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abstract

In secret sharing, the relationships between participants and the information they hold can be mod-

eled e�ectively using graph structures. Graphs allow us to visualize and analyze these relationships,

making it easier to de�ne access structures, optimize share distributions, and ensure security. This

paper provides the �rst comprehensive review of existing research on the application of graph the-

ory to secret sharing comparing di�erent classic and modern approaches and analyzing the current

litterature. Through this study we highlight the key advances and methodologies that have been

developed, underscoring the pivotal role of graph theoretic approaches in enhancing the security and

e�ciency of secret sharing schemes. Furthermore, the review identi�es open challenges and future

research directions, providing insights into potential innovations that could further strengthen cryp-

tographic practices. This work serves as a foundational resource for researchers and practitioners

seeking to deepen their understanding of the intersection between graph theory and secret sharing,

fostering the development of more robust and sophisticated cryptographic solutions.
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1. Introduction

Secret sharing emerges as a fundamental technique in information security designed to enhance data

protection and ensure reliability across various applications. This cryptographic technique involves

dividing a secret into multiple pieces or shares, then distributed among a group of participants. The

primary objective is that only some authorized subsets of participants can reconstruct the original

secret, while unauthorized subsets are left with no useful information.
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First formalized independently by Adi Shamir [37] and George Blakley [7] in 1979. Shamir's

scheme is based on polynomial interpolation over a �nite �eld, where a secret is encoded as the

constant term of a polynomial. In contrast, Blakley's approach utilizes a geometric approach, where

the secret is represented as a point of intersection in a multidimensional space. Both schemes laid

the groundwork for a wide array of secret sharing protocols, each tailored to speci�c requirements

and security constraints. Ito et al. [25] generalized the idea of secret sharing by presenting the

notion of access structure that speci�es which groups of participants are authorized to reconstruct

the secret. Formally, an access structure Γ is a collection of subsets of a participant set P verifying

the monotonicity property, that is if A ∈ Γ is an authorized set and A ⊆ B ⊆ P , then B is also

authorized B ∈ Γ . In particular, In Shamir's scheme, the access structure is determined by a

threshold t. Let P = {x1, x2, . . . , xn} be the set of participants. The access structure Γ is de�ned as

the collection of all subsets of participants that contain at least t members Γ = {A ⊆ P : |A|≥ t}.
This access structure ensures that any subset of participants of size t or greater is authorized to

reconstruct the secret, while subsets with fewer than t participants are unauthorized. An authorized

set A ∈ Γ is said to be minimal if B ̸⊂ A for any B ∈ Γ\{A}.If minimal authorized subsets contains

two participants then their correspondant access structures can be modeled as graphs. In the general

case, access structures can be viewed as hypergraphs.

Secret sharing has since been applied in diverse areas such as secure multiparty computation [33,

35], oblivious transfer [44] and distributed systems [39, 21], etc. Its versatility makes it an essential

tool in scenarios where trust and security are paramount. For instance, in �nancial institutions, secret

sharing is employed to protect cryptographic keys, ensuring that no single individual holds complete

control over sensitive operations. Similarly, in cloud computing, it facilitates secure data storage and

access control [29, 36], mitigating the risks associated with single points of failure. It was shown that

any access structure can be realized by a perfect secret sharing scheme [25, 6], but the size of shares

was not seriously been taken in consideration. Secret sharing presents several challenges, particularly

in terms of e�ciency and scalability. As the size of the participant group grows, managing the

distribution and reconstruction of shares becomes increasingly complex. This has prompted ongoing

research into optimizing secret sharing schemes to balance security with practical implementation.

Many reviews and surveys on secret sharing has been appeared in the litterature over the years [5,

34, 13, 38], Beimel [5] surveyed secret sharing schemes in cryptography and distributed computing,

more speci�ed reviews appeared later in the litterature, Sarosh et al [34] explore secret sharing

schemes based on polynomials, the Chinese Remainder Theorem, matrix projections, and visual

secret sharing for secure communication and image sharing, while threshold secret sharing (TSS)

and its extensions like multi-secret sharing and veri�able secret sharing were reviewed in [13], but

as the best as we know, no one of those reviews explicitly studied the graph theory approach. This

gap in the literature highlights a lack of comprehensive analysis of how graph theory can be applied

to secret sharing schemes. Therefore, there appears to be no existing review that addresses this

perspective, presenting an opportunity for future research to explore the intersection of graph theory

and secret sharing.

