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abstract

This research delves into the pathway energy framework for �ower families, a class of simple con-

nected graphs, whose path matrix P is constructed such that each entry Pij quanti�es the maximum

number of vertex-disjoint paths. By analyzing the characteristic values of this matrix, we establish

the pathway energy bounds speci�c to these �ower graph families. Additionally, a comprehensive

algorithm is developed to evaluate the time complexity across di�erent �ower family con�gurations,

utilizing numerous trials to capture their average, maximum, and minimum computational behav-

iors. This analysis o�ers a comparative study of the structural intricacies that lead to increased

computational complexity, highlighting which graph topologies tend to impose higher algorithmic

challenges. The proposed method introduces a re�ned and adaptable approach, deepening the ex-

ploration of characteristic graph properties and their computational impact, thereby expanding the

practical applications of these �ndings in graph theory.

Keywords: Characteristics values, Flower families, Energy, Pathway Energy, Time complexity

1. Introduction

Consider an undirected graph G(V,E), where V represents the set of vertices and E denotes the

set of edges [5]. The concept of graph energy, �rst introduced by Ivan Gutman [10, 23] in 1978,

emerged as a re�ned extension of the Hückel Molecular Orbital (HMO) theory, originally formulated

to quantify the total π-electron energy in molecular systems.

Following this, the concept of graph energy resurfaced as a signi�cant and highly researched theme

within chemical graph theory [23], leading to a surge in academic attention, with more than a
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hundred research papers published annually [11, 12]. Numerous properties and well-established

bounds associated with graph energy have since been developed and explored extensively [2, 3, 6].A

molecular graph G with n vertices. The eigenvalues of the (0, 1)-adjacency matrix of G, denoted by

λ1, λ2, . . . , λn, constitute the spectrum of G. The total sum of the absolute values of the eigenvalues

of A(G) de�nes the energy of the graph G [10, 24].

In this framework, Patekar et al. introduced a novel concept called the pathway matrix [17, 20],

which leads to the de�nition of path energy for a graph, extending the classical notion of graph energy.

De�ne a matrix P = (pij) of dimension n× n, where for i ̸= j, pij represents the greatest number of

vertex-disjoint paths from vertex vi to vertex vj. For the case where i = j, set pij = 0. In the paper

by Sabeen et al. [19], the author explores the P (k) pathway energy across various graph classes,

deriving key conclusions about the behavior of P (k) path energy. Similarly, Raza et al. [18] in 2023

dig into the spectrum of graphs. In a related study, Xu and Zhou [22] identify the graphs that attain

both upper and lower bounds on the path index for graphs with speci�ed structural parameters.

In the book by Cvetkovski et al. [7], the authors examine a variety of inequalities, some of which

serves as key instruments in tightening the bounds and enhancing the precision of energy calculations

within graph structures. We utilize these tools to derive improved upper and lower bounds on the

pathway energy for graphs with suitable parameters. Hutter et al. [13] explored the use of machine

learning to predict algorithm runtime based on problem-speci�c features. A simulation of graphs

for reduced order modelling in city-scale district energy grids, leveraging spectral graph theory, was

recently proposed by Simonsson et al. [21]. Duraj and Mezic [9, 15] introduced a novel complexity

measure for directed graphs, termed spectral complexity. The spectrum of the path matrix, can be

optimally resolved in polynomial time, despite the inherent complexity of the graphs.

2. Motivation and Methodology

Graph theory is fundamental in optimizing complex networks, yet calculating pathway energy, key to

measuring network connectivity through vertex-disjoint paths-poses signi�cant challenges. E�cient

computation of pathway energy is critical for designing robust and high-performing networks. To

address the complexity of calculating pathway energy for intricate �ower families, we propose a novel

algorithmic approach.

Our method constructs a matrix P that represents the maximum number of non-overlapping paths

between distinct vertex pairs. From the characteristic values of P , we derive pathway energy bounds,

including upper, lower, improved upper, improved lower, and exact limits. We further develop an

algorithm that performs n-trial analyses to assess the time complexity of these graphs, by determining

average, maximum, and minimum execution times. This approach not only reveals computational

challenges across various graph con�gurations but also provides a streamlined algorithmic framework.

By combining advanced mathematical techniques with innovative algorithms, our study o�ers new

insights into network complexity, signi�cantly enhancing both theoretical understanding and practical

applications in graph theory.

3. Preliminaries

In this section, the ideas and inequalities that provide the foundation for our work were discussed.

De�nition 3.1. (Wheel) [16] A wheel graph Wn is build by connecting each vertex of a cycle Cn to
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a single hub vertex. This hub is referred to as the central vertex, and the cycle Cn is termed the rim

of Wn.

De�nition 3.2. (Helm) [16] A helm graph Hn is a graph constructed by linking a pendant edge to

every vertex on the outer cycle Cn of a wheel graph Wn.

De�nition 3.3. (Flower) [16] A �ower graph is generated by connecting a helm graph Hn's pendent

vertices to its center vertex, denoted as Fn.

De�nition 3.4. (Sun�ower graph) [8] A sun�ower graph SFn is constructed by transforming each

edge of the circumference of a wheel graph Wn into a triangle. Two triangles are connected by a

common vertex if and only if their corresponding edges are adjacent.

De�nition 3.5. (Closed Sun�ower graph) [4] When independent vertices of a sun �ower graph SFn

that are not contiguous to its center vertex are joined, a closed sun �ower graph CSFn is created,

which causes a cycle to occur on n vertices.

De�nition 3.6. (Blossom graph) [16] When all the vertices of a closed sun �ower graph CSFn are

joined to its center vertex, the resulting graph is called a blossom graph Bln.

Theorem 3.7. (Cauchy-Schwarz inequality) [1, 7, 14] If a1, . . . , an and b1, . . . , bn are real numbers,

we have

(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
. (1)

Theorem 3.8. (Arithmetic and Geometric mean inequality(AM-GM))[1, 7, 14] Let n be a number

of vertex and λi and λj be the characteristic values.

