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abstract

A Y tree on k vertices is denoted by Yk. To decompose a graph into Yk trees, it is necessary to

create a collection of subgraphs that are isomorphic to Yk tree and are all distinct. It is possible to

acquire the necessary condition to decompose Km(n) into Yk trees (k ≥ 5), which has been obtained

as n2m(m − 1) ≡ 0 (mod 2(k − 1)). It has been demonstrated in this document that, a gregarious

Y5 tree decomposition in Km(n) is possible only if n2m(m− 1) ≡ 0 (mod 8).
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1. Introduction

To create a Yk tree (v1 v2 . . . vk−1; vk−2 vk), its edges are represented as {(v1v2, v2v3, . . . , vk−2vk−1)∪
(vk−2vk)} while the vertices are represented as {v1, v2, . . . , vk}. A Y5 tree (v1 v2 v3 v4; v3 v5) can be

seen in Figure 1.
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Fig. 1. Y5 tree
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The wreath product (G ⊗ H) of G and H be de�ned in this way: V (G ⊗ H) = {(u, v) | u ∈
V (G), v ∈ V (H)} and E(G ⊗H) = {(u, v)(x, y) | u = x and vy ∈ E(H), or ux ∈ E(G)}. Ir is the

term used to describe the set of r vertices. The extended graph (G ⊗ Ir) of G is also a multipartite

graph which is described in the following manner: V (G⊗Ir) = {pq | p ∈ V (G), q ∈ Ir} and E(G⊗Ir)

= {pqst | ps ∈ E(G) and q, t ∈ Ir}. To make it easier for us, the extented graph is denoted by Er(G).

Here Km ⊗ In is referred as the complete equipartite graph and is also identi�ed by Km(n). Here, the

extended graph Er(Km(n)) can be considered as the extended graph Enr(Km), ie., Km(nr).

Decomposition of a graph G can be partitioned into subgraphs {Gi, 1 ≤ i ≤ n}, where each Gi is

distinct by its edges, in addition with, the edge set of G is the union of the edge set of all subgraphs.

In such a case that, if there is an isomorphism between each subgraph Gi and a graph H, then G is

said to decompose into H.

However, a Y5 tree decomposition in Er(G) is termed as gregarious, if for every Y5 tree, all its

vertices are assigned to various partite sets.

Numerous authors have investigated tree decompositions and their special characteristic, in par-

ticular gregarious tree decompositions. C. Huang and A. Rosa [10] demonstrated that the complete

graph Km admits a Y5 tree decomposition when m ≡ 0, 1 (mod 8). The study of G-decomposition of

complete graphs, with G having 5 vertices, is detailed in [2]. According to the conjecture by Ringel

[16], it is proposed that K2m+1 has been decomposed into a tree with precisely m edges. Ja
′
nos

Bara
′
t and Da

′
niel Gerbner [1] show that 191-edge connected graph admits a Y tree decomposi-

tion. To know more about tree decompositions, refer [3, 4, 17, 14, 9, 12, 11, 13, 15]. A gregarious

kite decomposition in Km ×Kn is demonstrated to exist by A. Tamil Elakkiya and A. Muthusamy

[5], with the condition that mn(m − 1)(n − 1) ≡ 0 (mod 8) being necessary and su�cient, where

× denotes tensor product of graph. In [6], A. Tamil Elakkiya and A. Muthusamy established the

conditions for a gregarious kite factorization of Km ×Kn, stating that this factorization is only pos-

sible when mn ≡ 0 (mod 4) and (m− 1)(n− 1) ≡ 0 (mod 2) are present. A kite decomposition for

Km(n) is gregarious is not possible unless m ≡ 0, 1 (mod 8) for odd n and m ≥ 4 for even n are

present, which has been investigated in [7]. In [8], S. Gomathi and A. Tamil Elakkiya established

the conditions of a gregarious Y5 tree decomposition for Km ×Kn, stating that this decomposition

exists only if mn(m− 1)(n− 1) ≡ 0 (mod 8) is present.

