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abstract

In the literature of algebraic graph theory, an algebraic intersection graph called the invariant in-

tersection graph of a graph has been constructed from the automorphism group of a graph. A

speci�c class of these invariant intersection graphs was identi�ed as the n-inordinate invariant inter-

section graphs, and its structural properties has been studied. In this article, we study the di�erent

types of proper vertex coloring schemes of these n-inordinate invariant intersection graphs and their

complements, by obtaining the coloring pattern and the chromatic number associated.

Keywords: Intersection graphs, Permutation group, Fix of a permutation, Invariant intersection

graph, n-inordinate invariant intersection graphs

1. Introduction

For terminology in group theory, we refer to [7]. For basic de�nitions and results in graph theory,

see [17] and for further concepts in algebraic graph theory, refer to [6]. We refer the reader to [9], for

the fundamentals in combinatorics.

An automorphism of a graph G of order n is an isomorphism of G to itself. The automorphism

group of G, written as Aut(G), is the set of all automorphisms de�ned on V (G) and is a subgroup

of the symmetric group Sn, which is the set of all permutations of a set with n elements. The

�x of a permutation π ∈ Sn is the set of all elements whose image is invariant, and is given by

fix(π) = {x ∈ S : π(x) = x}, where S is the set of n elements on which the permutations are de�ned.

Research in algebraic graph theory involves constructing graphs based on algebraic structures and

investigating their properties (see [11, 12]). In this direction, an algebraic intersection graph based

on the automorphism group of a graph, called the invariant intersection graph ΛG of a graph G

was de�ned in [10] as the graph with the vertex set V (ΛG) = Aut(G), and any two distinct vertices
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vπi
, vπj

∈ V (ΛG) corresponding to the automorphisms πi, πj ∈ Aut(G) are adjacent in ΛG when

fix(πi) ∩ fix(πj) ̸= ∅.
In [13], the invariant intersection graphs of graphs with automorphism group as the symmetric

group Sn, were termed as the n-inordinate invariant intersection graphs and the structural properties

of these graphs were studied extensively, along with the properties of their complements, called the

n-inordinate invariant non-intersection graphs, where it was found that ΛKn
∼= Λ∗

Kn
∪ ρ(n)K1, where

ρ(i); i ∈ N, is the number of derangements of i elements, and Λ∗
Kn

is the non-trivial component of

ΛKn having n!−ρ(n) vertices (see [13]).
An illustration of the n-inordinate invariant intersection graph is given in Figure 1. Throughout

the study, we denote the identity permutation by π0 and the vertex corresponding to any permutation

π ∈ Aut(G) by vπ ∈ V (ΛG).
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Fig. 1. The 4-inordinate invariant intersection graph

In [13], it was proved that the graphs ΛKn and ΛKn are weakly perfect, for all n; that is, χ(ΛKn) =

ω(ΛKn) = (n − 1)! and χ(ΛKn) = ω(ΛKn) = n + ρ(n); whereas, are perfect only when n ≤ 4. This

instills the curiosity to study di�erent proper coloring schemes of these graphs, and to compare the

chromatic numbers associated with these colorings with the clique number. Note that a graph G is

weakly perfect if χ(G) = ω(G) and a graph G is perfect if χ(H) = ω(H), for all induced subgraphs

H of G (see [17]).

2. Vertex Colorings of n-Inordinate Invariant Intersection Graphs

Graph coloring is an assignment of colors to the vertices, edges or faces of a graph according to

certain prede�ned rules. A proper coloring of a graph G is the assignment of colors to the entities of

G such that no two adjacent entities receive the same color. Beginning with the chromatic coloring

of a graph G, several types of vertex colorings have been de�ned, based on the requirements of the

assignment or scheduling problems that are to be represented as graph coloring problems.

The investigation of di�erent coloring problems in algebraic graphs is an inquisitive topic of research
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as many algebraic graphs in the literature were constructed to satisfy certain coloring protocols (c.f.

[3, 4]). Therefore, in this section, we study di�erent proper vertex coloring schemes of the n-inordinate

invariant intersection graphs and the n-inordinate invariant non-intersection graphs, for which the

following notions and notations de�ned in [13] are used.

The group Sn is partitioned into n sets such that, for 1 ≤ k ≤ n, Rk = {π ∈ Sn : |fix(π)|= k}
and for each 1 ≤ k ≤ n, the subgraph induced by Rk in ΛKn and ΛKn are denoted by ΛRk

and ΛRk
,

respectively. The vertex set of ΛKn is divided into n non-disjoint subsets Vi = {vπ : i ∈ fix(π)}; for
1 ≤ i ≤ n and for each 1 ≤ k ≤ n, V k

i = {π ∈ Vi : π ∈ Rk}; 1 ≤ i ≤ n.

2.1. Coloring of n-inordinate invariant intersection graphs inducing color pairs

In this section, we discuss the coloring schemes for the graphs ΛKn and ΛKn , in which the assignment

of colors to the vertices are de�ned based on the color-pairs that are induced by vertex pairs possessing

some property. We begin the study by investigating the complete coloring of the graphs Λ∗
Kn

and

ΛKn .

A complete coloring of a graph G is a proper vertex coloring in which every pair of colors must

appear on at least one pair of adjacent vertices and the maximum number of colors that can be used

to obtain a complete coloring of G is the achromatic number of G, denoted by χach(G) (c.f. [14]).