1

n(n− 1)

∑
i ̸=j

|λi| |λj| ≥

(∏
i ̸=j

|λi| |λj|

) 1
n(n−1)

. (2)

Theorem 3.9. (Chebyshev's Inequality (monotonic Condition)) [7] If {xi} and {yi} are non-decreasing,
then:

n∑
i=1
i ̸=j

xiyj ≥
2

n(n− 1)

(
n∑

i=1

xi

)(
n∑

i=1

yi

)
, (3)

with the monotonicity condition from Chebyshev's Inequality.

Theorem 3.10. (Weighted AM�GM inequality) [7] Let ai ∈ (0,∞), i = 1, 2, . . . , n, and αi ∈ [0, 1],

i = 1, 2, . . . , n, be such that α1 + α2 + · · ·+ αn = 1. Then

aα1
1 aα2

2 · · · aαn
n ≤ α1a1 + α2a2 + · · ·+ αnan. (4)

Theorem 3.11. (Weighted Cauchy�Schwarz inequality) [7] Let ai, bi ∈ R and mi ∈ R+ for i =
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1, 2, . . . , n. Then: (
n∑

i=1

aibimi

)2

≤

(
n∑

i=1

a2imi

)(
n∑

i=1

b2imi

)
, (5)

with equality if and only if a1b1 = a2b2 = · · · = anbn.

4. Deriving the Pathway Energy Boundaries on Flower Graphs Families

The di�erent pathway energy extremities such as lower, upper, improved upper, and improved lower

bounds for the �ower graph families are explored in this section.

Proposition 4.1. If µ1, µ2, . . . , µn−1, µn, µn+1, . . . , µ2n+1 are the characteristic values of Ap(Fn) then,

2n+1∑
i=1

µ2
i = 4Λ + 3⋎+2⊤.

Proof. Let us examine the vertex-disjoint pathway matrix Ap(Fn) associated with a �ower graph.
The elements of this matrix can be expressed in a structured manner:

Ap(Fn) =



v1 v2 v3 · · · vn+1 vn+2 vn+3 · · · v2n+1

v1 0 4 4 · · · 4 2 2 · · · 2

v2 4 0 3 · · · 3 2 2 · · · 2

v3 4 3 0 · · · 3 2 2 · · · 2
...

...
...

...
. . .

...
...

...
. . .

...

vn+1 4 3 3 · · · 0 2 2 · · · 2

vn+2 2 2 2 · · · 2 0 2 · · · 2

vn+3 2 2 2 · · · 2 2 0 · · · 2
...

...
...

...
. . .

...
...

...
. . .

...

v2n+1 2 2 2 · · · 2 2 2 · · · 0



Ap(Fn) =



ωij = 0, sum of all null entries on the main diagonal where i = j,

Λij = 4, max disjoint paths between inner block,

if 2 ≤ i ≤ n+ 1, 2 ≤ j ≤ n+ 1,

⋎ij = 3, min disjoint paths in the inner block where i ̸= j, i, j ≤ n+ 1,

⊤ij = 2, disjoint paths between inner and outer blocks

if i ≥ n+ 2, 1 ≤ j ≤ 2n+ 1, 1 ≤ i ≤ n+ 1, j ≥ n+ 2

The following equation de�nes the characteristic polynomial of this 2n+ 1× 2n+ 1 square matrix:

a0µ
2n+1 + a1µ

2n + a2µ
2n−1 + . . .+ an = 0,

where the characteristic values are denoted as µ1, µ2, . . . , µn−1, µn, µn+1, . . . , µ2n+1. The squared

characteristic values added together can be expressed as follows:

2n+1∑
i=1

µ2
i =

[
2n+1∑
i=j

(ωij)

]
+

[
n+1∑
i<j

(⋎ij) +
n+1∑
i>j

(⋎ij)

]
+

[
n+1∑
i≥2

n+1∑
j≥2

(Λij)

]

+

[(
n∑

i=1

2n+1∑
j=n+1

(⊤ij)

)
+

(
2n+1∑
i=n+1

2n+1∑
j=1

(⊤ij)

)
+

(
2n+1∑
i=n+1

2n+1∑
j=n+1

(⊤ij)

)]
= 4Λ + 3⋎+2⊤.



Analyzing Pathway Energy And Time Complexity In Flower Families 201

Here Λ,⊤, and ⋎ denotes the sum of all the elements 4, 3 and 2 vertex-disjoint path matrix respec-

tively.

4.1. The pathway energy lower bounds for �ower graph

Theorem 4.2. For a �ower graph Fn, n ≥ 4, with l = 2n+ 1 vertices and 4n edges.

(i) The lower bound of pathway energy is given by:

Ep(Fn) ≥

√√√√4Λ + 3⋎+2⊤+
2

(l)(l − 1)

l∏
i=1

(µwi
i )2,

where wi are the weights,
∑l

i=1wi = 1 gives the total sum of the characteristic value weights.

(ii) The improved lower bound of pathway energy is:

Ep(Fn) ≥
√

4Λ + 3⋎+2⊤+ (l)(l − 1)D
2
l where D = |detAp(Fn)|.

Proof. Consider the �ower graph Fn with an vertex-disjoint pathway matrix of order l× l, where

l = 2n + 1 represents the vertices. The characteristic values µ1, µ2, . . . , µl are obtained by solving

the characteristic polynomial |Ap(Fn) − µI|= 0. The pathway energy Ep(Fn) is the sum of the

absolute values of the characteristic values of the vertex-disjoint path matrix. The following condition

describes this.

[Ep(Fn)]
2 =

(
l∑

i=1

|µi|

)2

.

Moreover, this can also be written as the product of the absolute characteristic value summations:

[Ep(Fn)]
2 =

(
l∑

i=1

|µi|
)(

l∑
j=1

|µj|

)
.

[Ep(Fn)]
2 =

(
l∑

i=1

|µi|2
)
+

(∑
i ̸=j

|µi||µj|

)
.

Case 1: Proof for the pathway energy lower bounds of �ower graph

From the Chebyshev's Inequality (3), we derive that,

[Ep(Fn)]
2 ≥

l∑
i=1

|µi|2+
2

l(l − 1)

(
l∑

i=1

|µi|

)(
l∑

i=1

|µi|

)
.