Our main concern is, to decompose a complete equipartite graph as gregarious Y5 trees. This

paper proves that a gregarious Y5 tree decomposition for Km(n) is only possible if n2m(m− 1) ≡ 0

(mod 8). By the notion of a gregarious Y5 tree decomposition, the number of partite sets must be

at least 5 (m ≥ 5). Moreover, a gregarious Y5 tree decomposition for Km(n) falls on the following

cases:

(i) m ≡ 0, 1 (mod 8), for all n, n ≥ 2.

(ii) m ≡ 5, 6, 7, 10, 11, 12 (mod 8), for even n.

To establish our key result, the following result is necessary:

Theorem 1.1. [10] For m ≡ 0, 1 (mod 8), a Y5 tree decomposition is possible in Km.

2. Gregarious Y5 tree Decomposition of Km(n)

Remark 2.1. A Latin square of order r, denoted as L = (aij) , is an r×r array where every row and

every column contains only the elements {1, 2, 3, . . . , r} once, in which each cell aij would satis�es

the arithmetic operation such as aij = i + j − 1 (mod r). If aij = a(i+h)(j+k) and ai(j+k) = a(i+h)j,
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then the set {aij, ai(j+k), a(i+h)j, a(i+h)(j+k)} is called as Y tree cell. Here h and k are integers, which

are equal to r
2
, r is even. It provides the following three disjoint Y5 trees:

(i) (1i+h 2j+k 1i 3a(i+h)(j+k)
; 1i 2j)

(ii) (2j+k 3a(i+h)(j+k)
1i+h 2j; 1i+h 3ai(j+k)

)

(iii) (3aij 2j 3a(i+h)j
2j+k; 3a(i+h)j

1i),

where the subscripts are considered to be divisible by r and their remainders must be taken as

1, 2, 3, . . . , r.

For example, let us consider the Latin square of order 4 as given in Table 1.

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

Table 1. Latin square of order 4 (L4)

Here h, k = 2, and i, j = 1, so we get a11 = a33 and a13 = a31. Now, the Y tree cell (a11, a13, a31, a33)

gives the following: (13 23 11 3a33 ; 11 21), (23 3a33 13 21; 13 3a13) and (3a11 21 3a31 23; 3a31 11).

Then a11 = a33 = 1 and a13 = a31 = 3 implies the disjoint Y5 trees (13 23 11 31; 11 21), (23 31 13 21;

13 33) and (31 21 33 23; 33 11).

Lemma 2.2. For any Y5 tree, there is a gregarious Y5 tree decomposition for Er(Y5), r ≥ 2.

Proof. By taking V (Er(Y5)) = {
5⋃

p=1

pq, 1 ≤ q ≤ r} and by using the latin square L of order r, the set

{1i 2j 3aij 4i; 3aij 5j}, 1 ≤ i, j ≤ r, r ≥ 2, provides a gregarious Y5 tree decomposition for Er(Y5).

Lemma 2.3. A gregarious Y5 tree decomposition is admissible in Er(H), r ≥ 2, if a Y5 tree decom-

position is possible in H.

Proof. If there is a collection S of Y5 trees in the decomposition of H, then by applying Lemma

2.2 to each Y5 ∈ S, we will get a gregarious Y5 tree decomposition for Er(Y5). Consequently, we can

attain a gregarious Y5 tree decomposition for Er(H), r ≥ 2.

Lemma 2.4. A gregarious Y5 tree decomposition is admissible in Km(n), when m ≡ 0, 1 (mod 8)

and for every n, n ≥ 2.

Proof. In Theorem 1.1, stating that, Y5 tree decomposition is possible for Km when m ≡ 0, 1

(mod 8). Thus, according to the Lemma 2.3, we can attain a gregarious Y5 tree decomposition for

Er(Km), r ≥ 2.