Theorem 2.1. For n ∈ N, χach(Λ
∗
Kn

) = χach(ΛKn) = (n− 1)!.

Proof. Note that ω(Λ∗
Kn

) = χ(Λ∗
Kn

) = (n− 1)!≤ χach(Λ
∗
Kn

). If possible, assume that there exists a

complete coloring c : V (Λ∗
Kn

) → {c1, c2, . . . , c(n−1)!+1} of Λ∗
Kn

. This implies that all
(
(n−1)!+1

2

)
pairs of

colors appear on at least one pair of adjacent vertices.

Let c(vπ1) = c(n−1)!+1, for some vπ1 ∈ V (Λ∗
Kn

). Based on the adjacency pattern of vertices in the

graph ΛKn , any vertex in V 1
i ; 1 ≤ i ≤ n, is a part of exactly one clique of order (n − 1)!, which is

induced by the corresponding Vi and these vertices are adjacent to exactly (n − 1)!−1 vertices of

that clique. Without loss of generality, select V1 for further analysis, as the choice of any Vi does not

a�ect the adjacency pattern of vertices in the maximal cliques induced. As all (n − 1)! vertices in

V1 are distinctly colored, vπ1 /∈ V1. Also, any vertex in V 1
i is adjacent to only (n− 1)!−1 vertices in

ΛKn and hence vπ1 /∈ V 1
i ; for any 1 ≤ i ≤ n.

On assigning (n−1)! colors to the vertices of V1, the number of vertices in Vi−V1, for any 2 ≤ i ≤ n,

that are to be colored, is less than (n−1)!. Also, the cardinality of the sets Vi−
i−1⋃
j=1

Vj, for 1 ≤ i ≤ n, in

order, decrease from (n−1)! to ρ(n−1), as the Vi's are non-disjoint and hence a vertex corresponding

to a permutation having the least possible cardinality of �x is adjacent to the maximum possible

vertices in Vi −
i−1⋃
j=1

Vi, for any 1 ≤ i ≤ n. Therefore, any vertex v(t1)(t2); 2 ≤ t1 ̸= t2 ≤ n, can be

assigned the color c(n−1)!+1, as they have the same degree and the vertex v(t1)(t2) is adjacent to all

other vertices of ΛKn that corresponds to permutations that �x either t1 or t2. Therefore, without loss

of generality, assume that the vertex v(2)(3) is assigned the color c(n−1)!+1. Since v(2)(3) is not adjacent

to all (n−1)! vertices of V1, the colors assigned to the vertices of V1 to which v(2)(3) is not adjacent to

must be assigned to the vertices of either V2−V1 or V3−(V1∪V2). Since |V2−V1|+|V3−(V1∪V2)|< |V1|,
even if all these vertices in V2−V1 or V3− (V1∪V2) are given distinct colors, there shall not exist any

edge having the end vertices colored with the pair c(n−1)!+1, ct; for some 1 ≤ t ≤ (n− 1)!, yielding a

contradiction. Hence, χach(Λ
∗
Kn

) = (n − 1)!. The same coloring can be extended to the graph ΛKn ,



372 Madhumitha, Naduvath

as the other components apart from Λ∗
Kn

are trivial.

Theorem 2.2. The achromatic number of ΛKn is n+ ρ(n).

Proof. As the graph ΛKn has ω(ΛKn) = χ(ΛKn) = ρ(n)+n, χach(ΛKn) ≥ ρ(n)+n. Conversely, assume

that χach(ΛKn) = ρ(n) +n+1 and let c be such a complete coloring of ΛKn with ρ(n) +n+1 colors,

say c1, c2, . . . , cρ(n)+n+1. As every complete coloring is proper, the clique of order ρ(n) + n induced

by the ρ(n) universal vertices along with each set of n vertices with distinct �x in V 1
i ; 1 ≤ i ≤ n,

vertices must be colored with distinct colors.

Therefore, assign the color ci; 1 ≤ i ≤ n, to the vertices of V 1
i , for the corresponding 1 ≤ i ≤ n,

and the colors ci; n+1 ≤ i ≤ ρ(n)+n, to the ρ(n) universal vertices. For c to be a complete coloring

of ΛKn , the color cρ(n)+n+1 has to be assigned to any vertex vπ ∈ V k
i ; 1 ≤ i ≤ n, and 2 ≤ k ≤ n− 2,

as vπ0 is adjacent to only the ρ(n) universal vertices and the subgraph of ΛKn induced by
n⋃

i=1

V 1
i is a

complete n-partite graph, with each partite having ρ(n− 1) vertices.

Let c(vπ) = cρ(n)+n+1, for some π with 2 ≤ |fix(π)|≤ n − 2. Therefore, vπ ∈ Vt1 ∩ Vt2 , for some

1 ≤ t1 < t2 ≤ n. As vπ is not adjacent to the vertices of Vt1 ∪ Vt2 , some vertex of Vi − (Vt1 ∪ Vt2);
1 ≤ i ̸= t1 ̸= t2 ≤ n, must be assigned the colors ct1 and ct2 to satisfy the complete coloring protocol.

This assignment cannot be done because all the vertices of Vi − (Vt1 ∪ Vt2); 1 ≤ i ̸= t1 ̸= t2 ≤ n, are

adjacent to all the vertices of V 1
t1
and V 1

t2
, which are colored using the colors ct1 and ct2 , respectively.

