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abstract

Fine chemical processes are integral to modern industries such as automotive, environmental pro-

tection, aviation, and new energy. However, these processes involve highly toxic substances and

complex chemical interactions, making them vulnerable to uncontrollable circumstances and posing

signi�cant risks to human safety and the environment. This work proposes an enhanced GA-LVW

algorithm for reliability assessment of �ne chemical processes, focusing on essential operating units.

The method utilizes global-local structure analysis to extract features from operating unit variables,

reducing data noise, simplifying the construction of fuzzy rules, and improving model resilience. The

extracted features are integrated into a fuzzy inference system. The proposed approach is validated

using the Tennessee Eastman (TE) process model and the R-22 production process in a �uoride facil-

ity. Results demonstrate that the enhanced GA-LVW algorithm signi�cantly improves the system's

e�ciency and maintainability compared to conventional fuzzy inference systems.
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1. Introduction

Modern industry places signi�cant importance on �ne chemical processes due to their extensive

applications across various sectors, including automotive, environmental protection, aviation, new

energy, and others [15]. The increasing demand for product variety and the expansion of application

domains have heightened the signi�cance of the �ne chemical industry. However, the synthesis of

�ne chemicals often involves highly toxic substances and complex chemical interactions, making the

processes highly susceptible to uncontrollable factors, which pose signi�cant risks to human safety

and the environment [10, 14]. For example, even small leaks of highly toxic compounds used in
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�uorochemical processes can severely threaten worker safety, equipment functionality, and public

property [5]. Traditional monitoring and maintenance methods are struggling to meet the safety and

reliability requirements of modern industry, necessitating new strategies for system monitoring and

automation [2].

Conventional �ne chemical process monitoring systems primarily focus on fault diagnosis and

detection. While these systems can minimize losses and promptly repair faults, they are often

e�ective only after the fault has caused irreversible �nancial losses and safety risks [12]. Recent

research highlights that preventing breakdowns alone cannot guarantee system safety and reliability,

emphasizing the need for predictive health management (PHM) techniques in the �ne chemical sector

[8]. These techniques aim to evaluate reliability and implement corrective actions before failures

occur.

Reliability evaluation techniques in PHM can generally be categorized into knowledge-based,

analysis-based, and data-driven approaches [9]. Knowledge-based approaches rely on expert ex-

perience and understanding, but their applicability is limited by production constraints and the

unpredictability of expert knowledge. Analysis-based methods leverage physical and chemical prin-

ciples but struggle to handle the complexity of �ne chemical processes, such as time-variation and

multivariate coupling [1, 16]. On the other hand, data-driven methods overcome these limitations

by using extensive process data to build black-box models, o�ering broader applicability [4].

Although mainstream reliability assessment methods such as reliability block diagrams (RBD),

fault tree analysis, Monte Carlo simulations, and Bayesian networks have been widely used in �elds

like electrical equipment, electronics, aviation, and energy, their application in the chemical industry

remains limited [13]. This limitation arises from the multidimensional, strongly coupled, time-lagged,

and nonlinear nature of chemical processes, which makes direct application of conventional techniques

challenging. Moreover, the reliance on expert knowledge in most existing studies introduces judg-

mental biases, leading to uncertain reliability evaluation results [11].

To address these challenges, this study introduces a fuzzy inference system (FIS) for the reliability

assessment of essential operational units in �ne chemical processes, based on global-local structural

analysis using an enhanced GA-LVW algorithm. FIS can handle uncertainty and logical reasoning,

reducing the dependency on precise expert knowledge. However, its practical application in large-

scale chemical processes is often hindered by the excessive number of variables and the complexity

of fuzzy rule formulation [3]. By integrating global-local structural analysis, the proposed GA-LVW

algorithm extracts features from operating unit variables, replacing the original variables with global-

local features as inputs to the FIS. This approach reduces data noise, enhances model resilience, and

signi�cantly simpli�es the fuzzy rule design, thereby reducing reliance on expert knowledge and

expediting the system's logical design [7].

The methodology is validated using the Tennessee Eastman (TE) process model and the R-22

production process from a domestic �uorination plant. Real-time assessments of the reactor operating

unit's reliability under various operating conditions demonstrate the e�cacy of the enhanced GA-

LVW algorithm in precise chemical process monitoring. Compared to the conventional FIS approach,

the enhanced GA-LVW algorithm not only simpli�es fuzzy rule design but also improves system

e�ciency and maintainability, making it highly applicable in real-world scenarios [6].