Lemma 2.5. A gregarious Y5 tree decomposition for each graph G ∈ G = {K6, 6, 6, K8, 8, 8, K10, 10, 10,

K12, 12, 12} is admissible in E2(G).
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Proof. Let us consider V (K2, 2, 2) = {
3⋃

p=1

pq, 1 ≤ q ≤ 2}. The set given below contains a Y5

tree decomposition for K2, 2, 2 : {(32 12 31 11; 31 21), (22 32 21 11; 21 12), (32 11 22 12; 22 31)}. Conse-

quently, we may derive a gregarious Y5 tree decomposition for Er(K2, 2, 2) if r = 3, 4, 5, 6, accord-

ing to the Lemma 2.3. That is, a gregarious Y5 tree decomposition exists for the graphs G =

{K6, 6, 6, K8, 8, 8, K10, 10, 10, K12, 12, 12}, since Er(Km(n)) ≃ Km(nr). Moreover, by repeating the same

process to each graph G ∈ G, we can acquire a gregarious Y5 tree decomposition for E2(G).

Lemma 2.6. A gregarious Y5 tree decomposition for each graph G ∈ G = {K8, 8, 5, K8, 8, 6, K8, 8, 7}
is admissible in E2(G).

Proof. (1) A gregarious Y5 tree decomposition for E2(K8, 8, 5) can be derived as follows:

Let V (K8, 8, 5) = {(
2⋃

p=1

pq, 1 ≤ q ≤ 8) ∪ (3q, 1 ≤ q ≤ 5)}. By removing the entiries 6, 7 and 8 from

Table 2, we can attain a latin square L in Table 3. By using Table 3, we can produce a set S1 of Y5

tree decomposition for K8, 8, 5 as follows:

1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 1

3 4 5 6 7 8 1 2

4 5 6 7 8 1 2 3

5 6 7 8 1 2 3 4

6 7 8 1 2 3 4 5

7 8 1 2 3 4 5 6

8 1 2 3 4 5 6 7

Table 2. Latin square of order 8 (L8)

1 2 3 4 5 × × ×
2 3 4 5 × × × 1

3 4 5 × × × 1 2

4 5 × × × 1 2 3

5 × × × 1 2 3 4

× × × 1 2 3 4 5

× × 1 2 3 4 5 ×
× 1 2 3 4 5 × ×

Table 3. Dropped the entries 6, 7, 8 from L8

• As discussed in Remark 2.1, if aij = a(i+h)(j+k) = 5 and ai(j+k) = a(i+h)j = 1, we get the following

Y tree cells {(a15, a11, a55, a51), (a24, a28, a64, a68), (a33, a37, a73, a77), (a42, a46, a82, a86)}. It follows that
these Y tree cells yield 12 copies of Y5 trees, in which each are isomorphic and disjoint mutually.

• For all (i, j) ∈ {(1, 2), (2, 1), (3, 8), (4, 7), (5, 6), (6, 5), (7, 4), (8, 3)}, we have aij = 2 and for all

(i, j) ∈ {(1, 3), (2, 2), (3, 1), (4, 8), (5, 7), (6, 6), (7, 5), (8, 4)}, we have aij = 3. It is possible to obtain

a Y5 tree corresponding to each (i, j), such as (3aij 2j 1i 2k+6−i; 1i 3k+1), if aij = k, k = 2, 3. Thus

we may include these 16 disjoint copies of Y5 trees in S1.
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• Similarly, for all (i, j) ∈ {(1, 4), (2, 3), (3, 2), (4, 1), (5, 8), (6, 7), (7, 6), (8, 5)}, aij = k, k = 4,

it is possible to obtain a Y5 tree. We then place the 8 disjoint copies of Y5 trees follows from

(3aij 2j 1i 2j+2; 1i 3k−2) in S1. All together implies a Y5 tree decomposition for K8, 8, 5. As a con-

sequence of it, a gregarious Y5 tree decomposition for E2(K8, 8, 5) may derived through the use of

Lemma 2.3.