From the Weighted AM�GM inequality (4), we conclude,

[Ep (Fn)]
2 ≥

l∑
i=1

|µi|2+
2

l(l − 1)

(
l∑

i=1

µiwi

)(
l∑

i=1

µiwi

)
where

l∑
i=1

wi = 1,

≥
l∑

i=1

|µi|2+
2

l(l − 1)

l∏
i=1

(µwi
i )

l∏
i=1

(µwi
i ),

≥ 4Λ + 3⋎+2⊤+
2

l(l − 1)

l∏
i=1

(µwi
i )2.. . . . . . . . . [by Theorem 4.1].
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Thus, the lower bounds of the pathway energy for �ower graph is,

Ep(Fn) ≥

√√√√4Λ + 3⋎+2⊤+
2

l(l − 1)

l∏
i=1

(µwi
i )2.

Case 2: Proof for the pathway energy improved lower bounds.

From the AM-GM inequalities in Eq. (2), we derive that

1

l(l − 1)

∑
i ̸=j

|µi||µj|⩾

(∏
i ̸=j

|µi||µj|

) 1
l(l−1)

,

[Ep (Fn)]
2 ≥

l∑
i=1

|µi|2 + l(l − 1)

(∏
i ̸=j

|µi| |µj|

) 1
l(l−1)

=
l∑

i=1

|µi|2 + l(l − 1)

∣∣∣∣∣
l∏

i=1

(µi)

∣∣∣∣∣
2
l

= 4Λ + 3⋎+2⊤+ l(l − 1)D
2
l by Theorem 4.1.

Thus, the improved lower bounds of the pathway energy for �ower graph is,

Ep(Fn) ≥
√
4Λ + 3⋎+2⊤+ l(l − 1)D

2
l .

Observation 4.3. The pathway energy of lower bounds, improved lower bounds and time complexity

analysis O(n3) for �ower graphs with n varying from 4 to 100 are computed and plotted in Figure 1:

(a) and (b).

(a) The path energy bounds of �ower graphs (b) Algorithm execution time for �ower graphs

Fig. 1. The comparison of path energy bounds (a) and Time complexity execution (b) for �ower graphs
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4.2. The pathway energy upper bound for �ower graph

Theorem 4.4. For �ower graph Fn with n ≥ 4,

(i) The upper bound of pathway energy is given by: Ep(Fn) ≤
√

l(4Λ + 3⋎+2⊤)
(ii) The improved upper bound of pathway energy is: Ep(Fn) ≤

√
5(4Λ + 3⋎+2⊤).

Proof. The methodology employed to ascertain the characteristic values echoes that utilized in

Theorem 4.2. Let µ1 ≥ µ2 ≥ µ3 ≥ . . . ≥ µn−1 ≥ µn ≥ . . . ≥ µl denote the characteristic values of the

l × l vertex-disjoint path matrix of Fn.

Case 1: Proof for the pathway energy upper bound of �ower graph.

From the Cauchy-Schwarz inequality in the Eq. (1) we derive that,(
l∑

i=1

αiβi

)2

≤

(
l∑

i=1

α2
i

)(
l∑

i=1

β2
i

)
.

To establish the upper bound, consider the expression [Ep(Fn)]
2 ≤

(∑l
i=1 αiβi

)2
, where the path-

way energy is bounded by the right-hand side. Substituting αi = 1 and βi = |µi| into the inequality

yields the desired result.

[Ep(Fn)]
2 ≤

(
l∑

i=1

1.|µi|

)2

≤

(
l∑

i=1

1

)2

.

(
l∑

i=1

|µi|2
)
. . . . . . . . . by (1),

= l(4Λ + 3⋎+2⊤). . . . . . . . . . . . . . . . . . by Theorem 4.1,

[Ep(Fn)] ≤
√
l(4Λ + 3⋎+2⊤).

Thus, the upper bound of the pathway energy of the �ower graph concluded by,

Ep(Fn) ≤
√

l(4Λ + 3⋎+2⊤).

Case 2: Proof for the pathway energy improved upper bound.

The Weighted Cauchy Schwarz inequality in (5) allows us to deduce that,(
l∑

i=1

aibiwi

)2

≤

(
l∑

i=1

a2iwi

)(
l∑

i=1

b2iwi

)
.

For proving the improved upper bound, consider [Ep(Fn)]
2 ≤

(
l∑

i=1

ai.bi.wi

)2

, such that the pathway

energy of the graph is less than RHS of the inequality, and substituting ai =
1

(l)
3
2
|µi| and bi = 1

wi =
√
5, in the above inequality,

[Ep(Fn)]
2 ≤

(
l∑

i=1

µ2
i

(l)3
.
√
5

)(
l∑

i=1

1.
√
5

)
,

≤
√
5l

l3

(
l∑

i=1

µ2
i

)
.l2
√
5,

= 5(4Λ + 3⋎+2⊤). . . . . . . . . . . . . . . . . . by Theorem 4.1,

[Ep(Fn)] ≤
√

5(4Λ + 3⋎+2⊤).
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Thus, the improved upper bound of the pathway energy for �ower graph is,

[Ep(Fn)] ≤
√

5(4Λ + 3⋎+2⊤).

Observation 4.5. The pathway energy of upper bounds, improved upper bounds and time com-

plexity analysis O(n3) for �ower graphs with n varying from 4 to 100 are computed and plotted in

Figure 1: (a) and (b).

Algorithm 1 Bounds of a �ower graph with time complexity

Require: Number of vertices n ≥ 4
1: Step 1: Adjacency Matrix Setup

2: Initialize A← zeros(2n+ 1, 2n+ 1)

3: De�ne vertices: diagonal = 0, inner = list(1, . . . , n+ 1), outer = list(n+ 2, . . . , 2n+ 1)

4: A[0][i]← 4 for i ∈ inner, for 2 ≤ i ≤ n+ 1, i+ 1 ≤ j ≤ n+ 1 (inner block)

5: A[i][j]← 3 for i, j ≤ n+ 1, i ̸= j (inner block)

6: A[i][j]← 2 for i ≥ n+ 2, 1 ≤ j ≤ 2n+ 1, 1 ≤ i ≤ n+ 1, j ≥ n+ 2 (outer block)

7: Step 2: Compute characteristic values and Energy

8: compute the characteristic values µ← chval(A)

9: Calculate total energy E ←
∑
|µi|

10: Step 3: Upper and Lower Bounds Calculation

11: Sum of squared characteristic values R←
∑

µ2
i

12: Upper Bound T ←
√
(2n+ 1)×R

13: Lower Bound K ←
√
R+ (2n+ 1)× 2n× |det(A)|

2
2n+1

14: Step 4: Improved Upper and Lower Bound Calculation

15: Improved Upper Bound Timproved ←
√
5×R

16: Improved Lower Bound Kimproved ←
√

R+ 2
(2n+1)(2n) ×

∏2n+1
i=1 |µi|2

17: Step 5: Time Complexity Analysis

18: Time complexity of characteristic value computation is O((2n+ 1)3)

19: Overall time complexity: O(f(n)), where f(n) = (2n+ 1)3 + computation time

20: Output: Energy E, Bounds T,K, Timproved,Kimproved, Time Complexity O(f(n)).

