covering the vertices of G. A minimal cover always consists of one (arbi-
trary) n-tree.

2. A set of subtrees of the graph covering all n vertices of the graph. The minimum cardinality
of these sets labeled τstv(G) is the subtree vertex cover number of G.

3. A set of induced subtrees of the graph covering all n vertices of the graph. The minimum
cardinality of these sets labeled τitv(G) is the induced subtree vertex cover number of G.

4. A set of n-trees covering the edges of G. The minimum cardinality of these sets labeled
τnte(G) is the n-tree edge cover number of G.

5. A set of subtrees of the graph covering the edges of the graph. The minimum cardinality
of these sets labeled τste(G) is the subtree edge cover number of G.

6. A set of induced subtrees of the graph covering the edges of the graph. The minimum
cardinality of these sets labeled τite(G) is the induced subtree edge cover number of G.

2.3.1. Examples: vertex tree-covers and vertex tree cover numbers

Let τ = τstv. Then, τ(G) = n if and only if G = Kn, the edgeless graph. τ(G) = n − 1 if
and only if G is either an edge graph. Proof: Suppose G has q non trivial components. Then,
the tree covering number of each of those components is one less than the number of vertices
of the nontrivial component. That is τ(G) ≤ n − q. It follows that if τ(G) = n − 1, G has one
nontrivial component, which must be either an edge graph. Further, τ(G) = 1 if and only if G

is a connected graph on n vertices.

Let τ = τitv Then, τ(G) = n if and only if G = Kn, the edgeless graph. τ(G) = n − 1 if
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and only if G is either an edge graph or a 3-cycle. Proof Hence the proof is similar to as above.
Further, τ(G) = 1 if and only if G is an n-tree.

Some easily verified trlationships between various vertex tree cover numbers are:

τntv(G) ≤ τstv(G) ≤ τitv(G) ≤ n

for any G ∈ Gn.

2.3.2. Examples: edge tree-covers and edge tree cover numbers

If H is any forest, then τnte(H) = 1 because adding an edge between two components reduces
the number of components by one. Repeating this process eventually results in a single tree that
spans all n vertices, thereby dominating H. Thus, τnte(H) = 1. Further, if D is any k-cycle
then τnte(D) = 2. Note also τnte(G) is the maximum of the edge tree cover of the components
of G.

Some easily verified relationships between various edge tree cover numbers are:

τnte(G) ≤ τste(G) ≤ τite(G) ≤ τite(Kn) =
(

n

2

)

for any G ∈ Gn. Further,

τntv(G) ≤ τnte(G), τstv(G) ≤ τste(G) and τitv(G) ≤ τite(G)

for any G ∈ Gn.

3. Linear Preservers

The following results will be used in the sequel.

Lemma 1. [6, Lemma 2.2] If T : Gn → Gn is bijective, preserves |E(G)|, and maps 2-stars to
2-stars then T is a vertex permutation.

Let O denote the edgeless graph: Kn.

3.1. Vertex Tree Cover Number Preservers
3.1.1. Preservers of τitv

In this subsection, let τ = τitv.

Lemma 2. If E, F , and H are edge graphs and G = E ∪ F ∪ H is not a three cycle, then
τ(G) = n − 3.

Proof. There are only 5 possible configurations for G = E ∪F ∪H: a 3-cycle; a 3-star; a 3-path;
a 2-star and one vertex disjoint edge; or three vertex disjoint edges. The first has induced tree
cover number n, the others all have induced tree cover number n − 3. □

Suppose that T (G) = O. Then, if G , O, τ(G) , n while τ(T (G)) = n, a contradiction.
Thus T is nonsingular. Recall that T being nonsingular does not imply invertibility as in the
case of vector spaces over fields, it only means the only thing mapped to zero is zero. Thus, we
must prove invertibility:

Lemma 3. If T : Gn → Gn be a linear operator that preserves τitv, then T is bijective on the
set of edge graphs, and consequently is bijective on Gn.
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Proof. Suppose that the image of an edge graph, E, has more than one edge. Let E =
E1, E2, . . . , En−1 be n−1 edge graphs whose union forms a tree. Then, τ(E1∪E2∪· · ·∪En−1) = 1,
which implies that τ(T (E1∪E2∪· · ·∪En−1)) = 1. Thus, T (E1∪E2∪· · ·∪En−1) is a tree. However,
this means that the image of one of the edges must be dominated by the union of the images
of the preceding edges. Therefore, suppose T (En−1) is dominated by T (E1 ∪ E2 ∪ · · · ∪ En−2),
so that T (E1 ∪ E2 ∪ · · · ∪ En−1) = T (E1 ∪ E2 ∪ · · · ∪ En−2), which is a contradiction, since
τ(E1 ∪ E2 ∪ · · · ∪ En−1) = 1 and τ(E1 ∪ E2 ∪ · · · ∪ En−2) = 2.Thus, the image of an edge
graph is itself an edge graph.