Hence, χach(ΛKn) < n+ ρ(n) + 1; completing the proof.

A proper vertex coloring of a graph G is said to be an exact coloring of G if every pair of colors

appear on exactly one pair of adjacent vertices and the maximum number of colors used to obtain

an exact coloring of G is the exact chromatic number of G (see [5]).

Proposition 2.3. The graphs Λ∗
Kn

, ΛKn and ΛKn do not admit exact coloring.

Proof. As vπ0 is a universal vertex of the graph Λ∗
Kn

, we need n!−ρ(n) colors in order to obtain an

exact coloring with respect to the color assigned to vπ0 . For Λ∗
Kn

to have exactly one edge having

end vertices with all
(
n!−ρ(n)−1

2

)
pairs of colors, Λ∗

Kn
must be a complete graph, which cannot happen

for any n ≥ 1. Therefore, the graphs Λ∗
Kn

and ΛKn do not admit an exact coloring. Using the similar

argument based on the existence of ρ(n) universal vertices in ΛKn , it can be proved that ΛKn also

does not admit an exact coloring.

A proper coloring in which every pair of colors appear on at most one pair of adjacent vertices

of a graph G is called a harmonious coloring of G and the minimum number of colors used in a

harmonious coloring of G is the harmonic chromatic number of G, denoted by χh(G) (c.f. [5]).

Theorem 2.4. For n ∈ N,
(i) χh(Λ

∗
Kn

) = χh(ΛKn) = n!−ρ(n).

(ii) χh(ΛKn) = n!.

Proof. The graph Λ∗
Kn

contains a universal vertex vπ0 , and hence every vertex in Λ∗
Kn

must be given

a unique color to obtain a harmonious coloring of Λ∗
Kn

. If there exists two vertices given the same

color, it violates the de�nition of a harmonious coloring as two edges will have the same pair of colors
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on its end vertices. Hence, χh(Λ
∗
Kn

) = n!−ρ(n). Also, any harmonic coloring of Λ∗
Kn

can be extended

as the harmonic coloring of ΛKn , by assigning any of the n!−ρ(n) colors used to color the vertices of

Λ∗
Kn

to the ρ(n) isolated vertices of ΛKn , as the isolated vertices do not contribute to any edges in

the graph. Therefore, χh(Λ
∗
Kn

) = χh(ΛKn) = n!−ρ(n). The proof of (ii) follows immediately based

on the arguments of (i), as there are ρ(n) universal vertices in ΛKn .

Assigning colors to the vertices of a graph G such that no vertex v ∈ V (G) is adjacent to two

vertices of the same color class is called an injective coloring of G and the minimum number of colors

used to obtain such a coloring is called the injective chromatic number of G, denoted by χi(G) (ref.

[15]). Note that an injective coloring of a graph is not usually not a proper coloring, but in the

following result, we can observe that any injective coloring of the graphs ΛKn and ΛKn turns out to

be a proper coloring.

Proposition 2.5. For n ∈ N,
(i) χi(Λ

∗
Kn

) = χi(ΛKn) = n!−ρ(n).

(ii) χi(ΛKn) = n!.

Proof. According to the injective coloring protocol, if a vertex of Λ∗
Kn

and its neighbour has to be

given the same color, it can only be vπ0 and one of its neighbour, say vπ, as vπ0 is a universal vertex

in the graph Λ∗
Kn

. Any neighbour vπ′ of vπ is a neigbour of vπ0 , and hence this assignment will

con�ict the injective coloring protocol as two vertices in the neighbourhood vπ′ will have the same

color. Therefore, any injective coloring of the graph Λ∗
Kn

is a proper coloring of Λ∗
Kn

, which demands

the assignment of unique colors to all its vertices. Any injective coloring of Λ∗
Kn

is also an injective

coloring of ΛKn , as the ρ(n) trivial components do not have neighbours to alter the coloring protocol.

Hence, χi(Λ
∗
Kn

) = χi(ΛKn) = n!−ρ(n). On the same lines, (ii) is also proved.

2.2. Neighbourhood related colorings of n-inordinate invariant intersection graphs

In this section, we study the vertex colorings of the graphs ΛKn , Λ∗
Kn

and ΛKn , whose coloring

protocols are given based on the neighbourhood of the vertices in the graph. Firstly, we investigate

the Grundy coloring of these graphs, where a Grundy coloring of a graph G is a proper vertex

coloring such that every vertex is colored by the smallest integer which has not appeared in any of

its previously colored neighbours. The maximum number of colors that are used to obtain a Grundy

coloring of G is the Grundy chromatic number of G, χgr(G) (ref. [14]).

Theorem 2.6. For the graphs Λ∗
Kn

, ΛKn and ΛKn,

(i) χgr(Λ
∗
Kn

) = χgr(ΛKn) = (n− 1)!.

(ii) χgr(ΛKn) = n+ ρ(n).

Proof.

(i) Let c : V (Λ∗
Kn

) → {c1, c2, . . . , c(n−1)!} be a proper vertex coloring of Λ∗
Kn

given as follows. First,

assign the colors c1, c2, . . . , c(n−1)! to the vertices vπ ∈ V1, as it induces a clique of order (n−1)!

in ΛKn . Following this, the vertices vπ′ ∈ Vi −
i−1⋃
j=1

Vj, for each 2 ≤ i ≤ n − 2, in order, are
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colored based on its neighbours in
i⋃

j=1

Vj that are previously colored.