5. The Pathway Energy Boundaries on Sun�ower Graph

The di�erent pathway energy bounds of sun�ower graph SFn like lower, upper, improved lower, and

improved upper bounds are investigated in this section.

Proposition 5.1. The characteristic values of Ap(SFn) are
2n+1∑
i=1

µ2
i = 4δ + 3κ + 2ϖ, if

µ1, µ2, . . . , µn−1, µn, µn+1, . . . , µ2n+1 are the characteristic values of Ap(SFn).

Proof. The structure of the vertex-disjoint path matrix Ap(SFn) for the sun�ower graph is depicted

as follows,



Analyzing Pathway Energy And Time Complexity In Flower Families 205

Ap(SFn) =



v1 v2 v3 · · · vn+1 vn+2 vn+3 · · · v2n+1

v1 0 3 3 · · · 3 2 2 · · · 2

v2 3 0 4 · · · 3 2 2 · · · 2

v3 3 4 0 · · · 4 2 2 · · · 2
...

...
...

...
. . .

...
...

...
. . .

...

vn+1 3 3 4 · · · 0 2 2 · · · 2

vn+2 2 2 2 · · · 2 0 2 · · · 2

vn+3 2 2 2 · · · 2 2 0 · · · 2
...

...
...

...
. . .

...
...

...
. . .

...

v2n+1 2 2 2 · · · 2 2 2 · · · 0



Ap(SFn) =



𭟋ij = 0, Total count of zeros positioned along the main diagonal i = j,

δij = 4, Largest set of disjoint paths inside the central block, where

|i− j|= 1 or |i− j|= n− 1, 1 ≤ i, j ≤ n+ 1,

κij = 3, the inner block's minimum disjoint path if i ̸= j, i, j ≤ n+ 1,

ϖij = 2, vertex-disjoint paths spanning the inner and outer regions

if i ≥ n+ 2, 1 ≤ j ≤ 2n+ 1, 1 ≤ i ≤ n+ 1, j ≥ n+ 2

The characteristic equation of this 2n+ 1× 2n+ 1 square matrix is given by:

a0µ
2n+1 + a1µ

2n + a2µ
2n−1 + . . .+ an = 0,

where the characteristic values are denoted as µ1, µ2, . . . , µn−1, µn, µn+1, . . . , µ2n+1. The sum of the

squares of these characteristic values is de�ned as:

2n+1∑
i=1

µ2
i =

[
2n+1∑
i=j

(𭟋ij)

]
+

[
n+1∑
i<j

(κij) +
n+1∑
i>j

(κij)

]
+

 ∑
1≤i≤n
|i−j|=1

∑
1≤j≤n

|i−j|=n−1

(δij)


+

[(
n∑

i=1

2n+1∑
j=n+1

(ϖij)

)
+

(
2n+1∑
i=n+1

2n+1∑
j=1

(ϖij)

)
+

(
2n+1∑
i=n+1

2n+1∑
j=n+1

(ϖij)

)]
= 4δ + 3κ + 2ϖ.

In this instance, δ,κ, and φ denote the total of all elements 4, 3, and 2 respectively, present in

the vertex-disjoint path matrices.

5.1. The pathway energy lower bounds for sun�ower graph

Theorem 5.2. For a sun�ower graph SFn with n ≥ 5, there are l = 2n+ 1 vertices and 4n edges.

(i) The lower bound of pathway energy is given by:

Ep(SFn) ≥

√√√√4δ + 3κ + 2ϖ +
2

l(l − 1)

l∏
i=1

(µwi
i )2,

where wi are the weights,
∑l

i=1wi = 1 gives the total sum of the characteristic value weights.
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(ii) The improved lower bound of pathway energy is:

Ep(SFn) ≥
√
4δ + 3κ + 2ϖ + (l)(l − 1)D

2
l where D = |detAp(SFn)|.

Proof. The proof is similar to Theorem 4.2 and is left to the interest of the reader.

Observation 5.3. The pathway energy of lower bounds, improved lower bounds and time complexity

analysis O(n3) for sun�ower graphs with order of n varying from 5 to 100 are shown in Figure 2: (a)

and (b).

(a) The path energy bounds of sun�ower graphs (b) Algorithm execution time for sun�ower graphs

Fig. 2. The comparison of path energy bounds (a) and Time complexity execution (b) for sun�ower graphs.

5.2. The pathway energy upper bound for sun�ower graph

Theorem 5.4. For sun�ower graph SFn with n ≥ 5,

(i) The upper bound of pathway energy is given by: Ep(SFn) ≤
√

l(4δ + 3κ + 2ϖ)

(ii) The improved upper bound of pathway energy is: Ep(SFn) ≤
√
5(4δ + 3κ + 2ϖ).

Proof. The proof is similar to Theorem 4.4 and is left to the interest of the reader.