(2) A gregarious Y5 tree decomposition for E2(K8, 8, 6) can be derived as follows:

Let V (K8, 8, 6) = {(
2⋃

p=1

pq, 1 ≤ q ≤ 8)∪ (3q, 1 ≤ q ≤ 6)}. By removing the entiries 7 and 8 from Table

2, we can attain a latin square L in Table 4. By using Table 4, we can produce a set S2 of Y5 tree

decomposition for K8, 8, 6 as follows:

1 2 3 4 5 6 × ×
2 3 4 5 6 × × 1

3 4 5 6 × × 1 2

4 5 6 × × 1 2 3

5 6 × × 1 2 3 4

6 × × 1 2 3 4 5

× × 1 2 3 4 5 6

× 1 2 3 4 5 6 ×

Table 4. Dropped the entries 7, 8 from L8

• As discussed in Remark 2.1, if aij = a(i+h)(j+k) = 5 and ai(j+k) = a(i+h)j = 1, we get the following

Y tree cells {(a15, a11, a55, a51), (a24, a28, a64, a68), (a33, a37, a73, a77), (a42, a46, a82, a86)}. It follows that
the Y tree cells yield 12 copies of Y5 trees, in which each are isomorphic and disjoint mutually.

• As discussed in Remark 2.1, if aij = a(i+h)(j+k) = 2 and ai(j+k) = a(i+h)j = 6, we get the following

Y tree cells {(a12, a16, a52, a56), (a21, a25, a61, a65), (a38, a34, a78, a74), (a47, a43, a87, a83)}. It follows that
the Y tree cells yield 12 copies of Y5 trees.

• For all (i, j) ∈ {(1, 3), (2, 2), (3, 1), (4, 8), (5, 7), (6, 6), (7, 5), (8, 4)}, aij = k, k = 3, it is possible

to obtain a Y5 tree. We then place the 8 copies of Y5 trees follows from (3aij 2j 1i 2k+6−i; 1i 3k+1) in

S2.

• For all (i, j) ∈ {(1, 4), (2, 3), (3, 2), (4, 1), (5, 8), (6, 7), (7, 6), (8, 5)}, aij = k, k = 4, it is possible

to obtain a Y5 tree. We then place the 8 copies of Y5 trees follows from (3aij 2j 1i 2j+3; 1i 3k−1) in

S2. All together leads a Y5 tree decomposition for K8, 8, 6. As a consequence of it, a gregarious Y5

tree decomposition for E2(K8, 8, 6) may derived through use of Lemma 2.3.

(3) A gregarious Y5 tree decomposition for E2(K8, 8, 6) can be derived as follows:

Let V (K8, 8, 7) = {(
2⋃

p=1

pq, 1 ≤ q ≤ 8) ∪ (3q, 1 ≤ q ≤ 7)}. By removing the backword diagonal entries

from Table 2, we can attain a latin square L in Table 5. By using Table 5, we can produce a set S3

of Y5 tree decomposition for K8, 8, 7 as per the following:

• Consider the set of Y tree cells {(aij, ai(j+4), a(i+4)j, a(i+4)(j+4))}, (i, j) ∈ {(1, 1), (1, 2), (1, 3),
(2, 1), (2, 2)(2, 4), (3, 1), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)}. It is possible to obtain a Y tree cell cor-

responding to each (i, j). All together gives 12 copies of Y tree cells. These Y tree cells provides the

following 36 copies of Y5 trees.