We categrize the use of graph theory in secret sharing into classical and modern approaches,

each bringing unique insights and methodologies. The classical approach primarily revolves around

matrix characterizations of SSS and decomposition constructions, where the focus is on breaking

down the graph into simpler components that facilitate e�cient secret distribution and recovery.

These techniques leverage the structural properties of graphs to ensure minimal and secure access

structures. On the other hand, the modern approach encompasses more advanced methods, such
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as multipartite secret sharing, linear secret sharing schemes, and an emphasis on computational

complexity. These modern techniques provide more �exibility and e�ciency, particularly in scenarios

requiring �ne-tuned control over share sizes, information rates, and security guarantees, aligning well

with contemporary cryptographic needs.

We start in Section 2 with highlighting some needed preliminaries for the rest of the paper. In

the Section 3, we compare the strengths and limitations of each delves into the classical approach,

highlighting, comparing and analysing seminal works and key theorems that have shaped the under-

standing of graph based secret sharing schemes. Modern approaches, showcasing recent advancements

and innovative methods in the �eld are discussed in fourth section. In addition, the focus shifts to

hypergraph construction, presenting advanced techniques and their applications in improving the

e�ciency of secret sharing schemes. Finally, the last section summarizes the main points and re�ect-

ing on the broader implications of the research. he complex landscape of secret sharing and graph

theory.

In the remainder of the paper, we will use the notations listed in Table 1 below:

Symbol Description

G = (V,E) Graph G with vertex set V and edge set E

Kn The complete graph on n vertices

Kn1,n2,...,np The complete multipartite graph

Cn Cycle on n vertices

Pn Path on n+ 1 vertices

T Tree

∆(G) The maximum degree of the graph G

H(X) Entropy of random variable X

SSS Secret Sharing Scheme

LSSS Linear Secret Sharing Scheme

CMC Complete Multipartite Covering

Γ Access structure in a secret sharing scheme

K The set of possible secrets

S The set of possible shares

n Number of participants in the scheme

ρ(G) Information rate of a SSS realizing G

ρ̃(G) Average Information rate of a SSS realizing G

Table 1. List of notations used in the paper

2. Preliminaries

This section provides a brief overview of the key concepts necessary for understanding the results

discussed in this paper. These foundational topics form the basis for exploring the connections

between cryptographic secret sharing schemes and graph theory or more generally combinatorial

structures. Readers interested in a deeper dive into these subjects are encouraged to consult standard

texts on graph theory [9, 20, 24], information theory [15], and matroid theory [30].
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2.1. Graphs

A simple graph G = (V,E) consists of a �nite non empty set V of vertices together with a set E of

unordered pairs of distinct vertices called edges. Two vertices u, v ∈ V are adjacent if {u, v} ∈ E.The

degree of a vertex v is the numbre of vertices adjacent to v, the maximum of degrees in a graph G is

called the maximum degree of G denoted by ∆(G). The graph is regular if all vertices have the same

degree. A graph of n vertices in which any two vertices are adjacent is called the complete graph

Kn. A graph is said to be complete multipartite Kn1,n2,...,np if its vertex set can be partitionned into

p subsests of ni vertices (1 ≤ i ≤ p) such that for any edge uv, the vertices u and v are in di�erent

subsets. If p = 2, the graph is called bipartite. A walk of a graph G is a sequence of adjacent vertices

v0, v1, . . . , vn−1, vn. The length of the walk n. If v0 = vn, the walk is said to be closed, a closed walk

with n ≥ 3 vertices is called a cycle, and we denote it by Cn. A walk is called a path Pn if all the

vertices are distinct. A graph G is said to be connected if any two vertices are joined by a path. The

girth of G is the length of its smallest cycle. A subgraph G1 = (V1, E1) of G is a graph such that

V1 ⊆ V and E1 ⊆ E. A tree is a connected acyclic graph in which every two vertices are connected

by a unique path, any tree with n vertices has n− 1 edges.