Observation 5.5. The pathway energy of upper bounds, improved upper bounds and time com-

plexity analysis O(n3) for sun�ower graphs with order of n varying from 5 to 100 are shown in Figure

2: (a) and (b).
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Algorithm 2 Bounds of a sun�ower graph with time complexity

Require: Number of vertices n ≥ 5
1: Step 1: Adjacency Matrix Setup

2: Initialize A← zeros(2n+ 1, 2n+ 1)

3: De�ne vertices: diagonal = 0, inner = list(1, . . . , n+ 1), outer = list(n+ 1, . . . , 2n+ 1)

4: Fill A as follows:

5: A[i][j]← 4 for i ∈ inner, for |i− j|= n− 1, 1 ≤ i, j ≤ n+ 1 (inner block)

6: A[i][j]← 3 for i, j ≤ n+ 1, i ̸= j (inner block)

7: A[i][j]← 2 for i ≥ n+ 2, 1 ≤ j ≤ 2n+ 1, 1 ≤ i ≤ n+ 1, j ≥ n+ 2 (outer block)

8: Step 2: characteristic value and Energy Calculation

9: Compute characteristic values µ← chval(A)

10: Calculate total energy E ←
∑
|µi|

11: Step 3: Upper, and Lower Bounds Calculation

12: Sum of squared characteristic values R←
∑

µ2
i

13: Upper Bound T ←
√
(2n+ 1)×R

14: Lower Bound K ←
√
R+ (2n+ 1)× 2n× |det(A)|

2
2n+1

15: Step 4: Improved Upper and Lower Bound Calculation

16: Improved Upper Bound Timproved ←
√
5×R

17: Improved Lower Bound Kimproved ←
√

R+ 2
(2n+1)(2n) ×

∏2n+1
i=1 |µi|2

18: Step 5: Time Complexity Analysis

19: Time complexity of characteristic value computation is O((2n+ 1)3)

20: Overall time complexity: O(f(n)), where f(n) = (2n+ 1)3 + computation time

21: Output: Energy E, Bounds P, T,K, Timproved,Kimproved, Time Complexity O(f(n))

6. The Path Energy Bounds on Closed Sun�ower Graph

This section explicates the distinct path energy bounds for the closed sun�ower graph CSFn, com-

prising the lower, upper, exact energy, improved lower and upper bound.

Proposition 6.1. If µ1, µ2, . . . , µn−1, µn, µn+1, . . . , µ2n+1 are the characteristic values of Ap(CSFn)

then,
2n+1∑
i=1

µ2
i = 5κ+ 4χ.

Proof. The arrangement of elements in the vertex-disjoint path matrix Ap(CSFn) of a closed sun-
�ower graph is shown below:

Ap(CSFn) =



v1 v2 v3 · · · vn+1 vn+2 vn+3 · · · v2n+1

v1 0 5 5 · · · 5 4 4 · · · 4

v2 5 0 5 · · · 5 4 4 · · · 4

v3 5 5 0 · · · 5 4 4 · · · 4
...

...
...

...
. . .

...
...

...
. . .

...

vn+1 5 5 5 · · · 0 4 4 · · · 4

vn+2 4 4 4 · · · 4 0 4 · · · 4

vn+3 4 4 4 · · · 4 4 0 · · · 4
...

...
...

...
. . .

...
...

...
. . .

...

v2n+1 4 4 4 · · · 4 4 4 · · · 0


(6)
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Ap(SFn) =



λij = 0, Sum of zeros on the matrix's main diagonal where i = j,

κij = 5, Optimal disjoint path count within the inner block

where i ̸= j, i, j ≤ n+ 1,

χij = 4, maximum possible disjoint paths between outer block,

if i ≥ n+ 2, 1 ≤ j ≤ 2n+ 1, 1 ≤ i ≤ n+ 1, j ≥ n+ 2.

The characteristic equation associated with this 2n+ 1× 2n+ 1 square matrix is:

a0µ
2n+1 + a1µ

2n + a2µ
2n−1 + . . .+ an = 0,

where the characteristic values are denoted as µ1, µ2, . . . , µn−1, µn, . . . , µ2n+1.

The squared sum of these characteristic values is expressed as,

2n+1∑
i=1

µ2
i =

[
2n+1∑
i=j

(λij)

]
+

[
n+1∑
i<j

(κij) +
n+1∑
i>j

(κij)

]

+

[(
n∑

i=1

2n+1∑
j>n

(χij)

)
+

(
2n+1∑
i>n

2n+1∑
j=1

(χij)

)
+

(
2n+1∑
i>n+1

2n+1∑
j>n+1

(χij)

)]
= 0 (α) + 5 (κ) + 4 (χ)

= 5κ+ 4χ.

In this context, κ and χ represent the sums of all the elements 5 and 4 in the path matrices, respec-

tively.

6.1. The path energy lower bound for the closed sun�ower graph

Theorem 6.2. Let CSFn be a closed sun�ower graph comprising l = 2n+ 1 vertices and 5n edges.

(i) The lower bound of pathway energy is given by,

Ep(CSFn) ≥

√√√√ 5κ+ 4χ+
2

l(l − 1)

l∏
i=1

(µwi
i )2,

where wi is the weights of the characteristic values and their sum is
∑l

i=1wi = 1.

(ii) The improved pathway energy lower bound is given by,

Ep(CSFn) ≥
√

5κ+ 4χ+ l(l − 1)D
2
l where D = |detAp(CSFn)|.

Proof. The vertex-disjoint path matrix of the closed sun�ower network CSFn has order l× l, where

the vertices are represented by l = 2n+1. Solving the polynomial equation |Ap(CSFn)−µI|= 0 yields

the characteristic values µ1, µ2, . . . , µl. Following the method in Theorem 4.2 and using terminology

that has already been explained, the pathway energy Ep(CSFn) is de�ned as the total of the absolute

values of these characteristic values.

[Ep(CSFn)]
2 =

(
l∑

i=1

|µi|
)2

+

(∑
i ̸=j

|µi||µj|

)
.
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Case 1: Proof for the pathway energy lower bound of CSFn

From the Chebyshev's Inequality (3), we derive that,

[Ep(CSFn)]
2 ≥

l∑
i=1

|µi|2+
2

l(l − 1)

(
l∑

i=1

|µi|

)(
l∑

i=1

|µi|

)
.

From the Weighted AM�GM inequality (4), we conclude,

[Ep (CSFn)]
2 ≥

l∑
i=1

|µi|2+
2

l(l − 1)

(
l∑

i=1

µiwi

)(
l∑

i=1

µiwi

)
where

l∑
i=1

wi = 1,

≥ 5κ+ 4χ+
2

l(l − 1)

l∏
i=1

(µwi
i )2.. . . . . . . . . by (Theorem 6.1).

Thus, the lower bound is

Ep(CSFn) ≥

√√√√ 5κ+ 4χ+
2

l(l − 1)

l∏
i=1

(µwi
i )2.

