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abstract

A positive integer k is called a magic constant if there is a graph G along with a bijective function f

from V (G) to �rst |V (G)| natural numbers such that the weight of the vertex w(v) =
∑

uv∈E f(u) = k

for all v ∈ V . It is known that all odd positive integers greater than or equal to 3 and the integer

powers of 2, 2t, t ≥ 6 are magic constants. In this paper, we characterize all positive integers that

are magic constants and generate all distance magic graphs, up to isomorphism, of order up to 10.

Keywords: Magic constant, Distance magic graph, Backtracking Algorithm

1. Introduction

Throughout this article, we assume that graph G = (V,E) is a �nite simple graph with V denoting

the set of vertices and E the set of edges. For a vertex u, its neighborhood is given byN(u) = {v ∈ V :

uv ∈ E}. A positive integer k is called a magic constant if there is a graph G along with a bijective

function f : V (G) → {1, 2, . . . , |V (G)|} such that the weight of the vertex w(v) =
∑

uv∈E f(u),

remains constant and equal to k for all v ∈ V . Such labeling f is called distance magic labeling. A

graph equipped with distance magic labeling is known as a distance magic graph (for more details,

see [1], [4]). We refer to West[15] for graph-theoretic terminology and notation not covered here.

Regardless of how the vertices are labeled, the magic constant, if it exists, remains invariant (see

[2, 11]); that is, it is independent of the distance magic labeling. At the International Workshop

on Graph Labeling (IWOGL-2010), Arumugam [1] raised the question to characterize the set of

positive integers, that are magic constants. Since then, this problem has captured the attention of
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researchers. The integers 1, 2, 4, 6, 8, 12 do not belong to the set of magic constants. On the other

hand, all odd integers ≥ 3 and all integers of the form 2t(t ≥ 6) are con�rmed members of the set of

magic constants (see, [7], [8]). A previous study in [16] identi�ed a graph with 8 vertices that admits

the magic constant 24, and it is straightforward to verify that 10 is the magic constant for the wheel

graph W5 [7]. However, characterizing the set of integers, which are magic constants, is an ongoing

problem in distance magic graphs. We have shown that positive integers of the form 4t+2 for t ≥ 3

and of the form 4t + 4 for t ≥ 8 are magic constants. Hence, the remaining numbers are 16, 20, 28,

and 32.

Bertault et al. [3] introduced a heuristic algorithm to identify various classes of labelings. Building

on this, Fuad et al. [16] re�ned the algorithm, achieving the construction of all distance magic graphs

up to isomorphism for orders up to 9. This is the well-known algorithm available for constructing dis-

tance magic graphs. However, it is heuristic, and from a computational point of view, this algorithm

has limitations. It relies on a collection of all non-isomorphic graphs as input, a formidable task

that poses challenges, particularly for higher-order graphs. Generating all non-isomorphic graphs

of substantial sizes remains computationally demanding, thereby a�ecting the practicality of the

algorithm.

In this paper, we solve the characterization problem of magic constants. We prove this result by

providing constructions of distance magic graphs to obtain speci�c magic constants.

We have devised and implemented a backtracking algorithm to check if there is a distance magic

graph for a given number of vertices n and a speci�c magic constant k. Our algorithm is deterministic,

and it explores all the possible solutions in a robust manner. We have implemented this algorithm

to construct magic graphs for k = 28 and 32. Our search for k = 16 shows that no graph admits the

magic constant 16. Additionally, with this algorithm, we have generated all distance magic graphs

(up to isomorphism) of order up to 12 (see Table 1). This enhances the existing collection of distance

magic graphs given in [16]. In particular, we �nd a new sixth graph of order 8, adding to the list of

5 such graphs given in [16].

This algorithm serves as a practical tool for researchers and enthusiasts in the �eld of distance

magic graphs. Addressing the general challenge of characterizing all graphs possessing distance magic

labelings using algorithms presents a computational hurdle. This is mainly due to the impracticality

of generating all non-isomorphic graphs since this becomes increasingly unfeasible as the graph

order grows. Consequently, the algorithms devised for characterization problems often encounter

limitations or become computationally intensive when dealing with graphs of larger vertices.