If vπ′ ∈ V 1
i ; 2 ≤ i ≤ n, then we assign distinct colors to vπ′ such that c(vπ′) = c(vπ), where

vπ ∈ V 1
1 , as these vertices are not adjacent in ΛKn . If vπ′ ∈ V k

j ; k > 1, there exists at least

one permutation π ∈ Sn such that fix(π) ∩ fix(π′) = ∅, as |fix(π)|≤ n− 2, for any non-identity

π ∈ Sn. If |fix(π)|= n−2, the existence of such a permutation is unique; otherwise, there exists

a one-to-one correspondence between these permutations, as ρ(n− k) is a constant. Therefore,

we assign the color c(vπ′) = c(vπ), where vπ ∈ V1 and corresponds to vπ′ ∈ Vi; 2 ≤ i ≤ n.

Continuing the assignment for each 2 ≤ i ≤ n, in order, we obtain a Grundy coloring of ΛKn

with (n− 1)! colors; establishing χgr(Λ
∗
Kn

) ≥ (n− 1)!. Coloring the ρ(n) isolated vertices with

the least value among the colors assigned to the vertices of Λ∗
Kn

, the Grundy coloring of Λ∗
Kn

can be extended to a Grundy coloring of ΛKn with the same Grundy chromatic number. As we

know that χgr(G) ≤ χach(G), for any graph G (ref. [8]), the result follows from Theorem 2.1.

(ii) Consider the coloring c : V (ΛKn) → {c1, c2, . . . , cρ(n)+n} such that the vertices of Vi −
i−1⋃
j=1

Vi,

for 1 ≤ i ≤ n, are assigned the colors ci; 1 ≤ i ≤ n, for the corresponding i values and the

colors ci; n + 1 ≤ i ≤ n + ρ(n), are assigned to the ρ(n) universal vertices. This is a Grundy

coloring of ΛKn , as every vertex is colored by the smallest cj such that it has not occurred in

its colored neighbors and χgr(ΛKn) ≥ n+ ρ(n). As the other inequality follows from Theorem

2.2, χgr(ΛKn) = n+ ρ(n).

A vertex v of a graph G is said to be colorful or is said to have a rainbow neighbourhood if v

is adjacent to at least one vertex from every color class. The vertex coloring of G such that every

vertex is colorful or possesses a rainbow neighbourhood is called a fall coloring or J-coloring. The

minimum and maximum number of colors used to obtain a fall coloring of G are called the fall

chromatic numbers of G, denoted by χf (G) and ψf (G), respectively (see [8]). The maximum number

of colors that can be used to obtain a J-coloring of G is called the J-chromatic number of G, denoted

by χj(G) (For details, refer to [16]). Note that the notions of fall and J-coloring of a graph G

coincide, and hence χj(G) = ψf (G).

Theorem 2.7. For any n ≥ 3, χf (Λ
∗
Kn

) = ψf (Λ
∗
Kn

) = (n− 1)!.

Proof. Every vertex in Λ∗
Kn

is a part of a clique of order (n − 1)! and also each vertex of Λ∗
Kn

is

adjacent to at least (n− 1)!−1 vertices of a clique Vi, for some 1 ≤ i ≤ n. Hence, all the vertices of

Λ∗
Kn

possess a rainbow neighbourhood or equivalently, are colorful. Hence, χf (Λ
∗
Kn

) = (n − 1)! and

ψf (Λ
∗
Kn

) ≥ (n− 1)!. The vertex connectivity of Λ∗
Kn

is (n− 1)!−1, as the vertices in V 1
i ; 1 ≤ i ≤ n,

are adjacent only to the vertices of the corresponding Vi's. Hence, ψf (Λ
∗
Kn

) cannot be greater than

(n− 1)!; thereby proving the result.

Proposition 2.8. The graphs ΛKn and ΛKn do not admit a fall or J-coloring.

Proof. The graph ΛKn cannot admit a fall coloring or J-coloring as it is disconnected and the

isolated vertices cannot be colorful or have a rainbow neighbourhood. In the graph ΛKn , the vertex
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vπ0 cannot be a colorful vertex because vπ0 is adjacent only to the ρ(n) universal vertices of ΛKn ;

whereas, ω(ΛKn) = χ(ΛKn) = n+ ρ(n). Hence the result.

The number of vertices of a graphG having rainbow neighbourhood is called the rainbow neighbour-

hood number of G, denoted by rχ(G) (c.f. [16]). As a consequence of Theorem 2.7 and Proposition

2.8, the following corollary is obtained.

Corollary 2.9. For n ≥ 3,

(i) rχ(Λ
∗
Kn

) = rχ(ΛKn) = n!−ρ(n).

(ii) rχ(ΛKn) = nρ(n− 1) + ρ(n).

Proof. As every vertex of ΛKn , except its isolated vertices, is colorful in ΛKn , rχ(Λ
∗
Kn

) = rχ(ΛKn) =

n!−ρ(n). In any proper coloring of ΛKn , every vertex vπ1 ∈ V k
i , for some 1 ≤ k ≤ n, is adjacent to

at least the ρ(n) universal vertices and the vertices vπ2 ∈ V 1
j , where i /∈ fix(π2). Since the vertices of

V 1
i ; 1 ≤ i ≤ n, induce a complete n-partite graph, it can be deduced that in the rainbow coloring of

ΛKn , each vπ ∈ V (ΛKn) is adjacent to the vertices of ρ(n) + (n− k) color classes, where k = |fix(π)|.
Hence the result.