Case 2: Proof for the pathway energy improved lower bound.

From the AM-GM inequalities in Eq. (2), we derive that

[Ep (CSFn)]
2 =

l∑
i=1

|µi|2 + l(l − 1)

∣∣∣∣∣
l∏

i=1

(µi)

∣∣∣∣∣
2
l

= 5κ+ 4χ+ l(l − 1)D
2
l [by Theorem 6.1].

Thus, the improved lower bound of the pathway energy for closed sun�ower graph is,

Ep(CSFn) ≥
√
5κ+ 4χ+ l(l − 1)D

2
l .

Observation 6.3. The pathway energy of lower bounds, improved lower bounds and time complexity

analysis O(n3) for closed sun�ower graphs with order of n varying from 5 to 100 are depicted in Figure

3: (a) and (b).

(a) The path energy bounds of closed sun�ower graphs (b) Algorithm execution time for closed sun�ower graphs

Fig. 3. The comparison of path energy bounds (a) and time complexity execution (b) for closed sun�ower graphs.
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6.2. The exact pathway energy bound for closed sun�ower graph

Theorem 6.4. For the closed sun�ower graph CSFn, where n ≥ 5, the exact bounds on the pathway

energy are as follows:

Ep[CSFn] = (9n− 4)+ | (n− 10)(0.47) + (0.47) | + | (n− 10)(8.53) + 85.53 |

corrected to two decimal places.

Proof. The vertex-disjoint path con�guration of the CSFn graph is elaborated in detail in the path

adjacency matrix (6). It has 2n+ 1 roots, implying that it contains 2n+ 1 characteristic values.

The characteristic equation of (6) is

(−µ)2n+1 + tr(−µ)2n + · · ·+ det(Ap(CSFn)) = 0. (7)

Upon solving the Eq. (7), the 2n+ 1 characteristic values are determined to be,

µ1 = µ2 = µ3 = · · · = µn−1 = 5, µn = µn+1 = µn+2 = · · · = µ2n−1 = 4,

µ2n = (n− 10)(0.47) + 0.47, and µ2n+1 = (n− 10)(8.53) + 83.53.

The Spectrum is expressed in the form of,

Spec (Ap(CSF n)) =

[
−5 −4 (n− 10)(0.47) + (0.47) (n− 10)(8.53) + 83.53

n n− 1 1 1

]
.

The exact closed sun�ower graph pathway energy is given by,

Ep[(CSFn)] =
2n+1∑
i=1

|µi|=| −5 | (n)+ | −4 | (n− 1)

+ | (n− 10)(0.47)− 0.47 | + | (n− 10)(8.53) + 85.53 |
= 9n− 4+ | (n− 10)(0.47) + (0.47) | + | (n− 10)(8.53) + 85.53 | .

The value | −5 | occurs (n) times, | −4 | repeated (n − 1) times, [(n − 10)(0.47)] − 0.47, and

[(n− 10)(8.53)] + 85.53 arrives once.

Therefore the pathway energy exact bound for closed sun�ower graph is denoted by Ep(CSFn) =

9n− 4+ | (n− 10)(0.47) + (0.47) | + | (n− 10)(8.53) + 85.53 | .

Observation 6.5. The pathway exact energy and time complexity analysis O(n3) for closed sun-

�ower graphs with order of n varying from 5 to 100 are shown in Figure 3: (a) and (b).

6.3. The path energy upper bound for closed sun�ower graph

Theorem 6.6. For Closed sun�ower CSFn with n ≥ 5,

(i) The upper bound of pathway energy is given by: Ep(CSFn) ≤
√

l(5κ+ 4χ)

(ii) The improved upper bound of pathway energy is: Ep(CSFn) ≤
√

5(5κ+ 4χ).

Proof. In this segment to establish the upper bounds, follow the approach of characteristic values

determination in Theorem 4.2. For the purpose of the proof, it is a essential to take into account the

following consideration,
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Case 1: Proof for the pathway energy upper bound of CSFn.

To establish the upper bound, apply the Cauchy-Schwarz inequality in (1).

Consider [Ep(CSFn)]
2 ≤

(∑l
i=1 αiβi

)2
, where the pathway energy is bounded above. Substituting

αi = 1 and βi = |µi| into this inequality yields the desired result.

[Ep(CSFn)]
2 ≤

(
l∑

i=1

1.|µi|

)2

≤

(
l∑

i=1

1

)2

.

(
l∑

i=1

|µi|2
)
. . . . . . . . . [by (1)]

= l(5κ+ 4χ). . . . . . . . . . . . . . . . . . [by Theorem 6.1]

[Ep(CSFn)] ≤
√

l(5κ+ 4χ).

Thus, the upper bound of the pathway energy of the closed sun�ower graph concluded by, Ep(CSFn) ≤√
l(5κ+ 4χ).

Case 2: Proof for the pathway energy improved upper bound.

Using the Weighted Cauchy-Schwarz inequality from Eq. (5), we deduce the improved upper

bound: [Ep(CSFn)]
2 ≤

(∑l
i=1 aibiwi

)2
Substituting ai =

1
l3/2
|µi|, bi = 1, and wi =

√
5 in RHS gives

the result.

[Ep(CSFn)]
2 ≤

(
l∑

i=1

µ2
i

(l)3
.
√
5

)(
l∑

i=1

1.
√
5

)
= 5(5κ+ 4χ) . . . . . . . . . . . . . . . . . . [by Theorem 6.1]

[Ep(CSFn)] ≤
√
5(5κ+ 4χ).

The improved upper bound of the path energy for the closed sun�ower graph is:

[Ep(CSFn)] ≤
√
5(5κ+ 4χ).