It is believed that for a given n, only a small subset of the set of all graphs of order n possesses

the distance magic property. Consequently, a di�erent approach is required rather than providing a

collection of non-isomorphic graphs as input and subsequently characterizing them for the distance

magic property. Instead, the focus shifts towards developing algorithms capable of dynamically

constructing all distance magic graphs on n vertices. By adopting this strategy, we can bypass the

challenge of generating all non-isomorphic graphs. We have successfully implemented this approach.

2. Main Results

Let G be a graph. A subset S of the vertex set of G is said to be a dominating set if there is a

function f : V → {0, 1}, called dominating function, such that f(S) = {1}, f(V \S) = {0} and for
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each vertex v ∈ V \S,
∑

u∈N(v) f(u) ≥ 1. The domination number γ(G) of a graph is given by

γ(G) = min{|f |: f is a dominating function},

where |f |=
∑

v∈V f(v). There is another variation of domination called fractional domination.

De�nition 2.1. A function g : V (G)→ [0, 1] is called a total dominating function of the graph G if∑
u∈N(v) g(u) ≥ 1 for all v ∈ V . The fractional total domination number of a graph G is denoted by

γft and is given by

γft = min{|g|: g is a total dominating function of G},

where |g|=
∑

v∈V g(v).

This concept of a fractional domination number has a close relation with the magic constant of a

graph as stated in the following theorem.

Theorem 2.2. [2, 10] If a graph G is distance magic, then its distance magic constant k = n(n+1)
2γft

.

Theorem 2.3. [6, 9, 13, 14] Let G be a distance magic graph on n vertices. If G is distance magic

with distance magic labeling f and magic constant k then
∑

v∈V w(v) = nk.

Corollary 2.4. If G is an r-regular distance magic graph on n vertices with magic constant k, then

k = r(n+1)
2

.

Theorem 2.5. [8] There exists a 4-regular distance magic graph on an odd number of vertices n if

and only if n ≥ 17.

1

2 12

11 3

4 10

9 5

6 8

7

Fig. 1. A distance magic labeling of 3C4

It is known that a 2-regular graph G is distance magic if and only if it is a disjoint union of copies

of cycle C4 [6]. Further, each positive integer of the form 4t+1 is a magic constant of a graph union

of t copies of a 4-cycle tC4 as stated in the following theorem.

Theorem 2.6. [6] A graph G of order n is a distance magic graph with magic constant k = n + 1

if and only if G = tC4, t ≥ 1.

The following result shows that each positive integer of the form 4t + 3 is a magic constant of a

graph P3 ∪ tC4.

Theorem 2.7. [6] Let G be a magic distance graph with magic constant k. Then, the following are

equivalent.
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(a) k = n.

(b) δ(G) = 1.

(c) Either G is isomorphic to P3 or G contains exactly one copy of P3 and all other components

are isomorphic to C4.

Figure 2 shows the distance magic labeling of P3 ∪ 2C4 with magic constant 11.

8

2 3

9 6

4 5

7

1 11 10

Fig. 2. A distance magic labeling of P3 ∪ 2C4

From Theorems 2.6 and 2.7, we conclude that all odd positive integers ≥ 3 are magic constants.

This also answers the question: does pt, t ≥ 1 belong to the set of magic constants, where p is odd

prime? (see [7]).

Now, we explore the case of the even positive integers, which are magic constants.

When H is an arbitrary graph with vertices x1, x2 . . . , xn, and G is any graph with t vertices,

then by H[G] we denote the graph, which arises from H by replacing each vertex xi by a copy of

the graph G with vertex set Xi = {xi1 , . . . , xit}, and each edge xixj by the edges of the complete

bipartite graph Kt,t with bipartition Xi, Xj. The graph H[G] is then called lexicographic product or

the composition of H and G.

Theorem 2.8. [5, 9] If G is an r-regular graph, then G[Kt] is distance magic for any even t.

In [9], the authors proved that for an r-regular graph G on n vertices, the magic constant of G[K2t]

is k = rt(2nt+1). With r = 2 and t = 1, we obtain k = 4n+2. This gives the proof of the following

theorem.