2.2. Secret sharing scheme (SSS)

A secret sharing scheme allows a secret to be distributed among n participants, ensuring that only

authorized subsets can reconstruct the secret. Moreover, if unauthorized subsets gain no information

about then the secret sharing scheme is called perfect. Let Γ be an access structure on a set P of n

participants, and let s be a secret from K the set of possible secrets (keys), assign to each participant

x ∈ P a random share from a set of possible shares Sx. The shares are then considered random

variables with a joint distribution that is determined by the secret s. A secret sharing scheme is a

collection of n + 1 random variables, one for the secret itself and one for each participant x ∈ P .

The information rate of the share given to x ∈ P is de�ned to be ρi =
log |K|
log |Sx|

and the information

rate of the SSS is ρ = minx∈P ρi. It is necessary in a perfect scheme that |K|≤ |Sx| for any x ∈ P ,

because if it is not the case multiple di�erent secrets could correspond to the same set of shares. This

would create ambiguity during reconstruction. One can remark that ρ ≤ 1, in the case of equality

the SSS is called ideal. The average information rate is de�ned to be ρ̃ =
n.log |K|∑
x∈P log |Sx|

, where Sx

is the set of possible shares for the participant x. A perfect SSS on a graph is a SSS realizing an

access structures that allows some pairs of participants, edges of the graph, to reconstruct the key.

A SSS is linear if K is a �eld, the sets Sx of possible shares are vector spaces over K, and the secret

secret can be recovered by A ∈ Γ using a K-linear mapping.

2.3. Realizations of graph access structures

Ito et al. [25] proved that for any access structure there exists a perfect SSS realizing it. The optimal

information rate ρ∗(G) of a graph G is the supremum of informatiom rates of SSS realizing the access

structure on G.

2.4. Entropy

Let X be a �nite set and {p(x)}x∈X a probability distribution. The entropy of X, denoted by

H(X), is de�ned to be the nonnegative quantity H(X) = −
∑

x∈X p(x) log p(x). It is an information
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theoritic tool that measures the average information content of the elements in X, and approximates

the average number of bits needed to represent the elements of X faithfully. If X and Y are two �nite

sets and {p(x, y)}x∈X,y∈Y is a joint probability distribution on the Cartesian product X × Y , then

the conditional entropy H(X|Y ) of X assuming Y is de�ned as H(X|Y ) =
∑

y∈Y p(y)H(X|Y = y),

where H(X|Y = y) represents the entropy of X given a speci�c value Y = y.

A SSS is perfect if the following two conditions are satis�ed: H(s|A) = 0 for any A ∈ Γ, and

H(s|A) = H(s) for any A /∈ Γ.

The entropy H(s) of the secret can be viewed as the "length" of the secret. Any lower bound on

the entropy of x ∈ P immediately gives a lower bound on the size of x's share: if H(x) ≥ αH(s),

then x's share is at least α times the size of the secret. The concept of entropy is widely used to

study the information ratios.

3. Classical Approach

3.1. Matrix characterization

Secret sharing schemes (SSS) where charcterized in terms of matrices of M|K|,n+1 with n+1 columns

[10], the �rst one is indexed by the dealer D (the secret) and each of the remaining n columns are

indexed by the n participants (shares). each row is indexed by a key and n possible shares. The dealer

D distributes shares for a key K by choosing randomly a row of the matrix and distributes them in

that row. Brickell and Stinson [11] employed this linear algebraic de�nition mixed with the theory

of matroids considered as combinatorial generalizations of graphs to obtain characterizations of ideal

SSS, this approach yields intriguing results that inspired the use of graph structures to classify SSS

in particular, and motivating later works based on the integration of graph theoretic approach into

the domain of secret sharing. The characterization is articulated in the following theorem.

Theorem 3.1. [11] Suppose G is a connected graph. Then there is an ideal secret sharing scheme

on G if and only if G is a complete multipartite graph.

Example 3.2. The graph access structures below: the complete graph K4 and the graph G below

admit ideal SSS realizations since they are complete multipartite, while the path P3 does not.

(a) The complete graph K4 (b) A graph G (c) The path P3

Fig. 1.

Remark 3.3. If the graph G is not connected, then G admits an ideal secret sharing if any of its

connected components do. In the case where the graph G is connected but not complete multipartite

the optimal information rate is less than or equal
2

3
, see [8]. So either ρ∗(G) = 1 or ρ∗(G) ≤ 2

3
, there

is no SSS on a graph G such that
2

3
< ρ∗(G) < 1.
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Brickell and Stinson used the matrix characterization to deduce that for any graph G, there exists

a SSS with information rate ρ =
1

∆(G)
, as a consequence, any path Pn admits a SSS with ρ =

1

2
.