(i) When i = j

1i+h 2j+k 1i 3a(i+h)(j+k)
; 1i 34, 2j+k 3a(i+h)(j+k)

1i+h 34; 1i+h 3ai(j+k)
, 3aij 2j 3a(i+h)j

2j+k; 3a(i+h)j
1i.
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1 2 3 4 5 6 7 ×
2 3 4 5 6 7 × 1

3 4 5 6 7 × 1 2

4 5 6 7 × 1 2 3

5 6 7 × 1 2 3 4

6 7 × 1 2 3 4 5

7 × 1 2 3 4 5 6

× 1 2 3 4 5 6 7

Table 5. Dropped the backword diagonal entries from L8

(ii) When i ̸= j

1i+h 2j+k 1i 3a(i+h)(j+k)
; 1i 2j, 2j+k 3a(i+h)(j+k)

1i+h 2j; 1i+h 3ai(j+k)
, 3aij 2j 3a(i+h)j

2j+k; 3a(i+h)j
1i.

• For all (i, j) ∈ {(1, 4), (2, 3), (3, 2), (4, 1)}, aij = 4, it is possible to obtain a Y5 tree. We then

place the 4 copies of Y5 trees follows from (3aij 2j 1i 29−i; 1i 2i) in S3.

• For all (i, j) ∈ {(5, 8), (6, 7), (7, 6), (8, 5)}, aij = 4, it is possible to obtain a Y5 tree. We then

place the 4 copies of Y5 trees follows from (3aij 2j 1i 29−i; 1i 2i−4) in S3. All together leads a Y5 tree

decomposition for K8, 8, 7. As a consequence of it, a gregarious Y5 tree decomposition for E2(K8, 8, 7)

may derived through use of Lemma 2.3.

From Cases 1, 2 and 3, we can concluded that, a gregarious Y5 tree decomposition exists for E2(G),

G ∈ G = {K8, 8, 5, K8, 8, 6, K8, 8, 7}.

Lemma 2.7. A gregarious Y5 tree decomposition for each G ∈ G = {K8, 8, 10, K8, 8, 11, K8, 8, 12} is

admissible in E2(G).

Proof. (1) A gregarious Y5 tree decomposition for E2(K8, 8, 10) can be derived as follows:

Let V (K8, 8, 10) = {(
2⋃

p=1

pq, 1 ≤ q ≤ 8) ∪ (31, 32, 33, 34, 35, 36, 37, 38,∞1,∞2)}. By using the latin

square in Table 2, we can produce a set S1 of Y5 tree decomposition for K8, 8, 10 as follows:

• As discussed in Remark 2.1, if aij = a(i+h)(j+k) = 5 and ai(j+k) = a(i+h)j = 1, we get the following

Y tree cells {(a15, a11, a55, a51), (a24, a28, a64, a68), (a33, a37, a73, a77), (a42, a46, a82, a86)}. It follows that
the Y tree cells yield 12 copies of Y5 trees.

• For all (i, j) ∈ {(1, 2), (2, 1), (3, 8), (4, 7), (5, 6), (6, 5), (7, 4), (8, 3)}, we have aij = 2 and for all

(i, j) ∈ {(1, 3), (2, 2), (3, 1), (4, 8), (5, 7), (6, 6), (7, 5), (8, 4)}, we have aij = 3. It is possible to obtain

a Y5 tree corresponding to each (i, j), such as (3aij 2j 1i ∞k; 1i 3aij+1), if aij = k+ 1, k = 1, 2. Thus

we may include these 16 copies of Y5 trees in S1.

• For all (i, j) ∈ {(1, 4), (2, 3), (3, 2), (4, 1), (5, 8), (6, 7), (7, 6), (8, 5)}, we have aij = 4. It is possible

to obtain a Y5 tree corresponding to each (i, j), such as (3aij 2j 1i 3k+5; 1i 3k−1), if aij = k+1, k = 3.

Thus we may include these 8 copies of Y5 trees in S1.