Theorem 2.9. For all t ≥ 3, 4t+ 2 is a magic constant.

In [8], the authors proved that there exists a 4-regular distance magic graph G = (V,E) of odd

order if and only if |V |≥ 17. Now, we use this result to prove the existence of even magic constants

of the form 4t+ 4, t ≥ 8.

Theorem 2.10. For all t ≥ 8, 4t+ 4 is a magic constant.

Proof. Let G be a 4-regular distance magic graph of odd order. Then, |V (G)|≥ 17. By Corollary

2.4, the magic constant k of this graph G is given by k = 4(|V |+1)
2

= 2|V |+2. If we write |V |= 2t+1,

where t ≥ 8, then k = 4t+ 4. This proves the theorem.

Theorem 2.11. No regular graph admits magic constant 16.
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Proof. We know that, if 16 is a magic constant of an r-regular graph G on n vertices then by

Corollary 2.4, k = r(n+1)
2

and n ≤ k. This implies n = 32
r
− 1. Since n is an integer, we have

r = 1, 2, 4, 8, 16, or 32. Since G is r-regular graph on n vertices, we must have n > r. Therefore, we

discard the possibilities r = 8, 16 and 32. With r = 4 we get n = 7 < 17. Therefore, by Theorem 2.5,

r = 4 is not possible, and hence we discard this possibility. There cannot be 1-regular distance magic

graph on 32 vertices. Therefore, we discard the case r = 1. Recall that, if r = 2 then G is union of

disjoint copies of C4. Hence, by Theorem 2.6, the magic constant k ≡ 1 (mod 4). But k = 16 and

16 ̸≡ 1 (mod 4). Therefore, we discard the case r = 2. This completes the proof.

We already know that the integers 1, 2, 4, 6, 8 and 12 are not magic constants [7], while 10, 20

[7], and 24 [16] are magic constants, as shown in Figures 3, 6, 8, respectively. Also, we will see

in Section 3 that these distance magic graphs can also be generated using our algorithm with the

given magic constants. Theorems 2.9 and 2.10 provide further insights into the nature of the set of

magic constants. Theorem 2.9 reveals that all positive integers congruent to 2 (mod 4), with the

exceptions of 2 and 6, are the members of the set of magic constants. Meanwhile, Theorem 2.10

establishes that all positive integers greater than or equal to 36 and congruent to 0 (mod 4) are also

in the set of magic constants.

5

6 15

14 7

8 13

12 2 3 4 11

1 9 10

G(15, 20) = 2C4 ∪K3,4

Fig. 3. Distance magic graph with magic constant 20

As a result, the only remaining even positive integers requiring examination as magic constants

are 16, 28, and 32. We devise an algorithmic approach to determine whether these integers qualify as

magic constants of some graphs. Thus, we obtain a complete characterization of all magic constants

(see Theorem 5.1).

Consider the following example given in [12]: If the generalized Myclielskian of the complete

bipartite graph µm(Ka,b) is distance magic, then by Theorem 2.2, its magic constant is given by

k = (m(a+b)+a+b+1)(m(a+b)+a+b+2)
2m+3

. When a = b = 1, then k = 2m + 4, which is an integer, but

K1,1
∼= K2 and µm(K2) is not distance magic. On the other hand, for the case where a = b = 2

and m ≥ 1, k is an integer 8m + 10 and µm(K2,2) is distance magic. When k is not an integer,

Theorem 2.2 implies that G is not distance magic. However, when k is an integer G may or may not

be distance magic.

Therefore, it is noteworthy that given a graph G and the exact value of γft(G), one can compute

the value of (the magic constant) k, but it is not possible to decide whether the underlying graph G

is distance magic or not using Theorem 2.2. Even if the fraction n(n+1)
2γft(G)

is an integer, the graph G

may or may not be distance magic.

The algorithm that we describe below is a natural way to construct distance magic graphs, and it

has been adopted previously for smaller order graphs (see Chapter 2, [7]). Here, we give a general

and robust version of the same.
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3. A Backtracking Algorithm for Generating Distance Magic Graphs

and Magic Constants

Given positive integers n and k, our algorithm checks if there exists a distance magic graph with

vertex set {1, 2, . . . , n} and a magic constant k. We denote such graphs as G(n, k). Without loss of

generality, we may assume that each vertex i is labeled as i for 1 ≤ i ≤ n. The algorithm returns

the �rst successful search if such a distance magic graph exists.