Now, let E and F be edge graphs and suppose that T (E) = T (F ). Let H be a tree
dominating E ∪ F . Then, T (H) = T (H\F ) since T (F ) = T (E). But τ(H) = 1 while
τ(H\F ) = 2, a contradiction. Thus T is bijective on the set of edge graphs. It follows that T
is bijective. □

Lemma 4. If T : Gn → Gn be a linear operator that preserves τitv, then T maps 2-stars to
2-stars.

Proof. Let E∪F be a 2 star and suppose that T (E∪F ) is not. Then T (E∪F ) is a vertex disjoint
pair of edges. Let H be the edge graph such that E ∪ F ∪ H is a 3-cycle. Then T (E ∪ F ∪ H)
is a graph of three edges that is not a 3-cycle. Thus, by Lemma 2, τ(T (E ∪ F ∪ H)) = n − 3
while τ(E ∪ F ∪ H) = n − 1, a contradiction. That is T preserves 2-stars. □

Theorem 1. If T : Gn → Gn be a linear operator that preserves τitv, then T is a vertex
permutation.

Proof. By Lemma 3 T is bijective on the set of edge graphs and hence |E(T (G))| = |E(G)| for
all G ∈ Gn. By Lemma 4 T preserves 2-stars. By Lemma 1 T is a vertex permutation. □

3.1.2. Preservers of τstv

In this subsection, let τ = τstv.

Lemma 5. If E, F , and H are edge graphs and G = E ∪ F ∪ H is not a three cycle, then
τ(G) = n − 3. If G is a 3-cycle, τ(G) = n − 2.

Proof. There are only 5 possible configurations for G = E ∪F ∪H: a 3-cycle; a 3-star, a 3-path;
a 2-star and one vertex disjoint edge; or three vertex disjoint edges. The first has subtree vertex
cover number n − 2, the others all have subtree vertex tree cover number n − 3. □

Suppose that T (G) = O. Then, if G , O, τ(G) , n while τ(T (G)) = n, a contradiction.
Thus T is nonsingular.

Lemma 6. If T : Gn → Gn be a linear operator that preserves τstv, then T is bijective on the
set of edge graphs, and consequently is bijective on Gn.

Proof. Suppose that the image of an edge graph, E, has more than one edge. Let E =
E1, E2, . . . , En−1 be n − 1 edge graphs whose union is a tree. Then τ(E1 ∪ E2 ∪ · · · ∪ En−1) = 1,
so that τ(T (E1 ∪ E2 ∪ · · · ∪ En−1)) = 1. Thus, T (E1 ∪ E2 ∪ · · · ∪ En−1) is a tree. But
then, the image of one of the edges must be dominated by the union of the images of
the previous edges. Thus, say T (En−1) is dominated by T (E1 ∪ E2 ∪ · · · ∪ En−2), so that
T (E1∪E2∪· · ·∪En−1) = T (E1∪E2∪· · ·∪En−2), a contradiction since τ(E1∪E2∪· · ·∪En−1) = 1
and τ(E1 ∪ E2 ∪ · · · ∪ En−2) = 2. Thus, the image of an edge graph is an edge graph.

Now, let E and F be edge graphs and suppose that T (E) = T (F ). Let H be a tree
dominating E ∪ F . Then, T (H) = T (H\F ) since T (F ) = T (E). But τ(H) = 1 while
τ(H\F ) = 2, a contradiction. Thus T is bijective on the set of edge graphs. It follows that T
is bijective. □
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Lemma 7. If T : Gn → Gn is a linear operator that preserves τstv, then T maps 2-stars to
2-stars.
Proof. Let E ∪ F be a two star and suppose that T (E ∪ F ) is not. Then T (E ∪ F ) is a vertex
disjoint pair of edges. Let H be the edge graph such that E∪F ∪H is 3-cycle. Then T (E∪F ∪H)
is a graph of three edges that is not a 3-cycle. Thus, by Lemma 5, τ(T (E ∪ F ∪ H)) = n − 3
while τ(E ∪ F ∪ H) = n − 1, a contradiction. That is T preserves 2-stars. □

Theorem 2. If T : Gn → Gn is a linear operator that preserves τstv, then T is a vertex
permutation.
Proof. By Lemm 6 T is bijective on the set of edge graphs and hence |E(T (G))| = |E(G)| for
all G ∈ Gn. By Lemma 7 T preserves 2-stars. By Lemma 1 T is a vertex permutation. □