This lower bound was generalized in the following theorem, and even shown that this is the optimal

lower bound for some classes of graphs such as regular graphs of girth at least 5.

Theorem 3.4. For any graph G, there is a SSS with ρ(G) =
2

∆(G) + 3
.

In his paper "the size of a share must be large" [18], Csirmaz improved the upper bound found

by Capocelli et al. [12], and introduced tighter lower bounds using polymatroids. He de�ned a

polymatroid function to model the entropy relationships between the secret and the participants'

shares. The paper further explores the properties of this polymatroid function to derive the following

result.

Theorem 3.5. [18] For any n, there exists an access structure Γ on n participant such that any

SSS assigns a share of length about n/log n times the length of the secret to some participant.

Based on the same entropy-theoretical arguments, another improvement of these results [17] was

achieved by constructing a graph with average information rate less than 4/log n, this result was

�rst obtained for a special type of graphs called d-dimensional cube, which is a bipartite graph with

2d vertices indexed by elements of GF (2)d, two vertices are adjacent if they di�er at exactly one

position.

3.2. Decomposition construction

Blundo et al. [8] developped a construction called graph decomposition that consists of decomposing

a graph G into smaller graphs, whose union covers G, introduced at �rst in [11] and aims to obtain

optimal information rate and average information rate of secret sharing schemes realizing access

structures based on graphs and to analyze the results for speci�c classes of graphs. This construction

and variations are discussed also in [41, 12, 28, 11, 40]. Here explained the construction:

Let G be a graph, a complete multipartite covering (CMC) of G is a family Π = {G1, . . . , Gn} of

complete multipartite subgraphs of G, such that each edge of G occurs in at least one of the Gi's.

Theorem 3.6. Suppose G is a graph and Π = {G1, . . . , Gn} is a complete multipartite covering of

G. For 1 ≤ i ≤ n. For every vertex v, de�ne Rv = |{i : v ∈ Gi}|, and R = max{Rv : v ∈ V (G)}.
Then there exists SSS on G with ρ =

1

R
.

This construction can be generalized into multiple CMC's of the same graph instead of a single

CMC, it was shown that for k di�erent CMC's Πj,1 ≤ j ≤ k, there exists a SSS with ρ =
k

R
, where

R = max{
∑k

j=1 Rjv v ∈ V (G)}. Theorem 3.6 is proved using this technique by decomposing G into

complete bipartite graphs K1,m.

For the path P3, we have seen that there is a SSS with ρ =
1

2
, the same result can be obtained

with one CMC. However, usinh two CMCs one can get ρ =
2

3
which is the optimal information rate

for P3 [12]. The decomposition construction is used to obtain the following results:
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� For paths Pn with n ≥ 3, the optimal information rate is ρ∗(Pn) =
2
3
and the optimal average

information rate is ρ̃∗(Pn) =

{
2(n+1)

3n
if n is even,

2(n+1)
3n+1

if n is odd.

� For cycles Cn where n ≥ 5, the optimal information rate is ρ∗(Cn) =

{
2
3

if n is even,
2n+1
3n+2

if n is odd,
and

the optimal average information rate is

{
ρ̃∗(Cn) =

2
3

if n is even,
2n

3n+1
≤ ρ̃∗(Cn) ≤ 2

3
if n is odd.

� For any tree T with n vertices, the information rate is ρ(T ) ≥ 1
2
, and the optimal average

information rate is ρ̃∗(T ) ≥ 2n
3n−2

.

� For any connected graph hich is not complete multipartite, the average information rate ρ̃(G) ≤
n

n+1
.

� For the 30 connected graphs on at most 5 vertices, and using the CMC construction, the exact

optimal information rate and average information rate are determined in most cases, with good

upper and lower bounds for the remaining cases.

This construction uses small secret sharing schemes as building blocks in the construction of larger

schemes, the number of such �small� schemes is typically exponential in the number of the participant.

Sun et al. [42] developped a scheme in such a way that the number of �small� schemes is polynomial

in the size of the participants, which in turn gives rise to a polynomial time construction without

changing the information rate.