Let S be the set of all subsets of the set {1, 2, . . . , n} with the sum of its elements equal to k. For

each 1 ≤ i ≤ n, let NS(i) = {T ∈ S : i ̸∈ T}. Note that if there exists a distance magic graph

G(n, k), then the neighborhood of a vertex i, N(i), is a member of NS(i). Next, �x a neighborhood

of a vertex n, that is, an element of NS(n), and construct a tree rooted at N(n) in the following

manner. At level 0, we have only the root node. Add all elements in NS(n− 1) as children to N(n).

This is level 1. Add elements of NS(n − 2) as children to each node in level 1. This is level 2.

Continue until we add all elements in NS(1) to each node in level n − 1. Note that at level i ≥ 1,

each node of this tree T (n, k) is a possible candidate for a N(n− i). Each branch of this tree T (n, k)

gives an adjacency list for the vertices 1, 2, . . . , n. These lists may or may not correspond to a graph.

Whenever adjacency lists corresponding to a branch give a graph, we call such a branch a successful

branch.

3.1. Algorithm

The algorithm consists of the following steps:

Step 1. Generate all subsets of the set {1, 2, . . . , n} that have the sum of its elements equal to k.

Step 2. For each vertex 1 ≤ i ≤ n, construct NS(i).

Step 3. Construct a rooted tree T (n, k) with a root as a �xed element of NS(n).

Step 4. For a tree T (n, k) obtained in Step (3), �nd a successful branch. Repeat Steps (3) and (4) for

each element of NS(n) until we �nd a successful branch or run out of elements in NS(n).

To optimize the search space, we merge Step (3) and Step (4) into a new streamlined Step (3′), as

below.

Step 3′. We explore the branches of T (n, k) as discussed in Step (3) and Step (4) with the following

condition. Let the tree be constructed to the level i(0 ≤ i ≤ n − 2) and NS(n − i) =

{s1, s2, . . . , sti}, NS(n− (i+1)) = {r1, r2, . . . , rth}. Next, while adding children rb at level i+1

to any of the nodes sa we will check the following two conditions.

n− (i+ 1) is in any of it's ancestors at level j ≤ i if and only if n− j ∈ rb. (1)

and

neighborhood sum of sa does not exceed k. (2)

The part (1) of the Step (3′) ensures symmetry, which means that u is adjacent to v if and only if

v is adjacent to u. The part (2) of Step (3′) ensures that the neighborhood sum of any vertex at any

stage does not exceed the magic constant k. Although this condition may not seem critical at this

point, it plays a crucial role in controlling the growth of the tree (see Section 3.3). If at least one of

the conditions (1) or (2) stated in Step 3′ are not met at any step, we avoid adding the corresponding

node, preventing further growth of the tree below that node. This reduction strategy signi�cantly
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reduces the order and therefore the size of the tree T (n, k), leading to an exponential reduction in

the search space.

Step (1) uses backtracking to generate subsets of {1, 2, . . . , n} of the given sum k. The Step (3′)

of the algorithm involves a backtracking strategy in the process of �nding a successful branch in

the constructed tree T (n, k). The algorithm systematically explores the branches of each rooted

tree, corresponding to a di�erent choice of elements from the set NS(n). If, during this exploration,

it is determined that a particular branch cannot lead to success, the algorithm backtracks to the

previous decision point and explores alternative branches. This backtracking mechanism allows for

an exhaustive search of the solution space, ensuring that all possible combinations of elements are

considered. The backtracking in Step (3′) is crucial to e�ciently navigate the complex solution space

represented by the tree, avoiding unnecessary computations and ultimately identifying successful

branches of T (n, k).

We provide the pseudocode for the algorithm in the Appendix.

3.2. Proof of correctness

It is su�cient to prove that every G(n, k) graph corresponds to a (successful) branch of some T (n, k)

and each successful branch of each T (n, k) corresponds to some graph G(n, k). This follows by

observing that if T (n, k) has a successful branch, then the nodes on that branch constitute a graph

G(n, k).