The minimum number of colors required to properly color the vertices of a graph G such that

each vertex of G is adjacent to vertices of at least t− 1 di�erent color classes is called the t-colorful

chromatic number of G, denoted by χtcol(G), and such a coloring of G is called the t-colorful coloring

of G (see [18]).

Corollary 2.10. For n ≥ 3 and 1 ≤ t ≤ δ, χtcol(Λ
∗
Kn

) = (n− 1)! and χtcol(ΛKn) = ρ(n) + n.

A vertex coloring of a graph G is said to be a b-coloring if at least one vertex of each color class is

colorful. The minimum number of colors used in a b-coloring of G is called the b-chromatic number

of G, denoted by χb(G) (ref. [8]).

Theorem 2.11. For n ≥ 3,

(i) χb(Λ
∗
Kn

) = χb(ΛKn) = χ(ΛKn).

(ii) χb(ΛKn) = χ(ΛKn).

Proof. As a consequence of Theorem 2.7, we deduce that every vertex of Λ∗
Kn

is colorful. Hence, the

proper vertex coloring of Λ∗
Kn

by itself is a b-coloring of Λ∗
Kn

. This coloring when extended to the

isolated vertices by assigning one of the (n− 1)! colors used in any proper coloring of Λ∗
Kn

does not

alter the b-chromatic number of ΛKn , as any b-coloring requires only one vertex of a color class to be

colorful. Similarly, it can be observed that the chromatic coloring of ΛKn is a b-coloring of ΛKn , as

the ρ(n) universal vertices and the vertices of V 1
i ; 1 ≤ i ≤ n, are adjacent to each vertex of all color

classes, except itself. Hence the result.

2.3. Distance related colorings of n-inordinate invariant intersection graphs

The coloring protocols in which the assignment of colors between two vertices u, v in a graph G is

based on the distance d(u, v) ≥ 1 are called distance related vertex colorings. In these colorings
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where the protocols involve only the assignment of distinct colors to vertices u, v at some distance

d(u, v), and the parameter associated is the number of colors required, reduce to either the chromatic

or the harmonious coloring of Λ∗
Kn

and ΛKn , as these graphs have diameter 2. Hence, we study the

distance related coloring schemes for these graphs, which does not coincide with any other proper

coloring.

An L(2, 1)-coloring of a graph G is an assignment of non-negative integers as colors, to the vertices

of G such that the colors assigned to adjacent vertices di�er by at least 2, and the colors assigned to

vertices at distance 2 di�ers by at least 1. For an L(2, 1)-coloring c of G, the c-cap of G, λc(G) =

max{c(v) : v ∈ V (G)} and L-cap of G, λL(G) = min{λc(G)}, where the minimum is taken over all

possible L(2, 1)-colorings c of G (c.f. [2]).

Theorem 2.12. For n ≥ 3, λL(Λ
∗
Kn

) = λL(ΛKn) = n!−ρ(n).

Proof. As the diameter of the graph Λ∗
Kn

is 2, any L(2, 1)-coloring c of Λ∗
Kn

assigns distinct colors

to all the vertices. Hence, the number of colors required to color the vertices is n!−ρ(n). As 0 is also
a color that can be assigned in an L(2, 1) coloring, and there exists a universal vertex vπ0 in Λ∗

Kn
,

λL(Λ
∗
Kn

) ≥ n!−ρ(n). To prove that λL(Λ∗
Kn

) = n!−ρ(n), we obtain an L(2, 1)-coloring of Λ∗
Kn

which

assigns all colors 2, 3, . . . , n!−ρ(n) and 0, as follows.

First, assign the color 0 to vπ0 . Next, assign colors to the vertices of V k
i ; ⌊n

2
⌋ ≤ k ≤ n− 2, and V 1

j ,

for 1 ≤ i ̸= j ≤ n, alternatively. As the vertices of
n⋃

i=1

[ n−2⋃
k=⌊n

2
⌋+1

V k
i

]
induce a clique, these vertices

cannot be assigned consecutive colors. Since every vertex of V k
i ; ⌊n

2
⌋ ≤ k ≤ n− 2, corresponding to

a k-element �x is not adjacent to (n − k)ρ(n − 1) vertices of V 1
i ; 1 ≤ i ≤ n, we assign consecutive

colors from 2 to
n−2∑

k=⌊n
2
⌋

(
n
k

)
ρ(n− k) + 1 to the vertices of V k

i ; ⌊n
2
⌋ ≤ k ≤ n− 2, and V 1

i ; 1 ≤ i ≤ n, by

alternating between them. As
∣∣∣ n⋃
i=1

[ n−2⋃
k=⌊n

2
⌋
V k
i

]∣∣∣ = n−2∑
k=⌊n

2
⌋

(
n
k

)
ρ(n− k) < nρ(n− 1), for all n ≥ 3, there

exists nρ(n− 1)−
n−2∑

k=⌊n
2
⌋

(
n
k

)
ρ(n− k) vertices of V 1

i ; 1 ≤ i ≤ n, left uncolored, at this stage.