• For all (i, j) ∈ {(1, 6), (2, 5), (3, 4), (4, 3)}, we have aij = 6. It is possible to obtain a Y5 tree

corresponding to each (i, j), such as (3aij 1i 2j ∞k−3; 2j 3aij+1), if aij = k + 2, k = 4. Thus we may

include these 4 copies of Y5 trees in S1.

• For all (i, j) ∈ {(5, 2), (6, 1), (7, 8), (8, 7)}, we have aij = 6. It is possible to obtain a Y5 tree
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corresponding to each (i, j), such as (2j+2 1i 2j ∞1; 2j 3aij+1), if aij = k + 2, k = 4. Thus we may

include these 4 copies of Y5 trees in S1.

• For all (i, j) ∈ {(1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1), (8, 8)}, we have aij = 7. It is possible

to obtain a Y5 tree corresponding to each (i, j), such as (3aij 1i 2j ∞k−3; 2j 3k+3), if aij = k + 2,

k = 5. Thus we may include these 8 copies of Y5 trees in S1.

• For all (i, j) ∈ {(1, 8), (2, 7), (3, 6), (4, 5)}, we have aij = 8. It is possible to obtain a Y5 tree

corresponding to each (i, j), such as (1i 2j 3(aij−2) 2i; 3(aij−2) 1i+4), if aij = k + 2, k = 6. Thus we

may include these 4 copies of Y5 trees in S1.

All together leads a Y5 tree decomposition for K8, 8, 10. As a consequence of it, a gregarious Y5 tree

decomposition for E2(K8, 8, 10) may derived through the use of Lemma 2.3.

(2) A gregarious Y5 tree decomposition for E2(K8, 8, 11) can be derived as follows:

Let V (K8, 8, 11) = {(
2⋃

p=1

pq, 1 ≤ q ≤ 8)∪(31, 32, 33, 34, 35, 36, 37, 38,∞1,∞2,∞3)}. By using the latin

square in Table 2, we can produce a set S2 of Y5 tree decomposition for K8, 8, 11 as follows:

• As discussed in Remark 2.1, if aij = a(i+h)(j+k) = 5 and ai(j+k) = a(i+h)j = 1, we get the following

Y tree cells {(a15, a11, a55, a51), (a24, a28, a64, a68), (a33, a37, a73, a77), (a42, a46, a82, a86)}. It follows that
the Y tree cells yield 12 copies of Y5 trees.

• For all (i, j) ∈ {(1, 2), (2, 1), (3, 8), (4, 7), (5, 6), (6, 5), (7, 4), (8, 3), we have aij = 2 and for all

(i, j) ∈ {(1, 3), (2, 2), (3, 1), (4, 8), (5, 7), (6, 6), (7, 5), (8, 4)}, we have aij = 3. It is possible to obtain

a Y5 tree corresponding to each (i, j), such as (3aij 2j 1i ∞k; 1i 3k+2), if aij = k + 1, k = 1, 2. Thus

we may include these 16 copies of Y5 trees in S2.

• For all (i, j) ∈ {(1, 4), (2, 3), (3, 2), (4, 1), (5, 8), (6, 7), (7, 6), (8, 5)}, we have aij = 4. It is possible

to obtain a Y5 tree corresponding to each (i, j), such as (3aij 2j 1i ∞k; 1i 3k−1), if aij = k+1, k = 3.

Thus we may include these 8 copies of Y5 trees in S2.

• For all (i, j) ∈ {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (7, 8), (8, 7)}, we have aij = 6 and for all

(i, j) ∈ {(1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1), (8, 8)}, we have aij = 7. It is possible to obtain a

Y5 tree corresponding to each (i, j), such as (3aij 1i 2j ∞k; 2j 3(aij+1)), if aij = k + 5, k = 1, 2. Thus

we may include these 16 copies of Y5 trees in S2.