Conversely, suppose that there is a graph G(n, k). Consider a tree T (n, k) rooted at some element

r of NS(n). There is a one-to-one correspondence between branches of T (n, k) and the elements

of the cartesian product NS(n − 1) × NS(n − 2) × . . . × NS(1). The neighborhood N(i) of each

vertex i is a member of NS(i). Hence, (N(n− 1), N(n− 2), . . . , N(1)) is an element of the cartesian

product NS(n − 1) × NS(n − 2) × . . . × NS(1). Thus, it corresponds to some branch of T (n, k).

This establishes the correctness of the algorithm.

3.3. Illustration for G(7,7)

Let us illustrate the steps of our algorithm with G(7, 7). By Theorem 2.7, we know that there is only

one graph P3 ∪ C4 up to isomorphism on 7 vertices admitting the magic constant 7. All subsets of

the set {1, 2, . . . , 7} having sum 7 are:

[[7], [6, 1], [5, 2], [4, 3], [4, 2, 1]].

We have listed all the subsets as a list of lists for the proper indexing purpose in the pseudocode.

This completes Step 1. Next, we generate all possible neighborhood sets for each vertex as suggested

in Step 2.

NS(1) =[[7], [5, 2], [4, 3]]

NS(2) =[[7], [6, 1] [4, 3]]

NS(3) =[[7], [6, 1], [5, 2], [4, 2, 1]]

NS(4) =[[7], [6, 1], [5, 2]]

NS(5) =[[7], [6, 1], [4, 3] [4, 2, 1]]

NS(6) =[[7], [5, 2], [4, 3], [4, 2, 1]]

NS(7) =[[6, 1], [5, 2], [4, 3], [4, 2, 1]]
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Now we construct a tree T (7, 7) rooted at the node [6, 1] from NS(7). This makes N(7) = [6, 1].

Add all elements of the set NS(6) as children to the root node as shown in Figure 4. The set of

possible candidates for N(6) is

NS(6) =[[7], [5, 2], [4, 3], [4, 2, 1]].

We have chosen NS(7) = [6, 1], to maintain symmetry as stated in (1) of Step 3′, we must have

7 ∈ N(6). The only such element in NS(6) is [7]. Hence, we discard all other nodes in the level

1, and the tree won't grow further below those nodes. Now we go to level 2. The set of possible

candidates for N(5) is

NS(5) =[[7], [6, 1], [4, 3] [4, 2, 1]].

So far we have N(7) = [6, 1] and N(6) = [7]. Since 5 ̸∈ N(6) ∪ N(7), 6, 7 ̸∈ N(5) maintaining the

condition given in (1) of Step 3′. Then the only choices for N(5) are [4, 3] and [4, 2, 1]. Without loss

of generality, consider N(5) = [4, 3]. Now we go to the level 3. The set of possible candidates for

N(4) is

NS(4) =[[7], [6, 1], [5, 2]].

So far we have N(7) = [6, 1], N(6) = [7] and N(5) = [4, 3]. Here 4 ̸∈ N(6)∪N(7) hence 6, 7 ̸∈ N(4)

but 4 ∈ N(5) hence N(4) must contain 5. The only choice for N(4) is [5, 2]. We continue in a similar

way, and lastly, we add pendants [7], [5, 2], and [4, 3] from the set NS(1). For N(1) we discard the

nodes [5, 2] and [4, 3] because 1 ̸∈ N(j) for any j = 2, 3, 4, 5 and N(1) must contain 7 since 1 ∈ N(7),

hence maintaining symmetry condition as given in (1) of Step 3′.

In Figure 4, we have illustrated a case of a successful branch (colored blue).

Now let us consider a case where we select the node [4, 2, 1] instead of [4, 3] at the level 2 (see

the red colored branch in Figure 4). In this case, so far we have N(7) = [6, 1], N(6) = [7] and

N(5) = [4, 2, 1]. Then we go to level 3. The set of possible candidates for N(4) is:

NS(4) =[[7], [6, 1], [5, 2]].