These results about information ratios improve limited ones in [12] which states that there are ac-

cess structures with four participants for which any secret sharing scheme must give some participant

a share that is at least 50% larger than the secret size. Despite the interesting results provded in [8],

authors did not address some practical aspects of secret sharing schemes, such as protecting against

cheating, dealing with disenrollment of participants, and handling multiple secrets. Many develope-

ments in this area appeared in the literature over the years leading to interesting achievements [43,

45, 16, 23, 1].

3.3. Hypergraph decomposition

The concept of graph decomposition was extended to hypergraphs by Di Crescenzo and Galdi [16]. A

hypergraph is a generalization of a graph in the sens that a hyperedge can join any number of vertices,

while an edge joins two vertices of a graph. More formally, a hypergraph H = (V,E) where V is

the vertex set and E a set of subsets of V . The advantage of hypergraphs is that they can represent

any access structures, not only those with minimal authorized sets of two participants (which is

the case for graph-based access structures), considering the vertex set as the set of participants

and the hyperedges as minimal authorized sets. This approach revealed a novel and elementary

characterization of a class of ideal access structures, speci�cally hyperstars. The key idea behind

the hypergraph decomposition technique is to decompose a hypergraph into smaller hypergraphs

whose union covers the original hypergraph, and then represent the ideal access structures using

these smaller hypergraphs. Beimel [1] used this technique to construct speci�c k-hypergraph access

structures and prove new lower bounds on the total share size. They de�ne two families of k-

hypergraph access structures, k − CSIn and k − TotCSIn, and analyze the share size requirements

for realizing these access structures.
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Even the problem of �nding optimal hypergraph decomposition can be solved e�ciently for certain

special types of hypergraphs, namely hyperpaths, hypercycles, hyperstars and acyclic hypergraphs,

it is NP -complete for general hypergraphs.

The Table 2 compares di�erent decomposition constructions on di�erent types of graphs and

hypergraphs with their contributions to the �eld.

Paper Construction

Method

Types of Graphs Contribution

Blundo et al. [8], (1995) graph decomposition connected graphs Optimal information rate for

paths and even-length cycles is

2/3. Optimal average informa-

tion rate schemes are constructed

for paths and even-length cycles.

For any tree, schemes with infor-

mation rate at least 1/2 and aver-

age information rate at least 2/3.

Study of the 30 connected graphs

on at most 5 vertices.

Sun et al. [43], (2002) Weighted decomposi-

tion construction

connected graphs on

six vertices

improve the information rates in

four cases of graphs on six vertices

G9, G22, G40, andG61 out of the 18

cases

Van Dijk et al. [45], (2006) (λ, ω)-decomposition connected graphs on

six vertices

(6, 1)-decomposition with opti-

mal worst-case information rate

of 5/9 (4, 1)-decomposition with

optimal worst-case information

rate of 3/5 (7, 3)-decomposition

with optimal worst-case informa-

tion rate of 4/7

Di Crescenzo et al. [16], (2009) Hypergraph decompo-

sition

Hypergraphs optimal SSS for hyperpaths and

hypercycles characterization of

ideal hyperstars upper and lower

bounds on the information rate

and average information rate for

hyperpaths, hypercycles, hyper-

stars and acyclic hypergraphs op-

timal hypergraph decomposition

is NP-complete for general hyper-

graphs

Garahi et al. [23] (2019) (λ, ω)-Weighted de-

composition

connected graphs on

six vertices

Exact value of optimal linear in-

formation rate of the remaining

seven graphs provide a new upper

bound on the optimal information

rate

Beimel [1] (2023) k-hypergraph con-

struction

Hypergraphs the share size of two families

of k-hypergraphs, k-CSIn and k-

TotCSIn

Table 2. Comparison of di�erent graph decomposition constructions in secret sharing

Qi Chen et al. [14] extended this study to ideal uniform multipartite secret sharing schemes based

on polymatroids, their main idea was to construct ideal linear secret sharing schemes using two

di�erent approaches, the �rst one uses Gabidulin codes[22] leading to schemes where the size of the
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shares and secret is polynomial in the number of participants, the second approach consists of using

linear algebraic techniques results in e�cient schemes when the number of parts is small compared

to the number of participants. As an application, authors mention their own ongoing work aiming

the design of practical distributed cryptographic protocols in the scenario of blockchain by these

schemes. Table 3 provides a comparison between two recent approaches represented by Qi Chen et

al. [14] (2024) and Csirmaz et al. [19] (2024).