The �xes of permutations in R1 are either same or disjoint. Hence, the vertices of V 1
i ; 1 ≤ i ≤ n,

corresponding to these permutations with disjoint �xes are non-adjacent and we assign consecutive

integers to these vertices by not assigning colors to two vertices of the same V 1
i , for any 1 ≤ i ≤

n, back to back. Hence, the value of the color given to the last vertex of ΛR1 ; 1 ≤ i ≤ n, is

nρ(n− 1) +
n−2∑

k=⌊n
2
⌋

(
n
k

)
ρ(n− k) + 1.

Following this, we color the vertices of
n⋃

i=1

V k
i ; 2 ≤ k ≤ ⌊n

2
⌋ − 1, for which, �rst consider the

(
n
k

)
distinct k-element �xes, for each 2 ≤ k ≤ ⌊n

2
⌋ − 1, and partition them into subsets of order ⌊n

k
⌋,

such that each of them is a maximal subset of pairwise disjoint k-element �xes. Order the partite

sets and the vertices in these partite sets, such that the �rst and the last element of a partite set

has disjoint k-element �x with the last and the �rst element of the preceding and succeeding partite

sets. Note that this ordering does not a�ect the nature of the partite set as the ⌊n
k
⌋ �xes in a partite

set are mutually disjoint. Since each Rk; 2 ≤ k ≤ ⌊n
2
⌋ − 1, consists of ρ(n − k) permutations with

the same k-element �x, we extend the same partitioning and the ordering to all the ρ(n− k) sets of(
n
k

)
distinct k-element �xes; thereby to the vertices corresponding to them, as well.



coloring of n-inordinate invariant intersection graphs 377

Assign colors to all vertices corresponding to the ρ(n− k) sets of each of the partite set, from the

�rst to the
⌈
k(nk)
n

⌉
th, in order. In this assignment, all vertices can be assigned consecutive integers

because each distinct k-element �x has
(
n−k
k

)
disjoint k-element �xes, for all 2 ≤ k ≤ ⌊n

2
⌋ − 1,

and
(
n−k
k

)
> ⌊n

k
⌋ + 1. Also, every vertex in V k−1

i ; 1 ≤ i ≤ n, is not adjacent to least one vertex

of V k
j ; 1 ≤ i ̸= j ≤ n, for all 1 ≤ k ≤ ⌊n

2
⌋ − 1. Hence, all consecutive colors starting from

nρ(n−1)+
n−2∑

k=⌊n
2
⌋

(
n
k

)
ρ(n−k)+2, until nρ(n−1)+

n−2∑
k=⌊n

2
⌋

(
n
k

)
ρ(n−k)+1+

⌊n
2
⌋−1∑

k=2

(
n
k

)
ρ(n−k) are used to

color the vertices; which on simpli�cation yields λL(Λ
∗
Kn

) = n!−ρ(n). Any of the colors used in this

L(2, 1)-coloring of Λ∗
Kn

can be given to the ρ(n) isolated vertices of ΛKn to obtain an L(2, 1)-coloring

of ΛKn , and hence yielding λL(ΛKn) = n!−ρ(n).

Theorem 2.13. For n ≥ 3, λL(ΛKn) = n! +ρ(n).

Proof. The graph ΛKn has ρ(n) universal vertices to which we assign the colors 0, 2, 4, . . . , 2(ρ(n)−1).

Following this, assign the color 2ρ(n) to the vertex vπ0 . Next, we begin by assigning colors to the

vertices of Vi −
i−1⋃
j=1

; 1 ≤ i ≤ n, such that the �rst vertex and the last vertex assigned color belongs

to V 1
i and Vi ∩ Vi+1 (unless i = n) of the respective Vi's. This assignment ensures that consecutive

colors starting from 2ρ(n) + 1 to n! +ρ(n) are given to these n!−ρ(n) − 1 vertices, as each Vi is an

independent set and also, the �rst and last vertex in the sequence as per the requirement exists as

Vi's are not disjoint. As all possible consecutive labels are assigned to the non-universal vertices, and

the universal vertices must be given non-consecutive colors in any L(2, 1)-coloring of the graph ΛKn ,

we get λL(ΛKn) = n! +ρ(n).

A proper vertex coloring of a graph G such that two colors i and j are assigned to u, v ∈ V (G)

when d(u, v) + |i − j|≥ 1 + r, for some �xed r ∈ N; not greater than the diameter of G is called

r-radio coloring of G. The value of a radio coloring c of G, rcr(c) = max{c(v) : v ∈ V (G)} and the

r-radio chromatic number of G, rcr(G) = min{rcr(c)}, where the minimum is taken over all possible

r-radio colorings c of G (c.f. [2]). When r is the diameter of G and r is one less than the diameter of

G, the colorings are called the radio and antipodal colorings of G, and the corresponding chromatic

numbers are called the radio and antipodal numbers of G, denoted by rn(G) and an(G), respectively.

Since the diameter of Λ∗
Kn

and ΛKn is 2, we obtain the following result.

Proposition 2.14. For the graphs Λ∗
Kn

and ΛKn,

(i) rn(Λ∗
Kn

) = λL(Λ
∗
Kn

).

(ii) an(Λ∗
Kn

) = χ(Λ∗
Kn

).