3.2. Edge Tree Cover Number Preservers
3.2.1. Preservers of edge

In this subsection, let τ = τnte.
Lemma 8. If E, F , and H are edge graphs and G = E ∪ F ∪ H is not a three cycle, then
τ(G) = 1. If G is a 3-cycle, τ(G) = 2.
Proof. There are only 5 possible configurations for G = E ∪F ∪H: a 3-cycle; a 3-star, a 3-path;
a 2-star and one vertex disjoint edge; or three vertex disjoint edges. The first has n-tree edge
cover number 2, the others all have n-tree edge tree cover number 1. □

Suppose that T (G) = O. Then, T (E) = O for some edge graph E. If F and H are edge
graphs such that E ∪ F ∪ H is a 3-cycle, then τ(F ∪ H) = 1 while τ(E ∪ F ∪ H) = 2. But then,
2 = τ(T (E ∪ F ∪ H)) = τ(T (F ∪ H)) = 1, a contradiction. Thus T is nonsingular.
Lemma 9. If T : Gn → Gn is a linear operator that preserves τnte, then T is bijective on the
set of edge graphs, and consequently is bijective on Gn.
Proof. Suppose that the image of an edge graph, E, has more than one edge. Let E = E1 and
E1, E2, . . . , En−1 be n − 1 edge graphs whose union is an n-tree. Let H = E1 ∪ E2 ∪ · · · ∪ En−1.
Then T (H) = T (H\F ) for some edge F in H. Now, H\F is a forest with two components.

Let C be an edge connecting those two components, with C , F . Then, τnte((H\F )∪C) = 1
while τnte(H ∪ C) = 2. However, T ((H\F ) ∪ C) = T (H\F ) ∪ T (C) = T (H) ∪ C, which
contradicts the fact that T preserves τnte. Thus, T maps edge graphs to edge graphs.

Next, let E and F be edge graphs, and suppose that T (E) = T (F ). Let C be a cycle
dominating E ∪ F . Then, T (C) = T (C\F ) since T (F ) = T (E). But τnte(C) = 2 while
τnte(C\F ) = 1, a contradiction. Thus, T is bijective on the set of edge graphs.

It follows that T is bijective. □

Lemma 10. If T : Gn → Gn is a linear operator that preserves τnte, then T maps 2-stars to
2-stars.
Proof. Let E ∪ F be a two star and suppose that T (E ∪ F ) is not. Then T (E ∪ F ) is a vertex
disjoint pair of edges. Let H be the edge graph such that E∪F ∪H is 3-cycle. Then T (E∪F ∪H)
is a graph of three edges that is not a 3-cycle. Thus, by Lemma 8, τ(T (E ∪ F ∪ H)) = 1 while
τ(E ∪ F ∪ H) = 2, a contradiction. That is T preserves 2-stars. □

Theorem 3. If T : Gn → Gn is a linear operator that preserves τnte, then T is a vertex
permutation.
Proof. By Lemma 9 T is bijective on the set of edge graphs and hence |E(T (G))| = |E(G)| for
all G ∈ Gn. By Lemma 10 T preserves 2-stars. By Lemma 1 T is a vertex permutation. □
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3.2.2. Preservers of τste

In this subsection, let τ = τste.

Lemma 11. If E, F , and H are edge graphs and G = E ∪ F ∪ H is not a three cycle, then
τ(G) = n − 3.

Proof. There are only 5 possible configurations for G = E ∪F ∪H: a 3-cycle; a 3-star, a 3-path;
a 2-star and one vertex disjoint edge; or three vertex disjoint edges. The first has subtree vertex
cover number n − 1, the others all have subtree vertex tree cover number n − 3. □

Suppose that T (G) = O. Then, if G , O, τ(G) , n while τ(T (G)) = n, a contradiction.
Thus T is nonsingular.

Lemma 12. If T : Gn → Gn be a linear operator that preserves τste, then T is bijective on the
set of edge graphs, and consequently is bijective on Gn.

Proof. Suppose that the image of an edge graph, E, has more than one edge. Let E =
E1, E2, . . . , En−1 be n − 1 edge graphs whose union is a tree. Then τ(E1 ∪ E2 ∪ · · · ∪ En−1) = 1,
so that τ(T (E1 ∪ E2 ∪ · · · ∪ En−1)) = 1. Thus, T (E1 ∪ E2 ∪ · · · ∪ En−1) is a tree. But
then, the image one of the edges must be dominated by the union of the images of the
previous edges. Thus, say T (En−1) is dominated by T (E1 ∪ E2 ∪ · · · ∪ En−2), so that
T (E1∪E2∪· · ·∪En−1) = T (E1∪E2∪· · ·∪En−2), a contradiction since τ(E1∪E2∪· · ·∪En−1) = 1
and τ(E1 ∪ E2 ∪ · · · ∪ En−2) = 2. Thus, the image of an edge graph is an edge graph.