Observation 6.7. The pathway energy of upper bounds, improved upper bounds and time com-

plexity analysis O(n3) for closed sun�ower graphs with order of n varying from 5 to 100 are depicted

in Figure 3: (a) and (b).
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Algorithm 3 Bounds of a Closed Sun�ower Graph with Time Complexity

Require: Number of vertices n ≥ 5
1: Step 1: Adjacency Matrix Setup

2: A← zeros(2n+ 1, 2n+ 1)

3: for i, j ← 0 to 2n do

4: if i = j then

5: A[i, j]← 0 ▷ Diagonal element

6: else if i ≤ n ∧ j ≤ n then

7: A[i, j]← 5

8: else

9: A[i, j]← 4

10: end if

11: end for

12: Step 2: characteristic value and Energy Calculation

13: µ← chval(A)

14: E ←
∑
|µi|

15: Step 3: Bound Calculations

16: P ← (9n− 4) + |(n− 10)(0.47) + 0.47|+|(n− 10)(8.53) + 85.53|
17: R←

∑
µ2
i (sum of the squares of the characteristic values)

18: T ←
√

(2n+ 1)×R

19: K ←
√
R+ (2n+ 1)× 2n× |det(A)|2/(2n+1)

20: Timproved ←
√
5×R

21: Kimproved ←
√
R+ 2

(2n+1)(2n)

∏2n+1
i=1 |µi|2

22: Step 4: Time Complexity Analysis

23: Time complexity: O(f(n)), where f(n) = (2n+ 1)3 + computation time

24: Output: E, Bounds P , T , K, Timproved, Kimproved, Time Complexity O(f(n))

7. The Pathway Energy Bounds on Blossom Graph

This section explores the pathway energy constraints for the blossom graph Bln, including upper and

lower bounds, improved bounds, and exact energy.

Proposition 7.1. If µ1, µ2, . . . , µn, µn+1, . . . , µ2n+1 are the characteristic values of Ap(Bln) then

2n+1∑
i=1

µ2
i = 5(ϱ1 + ϱ2),

Proof. The con�guration of the vertex-disjoint path adjacency matrix Ap(Bln) for a blossom graph

is outlined as follows,

Ap(Bln) =

{
αij = 0, whenever i = j,

βij = 5, whenever. i ̸= j, i, j ≤ 2n+ 1.
(8)

here ϱ1 =
2n+1∑
i=j

(αij), ϱ2 =
∑
i<j

(βij) +
∑
i>j

(βij) .

For this 2n+ 1× 2n+ 1 matrix, the characteristic equation is,

a0µ
2n+1 + a1µ

2n + a2µ
2n−1 + · · ·+ an = 0.



Analyzing Pathway Energy And Time Complexity In Flower Families 213

All the characteristic values are represented by µ1, µ2, . . . , µn−1, µn, µn+1, . . . , µ2n+1.

The total of the squared characteristic values can be outlined as,

2n+1∑
i=1

µ2
i =

2n+1∑
i=j

(aij) +
∑
i<j

(bij) +
∑
i>j

(bij)

2n+1∑
i=1

µ2
i = 5 [ϱ1 + ϱ2]

where ϱ1 and ϱ2 are speci�c terms related to the matrix components.

7.1. The pathway energy lower bound for the blossom graph

Theorem 7.2. Let be a Bln blossom graph comprising l=2n+ 1 vertices and 6n edges.

(i) The lower bounds of pathway energy is given by,

Ep(Bln) ≥

√√√√5(ϱ1 + ϱ2) +
2

l(l − 1)

l∏
i=1

(µwi
i )2,

where wi are the weights,
∑l

i=1wi = 1 gives the total sum of the characteristic value weights.

(ii) The improved pathway energy lower bound is given by,

Ep(Bln) ≥
√
5(ϱ1 + ϱ2) + l(l − 1)D

2
l where D = |detAp(Bln)|.

Proof. In general, the blossom graph Bln has a vertex-disjoint adjacency matrix of order l × l,

with the number of vertices denoted by l = 2n + 1. The characteristic values µ1, µ2, . . . , µl can be

determined by solving |Ap(Bln) − µI|= 0. As similar to the method earlier in Theorem 4.2, the

pathway energy Ep(Bln), is the total of the absolute values of these characteristic values.

[Ep(Bln)]
2 =

(
l∑

i=1

|µi|
)2

+

(∑
i ̸=j

|µi||µj|

)
.

Case 1: Proof for the pathway energy lower bound of blossom graph

From the Chebyshev's Inequality (3), we derive that,

[Ep(Bln)]
2 ≥

l∑
i=1

|µi|2+
2

l(l − 1)

(
l∑

i=1

|µi|

)(
l∑

i=1

|µi|

)
.

We derive the following from the Weighted AM�GM inequality (4):

[Ep (Bln)]
2 ≥

l∑
i=1

|µi|2+
2

l(l − 1)

(
l∑

i=1

µiwi

)(
l∑

i=1

µiwi

)
where

l∑
i=1

wi = 1,

≥ 5(ϱ1 + ϱ2) +
2

l(l − 1)

l∏
i=1

(µwi
i )2 by Theorem 7.1.

Thus, the lower bound of the pathway energy for blossom graph is,
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Ep(Bln) ≥
√

5(ϱ1 + ϱ2) +
2

l(l−1)

∏l
i=1 (µ

wi
i )2.

Case (ii): Proof for the pathway energy improved lower bound.

We obtain that from the AM-GM inequality in Eq. (2).

[Ep (Bln)]
2 =

l∑
i=1

|µi|2 + l(l − 1)

∣∣∣∣∣
l∏

i=1

(µi)

∣∣∣∣∣
2
l

= 5(ϱ1 + ϱ2) + l(l − 1)D
2
l by Theorem 7.1.

Thus, the improved lower bound of the pathway energy for blossom graph is,

Ep(Bln) ≥
√

5(ϱ1 + ϱ2) + l(l − 1)D
2
l .

Observation 7.3. The pathway energy of lower bounds, improved lower bounds and time complexity

analysis O(n3) for blossom graphs with order of n varying from 5 to 100 are plotted in Figure 4: (a)

and (b).

(a) The path energy bounds of blossom graphs (b) Algorithm execution time for blossom graphs

Fig. 4. The comparison of path energy bounds (a) and time complexity execution (b) for blossom graphs

7.2. The pathway energy exact bound for blossom graph

Theorem 7.4. The de�ned bounds for the pathway energy in the blossom graph Bln, under the

condition that n ≥ 5, are Ep(Bln) = 10(2n).