(iii) rn(ΛKn) = λL(ΛKn).

(iv) an(ΛKn) = χ(ΛKn).

2.4. Equitable coloring of the n-inordinate invariant intersection graphs

A proper vertex coloring of a graph G in which the cardinality of the color classes di�er by at most

1 is called an equitable coloring of G. The minimum number of colors used to obtain an equitable

coloring of G is the equitable chromatic number, denoted by χe(G) (ref. [14]). In this section, we
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obtain the equitable coloring pattern and determine the equitable chromatic number of the graphs

Λ∗
Kn

, ΛKn and ΛKn .

Theorem 2.15. The equitable chromatic number of Λ∗
Kn

is ⌈n!−ρ(n)−1
2

⌉+ 1.

Proof. The graph Λ∗
Kn

has a universal vertex vπ0 and hence in any equitable coloring of Λ∗
Kn

, each

color class must be of cardinality either 1 or 2. Therefore, χe(Λ
∗
Kn

) ≥ ⌈n!−ρ(n)−1
2

⌉ + 1. To prove the

converse, we partition the n!−ρ(n)− 1 non-universal vertices of Λ∗
Kn

into independent sets of size 2

and claim that there can exist at most one singleton in such a partition.

For each 1 ≤ k ≤ ⌊n
2
⌋, consider the graph ΛRk∪Rn−k

. As |Rk|=
(
n
k

)
ρ(n − k) and |Rn−k|=

(
n
k

)
ρ(k),

|Rk|≥ |Rn−k|, for any 1 ≤ k ≤ ⌊n
2
⌋. Also, for each 1 ≤ k ≤ ⌊n

2
⌋, every vertex of ΛRn−k

is not adjacent

to exactly kρ(n− k) vertices of ΛRk
and hence every vertex of ΛRn−k

can be paired with a vertex of

ΛRk
such that they are not adjacent. Pairing the vertices of ΛRk∪Rn−k

; 1 ≤ k ≤ ⌊n
2
⌋, in this manner

can be viewed as an injective mapping f : V (ΛRn−k
) → V (ΛRk

), that gives
(
n
k

)
ρ(k) independent

sets {v, f(v)} of cardinality 2. Therefore, at this stage,
(
n
k

)
[ρ(n − k) − ρ(k)] vertices in each ΛRk

;

1 ≤ k ≤ ⌊n
2
⌋, are unpaired, implying that all the uncolored vertices are in ΛRk

; 1 ≤ k ≤ ⌊n
2
⌋.

Consider the
(
n
k

)
[ρ(n − k) − ρ(k)] vertices in each ΛRk

; 1 ≤ k ≤ ⌊n
2
⌋. As each ΛRk

; 1 ≤ k ≤ ⌊n
2
⌋,

is not a clique, there exists at least one vertex of ΛRk
to which a vertex of ΛRk

is not adjacent to or

equivalently, for every k-element �x, there exists at least one other k-element �x, such that they are

disjoint. Hence, these vertices corresponding to these disjoint �xes of each ΛRk
can be paired.

If
(
n
k

)
is even, then the vertices of that ΛRk

can be paired within themselves. If
(
n
k

)
is odd, for

some 1 ≤ k ≤ ⌊n
2
⌋, then after pairing the �rst set of

(
n
k

)
− 1 vertices that correspond to distinct

k-element �xes, we pair the left out vertex to a vertex in the second set among the ρ(n− k)− ρ(k)

sets of
(
n
k

)
vertices that correspond to distinct k-element �xes. As there exists vertices of at least 2

distinct k-element �xes to which a vertex that corresponds to a permutation �xing k elements is not

adjacent to, for any 1 ≤ k < ⌊n
2
⌋, such pairing is possible in any ΛRk

; 1 ≤ k < ⌊n
2
⌋. If ρ(n − k) is

even and
(
n
k

)
is odd, at this point, all vertices are paired. Otherwise, when both ρ(n − k) and

(
n
k

)
are odd, there will exist exactly one unpaired vertex from each ΛRk

; 1 ≤ k < ⌊n
2
⌋, of this kind. If

exactly one vertex is left unpaired among all ΛRk
's, we are done.

If there exists more than one unpaired vertex at this stage, we pair these unpaired vertices based

on their non-adjacency, which in turn leaves us with at most one singleton, yielding the required

number of pairs. The pairing of these unpaired vertices can be done because |fix(π)|≤ n − 2 for all

non-identity permutations of Sn and the unpaired vertices of the graph ΛRk
can be permuted with

the vertices of ΛRk
in such a way that the graph induced by these left out vertices from each ΛRk

of

this kind has at least one unique vertex to which every unpaired vertex is not adjacent to, owing to

the structure of Sn. Hence, χe(Λ
∗
Kn

) = ⌈n!−ρ(n)−1
2

⌉+ 1.

Theorem 2.16. For the graph ΛKn, χe(ΛKn) = ⌈n!−ρ(n)
2

⌉+ ρ(n).