Since 4 ̸∈ N(6) ∪ N(7) but 4 ∈ N(5), we must have 6, 7 ̸∈ N(4) but 5 ∈ N(4). The only such

possibility is [5, 2]. But then 4, 5 ∈ N(2) and the neighborhood sum of the vertex 2 is more than

k = 7. This violates the condition (2) of Step 3′. Therefore, N(4) has no choices and we discard this

unsuccessful branch. This discarded branch is shown in red color in Figure 4.

3.4. Graphs output with our algorithm

For a distance magic graph G on n vertices with distance magic labeling f and magic constant k, it

is easily seen that
∑

v∈V deg(v)f(v) = nk [14]. For any vertex v, 1 ≤ δ(G) ≤ deg(v) ≤ ∆(G) ≤ n−1.

Hence, we have an upper bound k ≤ n2−1
2

. By the de�nition of the distance magic graph, k cannot

be less than n. Hence, we have n ≤ k ≤ n2−1
2

, and the lower bound is sharp. Therefore, to check

whether a given positive integer k is a magic constant, we need to run the algorithm for each pair

(n, k), where 1 ≤ n ≤ k. Let α be the largest positive integer such that α(α+1)
2
≤ k. Hence, running

the algorithm for the pairs (n, k), where α ≤ n ≤ k is su�cient. For example, for k = 16, the

possibilities for n are 6, 7, . . . , 16. Further, we can omit a few values in some cases, as mentioned in

(Chapter 2, [7]).

Our algorithm explores the possibility of k = 16 being the magic constant for the graphs on a

possible number of vertices n. However, �ndings show that no graph admits the magic constant 16.
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[6, 1]

[7]

[7] [6, 1] [4, 3]

[7] [6, 1] [5, 2]

[7] [6, 1] [5, 2]

[7] [6, 1] [4, 3]

[7] [5, 2] [4, 3]

[4, 2, 1]

[4, 2, 1]

NOT POSSIBLE

[5, 2] [4, 3] [4, 2, 1]

N(7)

N(6)

N(5)

N(4)

N(3)

N(2)

N(1)

Fig. 4. A tree T (n, k) rooted at [6, 1] with a successful branch

The algorithm generates multiple graphs that admit 28 and 32 as magic constants. As a representative

example, we list one of the such graphs in Figure 5. Due to the large number of non-isomorphic

distance magic graphs of order 11 and 12 (see Table 1), we will list all non-isomorphic distance magic

graphs of order up to 10 (see Section 4).

number of vertices: n 3 4 5 6 7 8 9 10 11 12

number of non-isomorphic distance magic graphs 1 1 1 1 3 6 5 5 74 1160

Table 1. Number of non-isomorphic distance magic graphs of order up to 12

4. Distance magic graphs of order up to 10

In this section, we list all non-isomorphic distance magic graphs of order up to 10 in Figures 6�10.
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1

2

34

5

6

7

8

9 10

11

12

13

G(13, 28)

1

2
3

4

5

6

7

8
9

10

11

12

G(12, 32)

Fig. 5. Distance magic graphs with magic constants 28 and 32

1 3 2

G(3, 3) 1

2 4

3

G(4, 5)

1

2 4

3

5

G(5, 10)

1

23

4

5 6

G(6, 14)

Fig. 6. Non-isomorphic distance magic graphs of order up to 6

1 7 6
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3 5

4

G1(7, 7) = P3 ∪ C4

1 2 4 7

3 5 6

G(7, 14) = K3,4

1
2

3

4

5
6

7

G3(7, 21)

Fig. 7. Non-isomorphic distance magic graphs of order 7
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1

2 8

7 3

4 6

5

G1(8, 9) = 2C4
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G2(8, 18)
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G3(8, 18)
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G4(8, 24)
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G5(8, 24)
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G6(8, 27)

Fig. 8. Non-isomorphic distance magic graphs of order 8
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Fig. 9. Non-isomorphic distance magic graphs of order 9
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Fig. 10. Non-isomorphic distance magic graphs of order 10
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5. Conclusions

There is no known polynomial-time algorithm to generate distance magic graphs on a given number

of vertices and a given magic constant. Our algorithm presented in Section 3 is practically im-

plementable for considerably large order distance magic graphs. This algorithm can be extended to

generate D-distance magic graphs introduced by O'Neal et al. [10]. Let G be a graph and let diam(G)

denote the diameter of G. Let D ⊂ {1, 2, . . . , diam(G)} and let W be a multiset of positive real num-

bers of size equal to the number of vertices in G. A graph G is said to be D-distance magic if there

is a bijection f : V (G) → W such that w(x) = k for all vertices x, where w(x) =
∑

{y:d(y,x)∈D} f(y)

and d(x, y) denotes the distance between x and y.