Proof. The Eq. (8) provides a detailed description of the pathway con�guration for the vertex-

disjoint matrix of the blossom graph. Solving the characteristic equation (−µ)2n+1+ tr(−µ)2n+ · · ·+
detAp(Bln) = 0 derives the 2n + 1 characteristic values in this way: µ1 = µ2 = µ3 = · · · = µ2n =

5 and µ2n+1 = 5(2n).

The spectrum can be articulated as: Spec (Ap(Bln)) =

[
−5 5(2n)

2n 1

]
.
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The exact energy path of the blossom graph provided by,

Ep(Bln) =
2n+1∑
i=1

|µi|= | −5 | (2n) + 5(2n) = 10(2n).

The term |−5| appears 2n times, while 5(2n) appears once. Consequently, the exact pathway energy

bound for the blossom graph is given by: Ep(Bln) = 10(2n).

Observation 7.5. The exact path energy and time complexity analysis O(n3) for blossom graphs

with n varying from 5 to 100 are plotted in Figure 4: (a) and (b).

7.3. The pathway energy upper bound for blossom graph

Theorem 7.6. For blossom graph Bln with n ≥ 5,

(i) The upper bound of pathway energy is given by: Ep(Bln) ≤
√

5l(ϱ1 + ϱ2)

(ii) The improved upper bound of pathway energy is: Ep(Bln) ≤
√

5(5(ϱ1 + ϱ2)).

Proof. This section of the proof establishes the upper bounds using an analogous method of deter-

mining characteristic values as in Theorem 4.2.

Case 1: Proof for the path energy upper bound of blossom graph.

For deriving the upper bound Cauchy-Schwarz Inequality (1) leads that, [Ep(Bln)]
2 ≤

(∑l
i=1 αiβi

)2
,

where the pathway energy is constrained by the right-hand side. Substituting αi = 1 and βi = |µi|
leads to the desired conclusion,

[Ep(Bln)]
2 ≤

(
l∑

i=1

1.|µi|

)2

≤

(
l∑

i=1

1

)2

.

(
l∑

i=1

|µi|2
)
. . . . . . . . . by (1)

= 5l(ϱ1 + ϱ2). . . . . . . . . . . . . . . . . . by Theorem 7.1

[Ep(Bln)] ≤
√

5l(ϱ1 + ϱ2)).

Thus, the upper bounds of the pathway energy of the blossom graph concluded by

Ep(Bln) ≤
√

5l(ϱ1 + ϱ2).

Case 2: Proof for the pathway energy improved upper bound.

The Weighted Cauchy Schwarz inequality 5 allows us to deduce that,

[Ep(Bln)]
2 ≤

(
l∑

i=1

ai.bi.wi

)2

.

By substituting ai =
1

(l)
3
2
|µi|, bi = 1 and wi =

√
5, in the above inequality,

[Ep(Bln)]
2 ≤

(
l∑

i=1

µ2
i

(l)3
.
√
5

)(
l∑

i=1

1.
√
5

)
= 5(5(ϱ1 + ϱ2)). . . . . . . . . . . . . . . . . . by Theorem 7.1

[Ep(Bln)] ≤
√

5(5(ϱ1 + ϱ2)).
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Thus, the improved upper bound of the pathway energy for blossom graph is, [Ep(Bln)] ≤√
5(5(ϱ1 + ϱ2)).

Observation 7.7. The pathway energy of upper bounds, improved upper bounds and time com-

plexity analysis O(n3) for blossom graphs with order of n varying from 5 to 100 are plotted in Figure

4: (a) and (b).

Algorithm 4 Bounds of a Blossom Graph with Time Complexity

Require: Number of vertices n ≥ 5
1: Step 1: Adjacency Matrix Setup

2: Initialize A← zeros(2n+ 1, 2n+ 1)

3: for i← 1 to 2n+ 1 do

4: for j ← 1 to 2n+ 1 do

5: if i ̸= j then

6: A[i, j]← 5

7: end if i = j A[i, j]← 0 ▷ diagonal element

8: end for

9: end for

10: Step 2: characteristic value and Energy Calculation

11: Compute characteristic values µ← chval(A)

12: Calculate total energy E ←
∑
|µi|

13: Step 3: Exact, Upper, and Lower Bounds Calculation

14: Exact Bound P ← 10× (2n)

15: Sum of squared characteristic values R←
∑

µ2
i

16: Upper Bound T ←
√
(2n+ 1)×R

17: Lower Bound K ←
√
R+ (2n+ 1)× 2n× |det(A)|

2
2n+1

18: Step 4: Improved Upper and Lower Bound Calculation

19: Improved Upper Bound Timproved ←
√
5×R

20: Improved Lower Bound Kimproved ←
√

R+ 2
(2n+1)(2n) ×

∏2n+1
i=1 |µi|2

21: Step 5: Time Complexity Analysis

22: Time complexity of characteristic value computation is O((2n+ 1)3)

23: Overall time complexity: O(f(n)), where f(n) = (2n+ 1)3 + computation time

24: Output: Energy E, Bounds P, T,K, Timproved,Kimproved, Time Complexity O(f(n))

8. Complexity Analysis of Flower Families

We undertook a comprehensive computational analysis of �ower families, employing algorithmic

techniques to quantify the energy of these graphs alongside the time taken for each calculation. By

plotting energy against computation time, we meticulously assessed the complexity and e�ciency

inherent in each graph type. Our results reveal that sun�ower graphs exhibit a signi�cantly higher

complexity compared to the �ower families under investigation. Notably, the computational time for

sun�ower graphs adheres to a complexity of O(n3), underscoring its critical nature in relation to the

�ower families discussed in this study.
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Fig. 5. Analysis of time complexity of �ower families

9. Conclusion

This paper presents an innovative algorithmic framework for analyzing pathway energy within �ower

families, encompassing a wide range of graph types. We established precise limits for pathway ener-

gies and conducted an in-depth analysis of time complexity, illuminating signi�cant computational

challenges in this domain. The hallmark of our work is the enhanced e�ciency and versatility of our

pathway energy calculations, providing a robust tool for addressing complex spectral graph problems.

These �ndings pave the way for future research focused on optimizing algorithms and exploring new

classes of graphs. Moreover, this research has substantial practical implications for network opti-

mization, improving algorithmic e�ciency, and advancing spectral graph theory. Ultimately, our

contributions propel the progress of computational graph theory and its related �elds.
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