Aspect Qi Chen et al. [14] (2024) Csirmaz et al. [19] (2024)

Graph structure Multipartite Bipartite

Paper investigation Construction of ideal linear schemes for

ideal uniform multipartite access struc-

tures.

Exploring the use of bipartite construc-

tions through matroid theory in SSS.

Techniques Polymatoids, Gabidulin codes and lin-

ear algebraic techniques

Matroids, polymatroids and submodu-

lar optimization

Applications threshold cryptography, secure mul-

tiparty computations, and oblivious

transfer

group signatures, secure �le storage,

and secure multiparty computation

Table 3. Comparison of key aspects between Qi Chen et al. [14] and Csirmaz et al. [19]

4. Modern Approach

4.1. Multipartite secret sharing

Multipartite access structures motivated by [27], are a generalization of threshold secret sharing,

where participants are divided into di�erent classes, participants in the same class play an equivalent

role. If the number of these classes is two, we are then talking about bipartite access structure.

U1

U2

U3

U4

V1

V2

V3

V4

Fig. 2. A bipartite graph access structure, the two classes are {U1, U2, U3, U4} and {V1, V2, V3, V4}

Bipartite access structures divide the set of participants into two classes, where all participants in

the same class play an equivalent role (Figure 2). Pàdro et al. [31] completely characterized ideal

secret sharing schemes realizing bipartite access structures, while the optimal information rate of a

non-ideal bipartite access structure is at most 1/2. One can conclude that there is no bipartite access

structure that can be realized with an optimal information rate between 1/2 to 1. A technical mistake

in [31] was noticed by Michael J. Collins concerning the characterization of a class of threshold access

structures, and was corrected by the same authors in [32].
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4.2. Linear secret sharing schemes and complexity

For more than two decades, the lower bound Ω(n2/log n) provided by Csirmaz [18] on the average

information rate remained the best but still far from the upper bound. In the special case of dense

graphs on n vertices [2] that contains at least

(
n

2

)
− n1+β edges with 0 ≤ β < 1, there exists a SSS

with average information rate Õ(n
5
4
+ 3β

4 ). If 0 ≤ β < 1
2
, then there is a linear SSS [4] with average

information rate O
(
n

7
6
+ 2β

3

)
.

Beimel et al. [3] constructed e�cient linear SSS for graph access structures, which include sparse

and dense graphs. Recall that a sparse graph of n vertices is a graph n1+β edges, with 0 ≤ β < 1.

Their constructions took in consideration at �rst the bipartite cases and then obtained the following

result in the general case.

Theorem 4.1. [3] Let G = (V,E) be a graph with n vertices such that either |E|≤ n1+β or |E|≥(
n

2

)
− n1+β, for some constant 0 ≤ β < 1. Then, there is a linear secret-sharing scheme realizing G

in which the share size of each vertex is O
(
n1/3+β/6 log3 n

)
, and the total share size of this scheme

is O
(
n1+β/2 log3 n

)
.

Adding or removing at most n1+β edges, for some constant 0 ≤ β < 1 from a graph G = (V,E)

with n vertices that can be realized by a secret-sharing scheme in which the maximum share size is

ℓ, and the total share size is m, results a graph G0 that can be realized by a SSS with the following

properties:

� The total share size m+O
(
n1+β/2 log3 n

)
and maximum share size ℓ+O

(
n1/3+β/6 log3 n

)
� The maximum share size ℓ+O

(
n1/4+β/4 log3 n

)
.

If the scheme that realizes G is linear, then these schemes are also linear.

5. Conclusion

To our knowledge, this is the �rst review that explored the intricate relationship between secret

sharing schemes and graph theory, two domains that have witnessed signi�cant advancements in

recent years. The convergence of these �elds has led to new approaches that not only enhance the

theoretical understanding of secret sharing but also improve its practical applications. Our results

identi�ed several key developments, including the use of graph theoretic properties to optimize secret

sharing schemes. These approaches have demonstrated potential in minimizing the number of shares

required for secret reconstruction and enhancing the security of the sharing process. By leveraging

the inherent properties of graphs, several researches have developed more e�cient and robust secret

sharing protocols that are resilient to various attacks. Furthermore, the synthesis of the literature

highlighted the importance of interdisciplinary collaboration, as the integration of graph theory into

secret sharing has opened new avenues for research and application. The review also underscored the

need for continued exploration of complex graph structures and their potential to address existing

challenges in secret sharing, such as scalability and dynamic participant management.