With the results known earlier and those veri�ed in this paper, the magic constants are now

completely characterized, and we have the following theorem.

Theorem 5.1. All positive integers except 1, 2, 4, 6, 8, 12, and 16 are magic constants.

Not all magic constants arise from connected graphs. Also, for some integers, for example, n = k =

7, there is a unique distance magic graph G(n, k). This naturally leads to the following questions.

(a) Which magic constants are realized by connected distance magic graphs?

(b) For which pairs (n, k), there is unique distance magic graph on n vertices with magic constant

k?

We conclude by observing that it would be interesting to �nd a non-algorithmic proof for the case

k = 16.

Acknowledgements

The authors are grateful to Atharva Karandikar and Satyaprasad for their invaluable assistance in

implementing the algorithm.

References

[1] S. Arumugam, D. Froncek, and N. Kamatchi. Distance magic graphs�A survey. Journal of the In-

donesian Mathematical Society, (Special edition):11�26, 2011.

[2] S. Arumugam, N. Kamatchi, and G. R. Vijayakumar. On the uniqueness of D-vertex magic constant.

Discussiones Mathematicae. Graph Theory, 34(2):279�286, 2014. 10.7151/dmgt.1728.

[3] B. François, F. Raquel, M. Miller, P. Helmut, and V. Ehsan. A heuristic for magic and antimagic graph

labellings. In Proc. VII Spanish Congress on Metaheuristics and Evolutive and Bioinspired Algorithms

2010, pages 677�684, 2010.

[4] J. A. Gallian. A dynamic survey of graph labeling (25th edition). Electronic Journal of Combinatorics,

5:Dynamic Survey 6, 43, 2022.

[5] A. Godinho and T. Singh. Some distance magic graphs. AKCE International Journal of Graphs and

Combinatorics, 15(1):1�6, 2018. 10.1016/j.akcej.2018.02.004.

[6] M. Jinnah. On Σ-labelled graphs. In B. Acharya and S. Hedge, editors, Technical Proceedings of Group

Discussion on Graph Labeling Problems, pages 71�77. NITK Surathkal, 1999.

10.7151/dmgt.1728
10.1016/j.akcej.2018.02.004


300 Pawar et al.

[7] N. Kamatchi. Distance Magic and Distance Antimagic Labelings of Graphs. PhD Thesis, Kalasalingam

Academy of Research and Education, Krishnankoil, Srivilliputhur, Tamil Nadu, June 2012.

[8] P. Ková°, D. Fron£ek, and T. Ková°ová. A note on 4-regular distance magic graphs. The Australasian

Journal of Combinatorics, 54:127�132, 2012.

[9] M. Miller, C. Rodger, and R. Simanjuntak. Distance magic labelings of graphs. The Australasian

Journal of Combinatorics, 28:305�315, 2003.

[10] A. O'Neal and P. J. Slater. An introduction to distance D magic graphs. Journal of the Indonesian

Mathematical Society, (Special edition):91�107, 2011.

[11] A. O'Neal and P. J. Slater. Uniqueness of vertex magic constants. SIAM Journal on Discrete Mathe-

matics, 27(2):708�716, 2013. 10.1137/110834421.

[12] R. Pawar and T. Singh. Distance magic labeling of generalised mycielskian graphs. arXiv:2306.07578,

2023.

[13] S. Rao, T. Singh, and V. Parmeswaran. Some sigma labelled graphs i. In S. Arumugam, B. Acharya,

and S. Rao, editors, Graphs, Combinatorics, Algorithms and Applications, pages 135�140. Narosa Pub-

lishing House, New Delhi, 2008.