Proof. The graph ΛKn has ρ(n) universal vertices. Therefore, in any equitable coloring of ΛKn , the

colors are assigned to the vertices of ΛKn such that each color class is of cardinality either 1 or 2,

implying that χe(ΛKn) ≥ ⌈n!−ρ(n)
2

⌉ + ρ(n). To prove that χe(ΛKn) = ⌈n!−ρ(n)
2

⌉ + ρ(n), we partition

the n!−ρ(n) vertices of ΛKn into independent sets of order 1 or 2, by pairing them, and claim that

there can exist at most one singleton in such a partition.



coloring of n-inordinate invariant intersection graphs 379

In ΛKn , the graph
n⋃

k=⌊n
2
⌋+1

ΛRk
is an empty graph. Hence, these vertices in

n⋃
k=⌊n

2
⌋+1

ΛRk
can be

paired in any manner. If
n∑

k=⌊n
2
⌋+1

(
n
k

)
ρ(n− k) is even, we obtain no unpaired vertices; otherwise, pair

the left out vertex with vπ0 . Note that vπ0 can be paired with any of the non-universal vertices of

ΛKn . Based on the number of vertices in each ΛRk
; 1 ≤ k ≤ ⌊n

2
⌋, we pair them as follows.

Consider ΛRk
, for 1 ≤ k ≤ ⌊n

2
⌋. Every vertex of ΛRk

is not adjacent to at least ρ(n−k)−1 vertices

in ΛRk
, as they correspond to permutations having the same k-element �x. If both ρ(n − k) and(

n
k

)
are even, then two vertices corresponding to the same k-element �x can be paired and we obtain

ρ(n−k)
2

(
n
k

)
pairs of vertices in each of the corresponding ΛRk

's. If ρ(n−k) is odd and
(
n
k

)
is even, then

two vertices corresponding to the same k-element �x can be paired until we obtain ρ(n−k)−1
2

(
n
k

)
pairs

of vertices of in the corresponding ΛRk
and one set among the ρ(n− k) sets of

(
n
k

)
vertices are paired

within themselves. For any 2 ≤ k ≤ ⌊n
2
⌋, this pairing is possible because there exists at least two

k-element �xes that are not disjoint and hence the vertices corresponding to them can be paired.

If both ρ(n−k) and
(
n
k

)
are odd, pair the ρ(n−k)(

(
n
k

)
−1) vertices as mentioned above. Hence, we

obtain exactly one unpaired vertex here. If this is the only unpaired vertex among all ΛRk
's, we either

pair it with vπ0 or it becomes the only singleton; proving the result. If there is one such unpaired

vertex from more than one ΛRk
; 1 ≤ k ≤ ⌊n

2
⌋, we pair the vertices in that set of unpaired vertices if

each vertex of this set has at least one unique vertex to which it is not adjacent to. Otherwise, the

unpaired vertex of ΛRk
which does not have such a unique vertex to which it is not adjacent to, is

permuted with the other paired vertices of ΛRk
in such a way that the unpaired vertex obtained after

permuting has a unique vertex in the set of other unpaired vertices, to which it is not adjacent to.

This swapping of vertices among the vertices of ΛRk
, for each k is possible owing to the structure of

Sn. Therefore, we obtain at most one unpaired vertex at the end of the process, yielding the required

value of the equitable chromatic number.

Note that, unlike the other coloring schemes, the equitable coloring of Λ∗
Kn

cannot be extended

to the graph ΛKn because ΛKn has ρ(n) isolated vertices, to which any color can be assigned. As

ω(Λ∗
Kn

) = ω(ΛKn) = (n − 1)!, we know that χe(ΛKn) ≥ (n − 1)!. Also, α(Λ∗
Kn

) = n. This implies

that ideally, the n! vertices of ΛKn must be distributed equally to the (n − 1)! color classes; that

is, n per color class, which will be an equitable coloring with the minimum number of colors. With

respect to the assignment of colors to the vertices of Λ∗
Kn

in a chromatic coloring, the color class of

vπ0 is of cardinality 1 and only for the ρ(n − 1) color classes assigned to the vertices of V 1
i , we can

ensure cardinality n. Therefore, for this assignment of colors to the vertices of Λ∗
Kn

to be an equitable

assignment of colors to the vertices of ΛKn , the ρ(n) isolated vertices are distributed to each of the

(n− 1)!−ρ(n− 1) color classes, such that all the color classes have the same cardinality n or di�er

at most by 1.

The number of isolated vertices to be added to each of the color class which has less than n vertices

cannot be precisely mentioned as it depends on the assignment. Also, as the value of ρ(n) is computed

based on the integer partitioning of n and the permutations corresponding to these partitioning that

does not �x (n−k) elements, it grows rapidly and at this stage of the study, a pattern for ρ(n) values

also does not exists, owing to its dependency on the theory of integer partitioning, which by itself is

an unsolved problem (For details, refer to [1]). Hence, the possibility of assignment, though ideally

must hold, (holds till n = 10), could not be proved with the expected rigour. Therefore, we conclude

the section by posing the following conjecture.
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Conjecture 2.17. The equitable chromatic number of the graph ΛKn is (n− 1)!

3. Conclusion

In this article, we examined various proper vertex coloring schemes on the n-inordinate invariant

intersection graphs and their complements. It is interesting to see that almost all the chromatic

numbers associated with various coloring patterns are equal to the chromatic number or the order

of the graphs. This increases the interest to realise some coloring in the literature for which the

assignment is di�erent, prompting a wide scope to investigate other coloring schemes like improper

vertex colorings and domination related vertex colorings, edge colorings and so on of the n-inordinate

invariant intersection graphs and the n-inordinate invariant non-intersection graphs. [?]
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