The enhanced GA-LVW algorithm proposed in this paper o�ers a novel approach to predictive

health management and reliability evaluation in �ne chemical processes. By integrating global and

local structural elements, the approach e�ectively addresses the limitations of existing methods and

demonstrates signi�cant potential for broader applications in chemical process monitoring and au-
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tomation. With advancements in industrial big data, this approach is expected to be further ex-

panded, providing robust support for ensuring the safety and reliability of chemical production.

2. Improved GA-LVW Algorithm

2.1. GA Algorithm

The Genetic Algorithm (GA) is a heuristic search technique used to �nd optimal solutions by mim-

icking natural evolutionary processes. The steps for using GA in feature selection are as follows

[11]:

1. **Feature Representation**: Each feature is represented by a binary value, where 1 indicates

that the feature is selected, and 0 indicates it is not. A random function generates the initial

population. The random function fr in Python's random module is used in this paper, and it selects

elements randomly from the sequence:

fr = random choice(0, 1). (1)

2. **Fitness Computation**: Compute the �tness value (fi) for each individual i in the population

pop(t). The �tness value is determined by the �tness function, which evaluates the superiority or

inferiority of an individual:

fi = �tness(popi(t)). (2)

3. **Selection**: The selection process involves retaining the �ttest individuals from the pop-

ulation to generate the next generation. Using the random competition method, two individuals

random(popi) and random(popj) are selected, and the one with the higher �tness value is chosen for

crossover:

winner = max{random(popi), random(popj)}. (3)

4. **Crossover**: Two individuals are selected at random, and their genetic material is exchanged

to create o�spring with better traits. The parent chromosomes before crossover are represented by:{
b1b2b3 · · · bi | bi+1bi+2 · · · bn
c1c2c3 · · · ci | ci+1ci+2 · · · cn

. (4)

5. **Mutation**: During the search process, mutation alters individual genes to escape local

minima and accelerate convergence. A single-point mutation, or bit mutation, changes one bit of the

DNA sequence. For instance, 0 is converted to 1, and 1 to 0. The mutation of the �fth bit is shown

below:

0111110110. (5)

2.2. LVW Algorithm

The LVW (Las Vegas Wrapper) algorithm is a feature selection method that uses a stochastic search

strategy within the Las Vegas framework and employs the classi�er's error as the evaluation criterion.

The following steps outline the LVW algorithm:
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1. **Sub-dataset Creation**: Given a dataset D, LVW randomly selects a feature subset A′ to

create a sub-dataset DA′
. The dataset is then divided into training and validation sets. Using a

designated learning machine ξ, k-fold cross-validation computes the cross-validation error:

Ei = CrossValidation
(
ζ
(
DA′

))
, (6)

and the average error is calculated as:

E ′
i =

1

k

k∑
i=1

Ei. (7)

Alternatively, the generalization error E ′ on the test dataset can be used as the evaluation criterion:

E ′ = Generalization
(
ζtrain

(
DA′

test

))
, (8)

where the feature subset is part of the test sub-dataset.

2. **Updating Global Values**: If the conditions of Eq. (9) are met, update the global minimum

error E, the optimal feature subset A∗, the number of feature subsets d′, and the global optimal

features d:

(E ′ < E), (E ′ = E), (d < d′). (9)

3. **Termination**: Repeat the above steps until the termination criterion is satis�ed.

2.3. The GA-LVW Algorithm

The GA-LVW algorithm combines the global search capability of GA with the feature optimization

e�ciency of LVW. The algorithm operates as follows:

1. The features of the population are encoded and initialized using GA.

2. LVW randomly selects a feature subset to create a sub-dataset, which is divided into training

and validation sets.

3. The �tness of each individual in the population is calculated after selection, crossover, and

mutation. Individuals with higher �tness are retained as the current optimal population, and the

optimal subset is updated.

4. The algorithm evaluates whether crossover or mutation is needed. If not, the target feature set

is output. Otherwise, the process continues until the termination condition of the GA algorithm is

satis�ed.

Figure 1 illustrates the �ow of the GA-LVW algorithm.