Despite the progress made, several gaps remain, particularly in the application of advanced graph

theoretic techniques to real world scenarios. Future research should focus on bridging these gaps,

with an emphasis on developing adaptive and scalable secret sharing models that can accommodate
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the ever-evolving landscape of digital communication and data security. One promising direction lies

in leveraging advanced graph structures, such as hypergraphs, Cayley graphs, and Schreier graphs in

their relationship to SSS characterized in terms of group structures [26], to design more e�cient and

scalable SSS. The growing complexity of distributed systems and multi-party computations also

invites further investigation into the trade-o�s between share size, information rate, and security

in both classical and modern graph-theoretic approaches. Additionally, as cryptographic demands

evolve with applications in quantum computing and homomorphic encryption, there is an increasing

need to re�ne linear secret-sharing schemes to accommodate more sophisticated access structures

and improve computational e�ciency. In conclusion, future research will likely focus on pushing the

boundaries of existing methods while exploring new ways to harness the rich structure of graphs for

cutting-edge cryptographic solutions.

References

[1] A. Beimel. Lower bounds for secret-sharing schemes for k-hypergraphs, 2023. Schloss Dagstuhl �

Leibniz-Zentrum für Informatik.

[2] A. Beimel, O. Farràs, and Y. Mintz. Secret-sharing schemes for very dense graphs. Journal of Cryptol-

ogy, 29(2):336�362, 2016.

[3] A. Beimel, O. Farràs, Y. Mintz, and N. Peter. Linear secret-sharing schemes for forbidden graph access

structures. IEEE Transactions on Information Theory, 68(3):2083�2100, Mar. 2022.

[4] A. Beimel, O. Farràs, and N. Peter. Secret sharing schemes for dense forbidden graphs. In Interna-

tional Conference on Security and Cryptography for Networks, pages 509�528. Springer International

Publishing, Aug. 2016.

[5] A. Beimel. Secret-sharing schemes: a survey. In International Conference on Coding and Cryptology.

Springer, Berlin, Heidelberg, 2011.

[6] J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In CRYPTO, pages 27�

35, 1990.

[7] G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of the National Computer Conference,

volume 48, pages 313�317, 1979.

[8] C. Blundo, A. D. Santis, D. Stinson, and U. Vaccaro. Graph decompositions and secret sharing schemes.

Journal of Cryptology, Dec. 1995.

[9] J. Bondy and U. Murty. Graph Theory, volume 244 of GTM. Springer, London, 2008.

[10] E. F. Brickell and D. M. Davenport. On the classi�cation of ideal secret sharing schemes. Journal of

Cryptology, 4(2):123�134, Jan. 1991.

[11] E. F. Brickell and D. R. Stinson. Some improved bounds on the information rate of perfect secret

sharing schemes. Journal of Cryptology, 5:153�166, 1992.

[12] R. Capocelli, A. D. Santis, L. Gargano, and U. Vaccaro. On the size of shares for secret sharing schemes.

Journal of Cryptology, 6:157�167, 1993.

[13] A. K. Chattopadhyay, S. Saha, A. Nag, and S. Nandi. Secret sharing: a comprehensive survey, taxonomy

and applications. Computer Science Review, Feb. 2024.

[14] Q. Chen, X. Ren, L. Hu, and Y. Cao. Ideal uniform multipartite secret sharing schemes. Information

Sciences, 655, 2024.

[15] T. M. Cover. Elements of Information Theory. John Wiley and Sons, 1999.



72 m. akdim and a. drissi

[16] G. D. Crescenzo and C. Galdi. Hypergraph decomposition and secret sharing. Discrete Applied Math-

ematics, 157(4):799�811, 2009.

[17] L. Csirmaz. Secret sharing schemes on graphs. Studia Scientiarum Mathematicarum Hungarica, 44(2):297�

306, 2007.

[18] L. Csirmaz. The size of a share must be large. Journal of Cryptology, 10(4):223�231, 1997.

[19] L. Csirmaz, F. Matú², and C. Padró. Bipartite secret sharing and staircases. Discrete Mathematics,

347(5), 2024.

[20] R. Diestel. Graph Theory. Springer, 5th edition, 2017.

[21] J. Duan, J. Zhou, and Y. Li. Privacy-preserving distributed deep learning based on secret sharing.