• For all (i, j) ∈ {(1, 8), (2, 7), (3, 6), (4, 5), (5, 4), (6, 3), (7, 2), (8, 1)}, we have aij = 8. It is possible

to obtain a Y5 tree corresponding to each (i, j), such as (3aij 1i 2j ∞k; 2j 3(aij−2)), if aij = k + 5,

k = 3. Thus we may include these 8 copies of Y5 trees in S2.

All together leads a Y5 tree decomposition for K8, 8, 11. As a consequence of it, a gregarious Y5 tree

decomposition for E2(K8, 8, 11) may derived through use of Lemma 2.3.

(3) A gregarious Y5 tree decomposition for E2(K8, 8, 12) can be derived as follows:

Let V (K8, 8, 12) = {(
2⋃

p=1

pq, 1 ≤ q ≤ 8)∪ (31, 32, 33, 34, 35, 36, 37, 38,∞1,∞2,∞3,∞4)}. By using the

latin square L in Table 2, we can produce a set S3 for Y5 tree decomposition of K8, 8, 12 as follows:

• For all (i, j) ∈ {(1, 1), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2)}, we have aij = 1, for all

(i, j) ∈ {(1, 2), (2, 1), (3, 8), (4, 7), (5, 6), (6, 5), (7, 4), (8, 3)}, we have aij = 2 and for all (i, j) ∈
{(1, 3), (2, 2), (3, 1), (4, 8), (5, 7), (6, 6), (7, 5), (8, 4)}, we have aij = 3. It is possible to obtain a Y5

tree corresponding to each (i, j), such as (3aij 2j 1i ∞k; 1i 3k+1), if aij = k, k = 1, 2, 3. Thus we may

include these 24 copies of Y5 trees in S3.

• For all (i, j) ∈ {(1, 4), (2, 3), (3, 2), (4, 1), (5, 8), (6, 7), (7, 6), (8, 5)}, we have aij = 4. It is possible

to obtain a Y5 tree corresponding to each (i, j), such as (3aij 2j 1i ∞k; 1i 3k−3), if aij = k, k = 4.

Thus we may include these 8 copies of Y5 trees in S3.
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• For all (i, j) ∈ {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (6, 8), (7, 7), (8, 6)}, we have aij = 5, for all

(i, j) ∈ {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (7, 8), (8, 7)}, we have aij = 6 and for all (i, j) ∈
{(1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1), (8, 8)}, we have aij = 7. It is possible to obtain a Y5

tree corresponding to each (i, j), such as (3aij 1i 2j ∞k; 2j 3(aij+1)), if aij = k + 4, k = 1, 2, 3. Thus

we may include these 24 copies of Y5 trees in S3.

• For all (i, j) ∈ {(1, 8), (2, 7), (3, 6), (4, 5), (5, 4), (6, 3), (7, 2), (8, 1), }, we have aij = 8. It is possible

to obtain a Y5 tree corresponding to each (i, j), such as (3aij 1i 2j ∞k; 2j 3(k+1)), if aij = k+4, k = 4.

Thus we may include these 8 copies of Y5 trees in S3.

All together leads a Y5 tree decomposition for K8, 8, 12. As a consequence of it, a gregarious Y5 tree

decomposition for E2(K8, 8, 12) may derived through use of Lemma 2.3.

From Cases 1, 2 and 3, we can cocluded that, a gregarious Y5 tree decomposition exists for E2(G),

G ∈ G = {K8, 8, 10, K8, 8, 11, K8, 8, 12}.

Lemma 2.8. A gregarious Y5 tree decomposition for each graph G ∈ G = {K12, 12, 7, K12, 12, 10} is

admissible in E2(G).