3. Performance Assessment of the Enhanced GA-LVW Algorithm

Method

3.1. Fluorochemical R-22 Process Reactor Operating Unit Reliability Estimates

The proposed enhanced GA-LVW algorithm was applied to the R-22 manufacturing process dataset

of a �uoride plant in China to evaluate its e�ectiveness. Due to con�dentiality agreements, this

study introduces the application procedure and results using the reactor operation unit of the R-22

production process as an example.
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Fig. 1. Flowchart of the GA-LVW algorithm

Dichlorodi�uoromethane (R-22) is a commonly used intermediate in �uorochemicals and is widely

used as a raw material for propellants and refrigerants. The primary raw materials for R-22 produc-

tion are hydro�uoric acid and chloroform. The chemical reaction equation is:

HCCl3 + 2HF → HCF2Cl+ 2HCl.

The R-22 production unit includes the reactor, separator, water washing tower, distillation towers,

and other equipment. Hydro�uoric acid and chloroform are pumped into the reactor, where they

react to produce R-22, R-21, R-23, and HCl. The subsequent process involves fractional distillation,

washing, and further distillation to obtain the main product, R-22.

This research utilizes data from January 2023 to October 2023, sampled every minute. The dataset

is representative, covering nearly a year and accounting for seasonal changes and feedstock variations.

Rigorous safety controls were implemented, and data from shutdowns and maintenance periods were
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included to simulate abnormal production conditions and validate the method.

To train the GLSA model, 1,000 samples from regular reactor operations were collected. The top

three eigenvalues were selected from the 10 reactor operational unit variables, and the remaining

samples were projected into three dimensions. These reduced variables served as inputs for the fuzzy

inference system. Figure 2 illustrates the fuzzy inference system design.

Fig. 2. An illustration of the enhanced GA-LVW algorithm's use in the R-22 reactor's operating unit.

Figure 3 shows the reliability of the reactor operating unit and the critical feedstock input under

three abnormal conditions. In Case 1, the critical feedstock initially remains near the target value,

and the reactor's reliability exceeds 90%. However, during a routine maintenance halt, the feedstock

drops to zero, and the reliability falls to around 20%. Once the feed is restored, reliability gradually

recovers above 90%.

Fig. 3. Reliability of reactor operational unit and critical feedstock input under three scenarios of R-22.

In Case 2, a brief decrease in critical feedstock results in a decline in reactor reliability, approaching

the warning limit of 60%. As the feedstock stabilizes, reliability recovers. In Case 3, the feedstock

remains stable, and reliability �uctuates between the safety and warning control limits.

A comparison of the enhanced GA-LVW algorithm with expert-guided fuzzy inference systems is

shown in Figure 4. While the trends in reliability estimates align, the expert-guided results exhibit



data-driven studies on automation 321

larger deviations from the actual system behavior, demonstrating the advantages of the enhanced

GA-LVW method.

Fig. 4. Comparison of reliability estimation results for the R-22 reactor operating unit.

The enhanced GA-LVW algorithm requires only 27 fuzzy rules compared to the 59,045 rules needed

for standard FIS, signi�cantly reducing system complexity and enhancing maintainability.

3.2. Evaluation of TE Model Reactor Operating Units for Reliability

The proposed method was further validated using the Tennessee Eastman (TE) process model. The

TE process comprises �ve operational units: reactor, condenser, separator, stripper, and compressor.

The process �ow diagram is shown in Figure 5.

Fig. 5. Flowchart of the Tennessee Eastman (TE) process.

The TE model includes 12 operational variables and 22 process variables. The enhanced GA-LVW

algorithm was used to evaluate reactor and separator reliability. The fuzzy inference system required

only 27 rules for reactor reliability assessment, compared to 4.30 Ö 107 rules in the standard FIS

approach, highlighting the method's practicality.
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Figure 6 illustrates the a�liation functions of the input and output variables for the TE reactor

and separator operational units.

Fig. 6. A�liation functions for the TE reactor and separator operational units.

Figure 7 depicts the reliability variation of the TE reactor and separator under three fault scenarios.

The enhanced GA-LVW algorithm accurately re�ects unit reliability changes, demonstrating its

e�ectiveness in fault detection and system monitoring.

Fig. 7. Reliability of TE reactor and separator operational units under three fault scenarios.

4. Conclusion

This study proposes an enhanced GA-LVW algorithm for reliability assessment of �ne chemical

process operating units, combining global-local structure analysis and fuzzy inference systems. The

method reduces reliance on expert knowledge, lowers design complexity, and enhances system robust-

ness. Validation using the R-22 process and TE model demonstrates the algorithm's superiority in
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improving reliability assessment and maintainability, making it a valuable tool for predictive health

management in complex chemical processes.
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