Information Sciences, 527, 2020.

[22] E. M. Gabidulin. Theory of codes with maximum rank distance. Problems of Information Transmission,

21:1�12, 1985.

[23] M. Gharahi and S. Khazaei. Optimal linear secret sharing schemes for graph access structures on six

participants. Theoretical Computer Science, 771:1�8, 2019.

[24] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.

[25] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access structure. Electronics

and Communications in Japan (Part III: Fundamental Electronic Science), 72(9):56�64, 1989.

[26] S. Kaboli, F. Khazaei, and D. Parviz. On group-characterizability of homomorphic secret sharing

schemes. Journal of Mathematical Cryptology, 15(1):1�25, 2021.

[27] S. Kothari. Generalized linear threshold scheme. In CRYPTO 1984. Volume 196, LNCS, pages 231�

241. Springer, 1985.

[28] K. M. Martin. New secret sharing schemes from old. Journal of Combinatorial Mathematics and Com-

binatorial Computing, 14:65�77, 1993.

[29] M. Naor and A. Wool. Access control and signatures via quorum secret sharing. IEEE Transactions

on Parallel and Distributed Systems, 9(9):909�922, 1998.

[30] J. Oxley. Matroid Theory. Oxford University Press, 1992.

[31] C. Padro and G. Saez. Secret sharing schemes with bipartite access structure. IEEE Transactions on

Information Theory, 46(7):2596�2604, Nov. 2000.

[32] C. Padro and G. Saez. Correction to �secret sharing schemes with bipartite access structure�. IEEE

Transactions on Information Theory, 50(6):1373, 2004.

[33] K. Patel. Secure multiparty computation using secret sharing. In 2016 International Conference on

Signal Processing, Communication, Power and Embedded System (SCOPES). IEEE, Oct. 2016.

[34] P. Sarosh, S. A. Parah, and G. M. Bhat. Utilization of secret sharing technology for secure communi-

cation: a state-of-the-art review. Multimedia Tools and Applications, Sept. 2020.

[35] S. Schlor, M. Hertneck, S. Wildhagen, and F. Allgower. Multi-party computation enables secure poly-

nomial control based solely on secret-sharing. In 2021 60th IEEE Conference on Decision and Control

(CDC), Dec. 2021.

[36] S. Servan-Schreiber, S. Beyzerov, E. Yablon, and H. Park. Private access control for function secret

sharing. In 2023 IEEE Symposium on Security and Privacy (SP), pages 809�828, San Francisco, CA,

USA, 2023.

[37] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612�613, 1979.



A Comprehensive Review of Graph Theory 73

[38] G. J. Simmons. How to (really) share a secret. In Conference on the Theory and Application of Cryp-

tography, pages 390�448. Springer New York, Aug. 1988.

[39] M. Soleymani and H. Mahdavifar. Distributed multi-user secret sharing. In 2018 IEEE International

Symposium on Information Theory (ISIT), 2018.

[40] D. R. Stinson. An explication of secret sharing schemes. Designs, Codes and Cryptography, Dec. 1992.

[41] D. R. Stinson. New general lower bounds on the information rate of secret sharing schemes. In Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 1993.

[42] H.-M. Sun, H. Wang, B.-H. Ku, and J. Pieprzyk. Decomposition construction for secret sharing schemes

with graph access structures in polynomial time. SIAM Journal on Discrete Mathematics, Jan. 2010.

[43] H.-M. Sun and B.-L. Chen. Weighted decomposition construction for perfect secret sharing schemes.

Computers and Mathematics with Applications, 43(6-7):877�887, 2002.

[44] T. Tassa. Generalized oblivious transfer by secret sharing. Designs, Codes, and Cryptography, 61:273�

294, 2011.

[45] M. van Dijk, T. Kevenaar, G.-J. Schrijen, and P. Tuyls. Improved constructions of secret sharing

schemes by applying (λ, ω)-decompositions. Information Processing Letters, 99(4):154�157, 2006.


	Introduction
	Preliminaries
	Graphs
	Secret sharing scheme (SSS)
	Realizations of graph access structures
	Entropy

	Classical Approach
	Matrix characterization
	Decomposition construction
	Hypergraph decomposition

	Modern Approach
	Multipartite secret sharing
	Linear secret sharing schemes and complexity

	Conclusion