Now, let E and F be edge graphs and suppose that T (E) = T (F ). Let H be a tree
dominating E ∪ F . Then, T (H) = T (H\F ) since T (F ) = T (E). But τ(H) = 1 while
τ(H\F ) = 2, a contradiction. Thus T is bijective on the set of edge graphs. It follows that T
is bijective. □

Lemma 13. If T : Gn → Gn be a linear operator that preserves τste, then T maps 2-stars to
2-stars.

Proof. Let E ∪ F be a two star and suppose that T (E ∪ F ) is not. Then T (E ∪ F ) is a
vertex disjoint pair of edges. Let H be the edge graph such that E ∪ F ∪ H is 3-cycle. Then
T (E ∪ F ∪ H) is a graph of three edges that is not a 3-cycle. Then, τ(T (E ∪ F ∪ H) = n − 3
while τ(E ∪F ∪H) = n−1, contradicting that T preserves τste. That is T preserves 2-stars. □

Theorem 4. If T : Gn → Gn be a linear operator that preserves τste, then T is a vertex
permutation.

Proof. By Lemm 12 T is bijective on the set of edge graphs and hence |E(T (G))| = |E(G)| for
all G ∈ Gn. By Lemma 13 T preserves 2-stars. By Lemma 1 T is a vertex permutation. □

3.2.3. Preservers of τite

In this subsection, let τ = τite.

Lemma 14. If E, F , and H are edge graphs and G = E ∪ F ∪ H is not a three cycle, then
τ(G) = n − 3.

Proof. There are only 5 possible configurations for G = E ∪F ∪H: a 3-cycle; a 3-star, a 3-path;
a 2-star and one vertex disjoint edge; or three vertex disjoint edges. The first has subtree vertex
cover number n − 1, the others all have subtree vertex tree cover number n − 3. □

Suppose that T (G) = O. Then, if G , O, τ(G) , n while τ(T (G)) = n, a contradiction.
Thus T is nonsingular.
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Lemma 15. If T : Gn → Gn be a linear operator that preserves τite, then T is bijective on the
set of edge graphs, and consequently is bijective on Gn.

Proof. Suppose that the image of an edge graph, E, has more than one edge. Let E =
E1, E2, . . . , En−1 be n − 1 edge graphs whose union is a tree. Then τ(E1 ∪ E2 ∪ · · · ∪ En−1) = 1,
so that τ(T (E1 ∪ E2 ∪ · · · ∪ En−1)) = 1. Thus, T (E1 ∪ E2 ∪ · · · ∪ En−1) is a tree. But
then, the image one of the edges must be dominated by the union of the images of the
previous edges. Thus, say T (En−1) is dominated by T (E1 ∪ E2 ∪ · · · ∪ En−2), so that
T (E1∪E2∪· · ·∪En−1) = T (E1∪E2∪· · ·∪En−2), a contradiction since τ(E1∪E2∪· · ·∪En−1) = 1
and τ(E1 ∪ E2 ∪ · · · ∪ En−2) = 2. Thus, the image of an edge graph is an edge graph.

Now, let E and F be edge graphs and suppose that T (E) = T (F ). Let H be a tree
dominating E ∪ F . Then, T (H) = T (H\F ) since T (F ) = T (E). But τ(H) = 1 while
τ(H\F ) = 2, a contradiction. Thus T is bijective on the set of edge graphs. It follows that T
is bijective. □

Lemma 16. If T : Gn → Gn be a linear operator that preserves τite, then T maps 2-stars to
2-stars.

Proof. Let E ∪ F be a 2 star and suppose that T (E ∪ F ) is not. Then T (E ∪ F ) is a vertex
disjoint pair of edges. Let H be the edge graph such that E ∪ F ∪ H is 3-cycle. Then
T (E ∪ F ∪ H) is a graph of three edges that is not a 3-cycle. Then, τ(T (E ∪ F ∪ H) = n − 3
while τ(E ∪F ∪H) = n−1, contradicting that T preserves τite. That is T preserves 2-stars. □

Theorem 5. If T : Gn → Gn be a linear operator that preserves τite, then T is a vertex
permutation.

Proof. By Lemma 15 T is bijective on the set of edge graphs and hence |E(T (G))| = |E(G)| for
all G ∈ Gn. By Lemma 16, T preserves 2-stars. By Lemma 1, T is a vertex permutation. □

References

1. Barioli, F., Fallat, S. M., Mitchell, L. H. and Narayan, S. K., 2011. Minimum semidefinite
rank of outerplanar graphs and the tree cover number. Electronic Journal of Linear Algebra,
22, pp.10–21.
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