[14] V. Vilfred. Σ-Labelled Graphs and Circulant Graphs. Ph.D. Thesis, University of Kerala, Trivandrum,

Kerala, India, 1994.

[15] D. B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, Sept. 2000.

[16] F. Yasin and R. Simanjuntak. A heuristic for distance magic labeling. 74:100�104, 2015. https://

doi.org/10.1016/j.procs.2015.12.083. �The 2nd International Conference of Graph Theory and

Information Security�.

10.1137/110834421
https://doi.org/10.1016/j.procs.2015.12.083
https://doi.org/10.1016/j.procs.2015.12.083


complete characterization of magic constants 301

Appendix

Algorithm Distance magic graph generator

1: � To generate k-sum subsets

2: function getSubset(A, k, n, ans,List)

3: A← list of integers from 1 to n

4: ans← empty list

5: List← empty list

6: if k = 0 then

7: ans1← ans

8: List.append(ans1)

9: return

10: if k ̸= 0 and n = length of A− 1 then

11: return

12: if k − A[n] ≥ 0 then

13: ans.append(A[n])

14: getSubset(A, k − A[n], n− 1, ans,List) ▷ include the element

15: ans.pop()

16: getSubset(A, k, n− 1, ans, List) ▷ do not include the element

17: � To generate neighborhood sets NS

18: function generate_neighbors(n, k)

19: getSubset(A, k, n− 1, ans, List)

20: neighborhoods← empty list

21: for i← 1 to n do

22: Ni ← empty list

23: for each subset in List do

24: if i /∈ subset then

25: Ni ← append subset to Ni

26: append Ni to neighborhoods

27: return neighborhoods

28: adj← list of empty lists of size n+ 1

29: sum_list← list of n+ 1 elements initialized to 0

30: cnt_depth← 0

31: successful← list containing a single element 0

32: N ← generate_neighbors(n, k)

33: N.insert(0, [ ])

34: function is_symmetric(adj, n, depth) ▷ Checks the condition in (1) in Step 3′

35: for i← n to depth− 1 do

36: for each neighbor in adj[i] do

37: if neighbor ≤ depth then

38: continue

39: if i /∈ adj[neighbor] then

40: return False
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(Continued)

1: function check(adj_list, sum_list) ▷ Checks the condition given in (2) in Step 3′

2: done← 1

3: for i← 1 to length of adj_list do

4: if sum_list[i] ̸= k then

5: done← 0

6: break

7: � To construct a tree T (n, k) and explore the successful branch

8: function explorer(N, adj, depth, breadth, sum_list, successful)

9: adj[depth]← N[depth][breadth] ▷ Fixes �rst element of NS(n) as root of T (n, k)

10: if depth = 1 then

11: for i← 1 to length of adj[depth] do

12: sum_list[adj[depth][i]]← sum_list[adj[depth][i]] + depth

13: if check(adj, sum_list) and is_symmetric(adj, n, depth) then

14: successful[0]← successful[0] + 1

15: for i← 1 to length of adj[depth] do

16: sum_list[adj[depth][i]]← sum_list[adj[depth][i]]− depth

17: Print the adjacency list of the graph

18: return True

19: for i← 1 to length of adj[depth] do

20: sum_list[adj[depth][i]]← sum_list[adj[depth][i]]− depth

21: return False

22: �ag← is_symmetric(adj, n, depth)

23: for i← 1 to length of adj[depth] do

24: sum_list[adj[depth][i]]← sum_list[adj[depth][i]] + depth

25: if sum_list[adj[depth][i]] > k then

26: �ag← 0

27: if �ag = 1 then

28: for i← 1 to length of N[depth− 1] do

29: if explorer(N, adj, depth− 1, i, sum_list, successful) then

30: return True

31: for i← 1 to length of adj[depth] do

32: sum_list[adj[depth][i]]← sum_list[adj[depth][i]]− depth

33: adj[depth]← empty list

34: return False

35: for i← 1 to length of N[n] do ▷ construct T (n, k) rooted at each element in NS(n)

36: explorer(N, adj, n, i, sum_list, successful)
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