Proof. (1) A gregarious Y5 tree decomposition for E2(K12, 12, 7) can be derived as follows:

Let V (K12, 12, 7) = {(
2⋃

p=1

pq, 1 ≤ q ≤ 12) ∪ (3q, 1 ≤ q ≤ 7)}. By removing the entries 8, 9, 10, 11 and

12 from Table 6, we can attain a latin square L in Table 7. By using Table 7, we can produce a set

S1 of Y5 tree decomposition for K12, 12, 7 as follows:

1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 11 12 1

3 4 5 6 7 8 9 10 11 12 1 2

4 5 6 7 8 9 10 11 12 1 2 3

5 6 7 8 9 10 11 12 1 2 3 4

6 7 8 9 10 11 12 1 2 3 4 5

7 8 9 10 11 12 1 2 3 4 5 6

8 9 10 11 12 1 2 3 4 5 6 7

9 10 11 12 1 2 3 4 5 6 7 8

10 11 12 1 2 3 4 5 6 7 8 9

11 12 1 2 3 4 5 6 7 8 9 10

12 1 2 3 4 5 6 7 8 9 10 11

Table 6. Latin square of order 12 (L12)

• Consider the set of Y tree cells {aij, ai(j+6), a(i+6)j, a(i+6)(j+6)}, where (i, j) ∈ {(1, 1), (2, 6),
(3, 5), (4, 4), (5, 3), (6, 2)}. It is possible to obtain a Y tree cell corresponding to each (i, j). All

together gives 6 copies of Y tree cells. As discussed in Remark 2.1, these Y tree cells will provide 18

copies of Y5 trees.

• For all (i, j) ∈ {(1, 2), (2, 1), (3, 12), (4, 11), (5, 10), (6, 9), (7, 8), (8, 7), (9, 6), (10, 5), (11, 4), (12, 3)},
we have aij = 2. For all (i, j) ∈ {(1, 3), (2, 2), (3, 1), (4, 12), (5, 11), (6, 10), (7, 9), (8, 8), (9, 7), (10, 6),
(11, 5), (12, 4)}, we have aij = 3. For all (i, j) ∈ {(1, 4), (2, 3), (3, 2), (4, 1), (5, 12), (6, 11), (7, 10), (8, 9),
(9, 8), (10, 7), (11, 6), (12, 5)}, we have aij = 4. And for all (i, j) ∈ {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1),
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1 2 3 4 5 6 7 × × × × ×
2 3 4 5 6 7 × × × × × 1

3 4 5 6 7 × × × × × 1 2

4 5 6 7 × × × × × 1 2 3

5 6 7 × × × × × 1 2 3 4

6 7 × × × × × 1 2 3 4 5

7 × × × × × 1 2 3 4 5 6

× × × × × 1 2 3 4 5 6 7

× × × × 1 2 3 4 5 6 7 ×
× × × 1 2 3 4 5 6 7 × ×
× × 1 2 3 4 5 6 7 × × ×
× 1 2 3 4 5 6 7 × × × ×

Table 7. Dropped the entries 8, 9, 10, 11, 12 from L12

(6, 12), (7, 11), (8, 10), (9, 9), (10, 8), (11, 7), (12, 6)}, we have aij = 5. It is possible to obtain a Y5 tree

corresponding to each (i, j), such as (3aij 2j 1i 2k+7−i; 1i 3k+1), if aij = k, k = 2, 3, 4, 5. Thus we may

include these 48 copies of Y5 trees in S1.

• For all (i, j) ∈ {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (7, 12), (8, 11), (9, 10), (10, 9), (11, 8), (12, 7)},
we have aij = 6. It is possible to obtain a Y5 tree corresponding to each (i, j), such as (3aij 2j 1i 2k+7−i;

1i 3k−4), if aij = k, k = 6. Thus we may include these 12 copies of Y5 trees in S1. All together leads

a Y5 tree decomposition for K12, 12, 7. As a consequence of it, a gregarious Y5 tree decomposition for

E2(K12, 12, 7) may derived through use of Lemma 2.3.

(2) A gregarious Y5 tree decomposition for E2(K12, 12, 10) can be derived as follows:

Let V (K12, 12, 10) = {(
2⋃

p=1

pq, 1 ≤ q ≤ 12) ∪ (3q, 1 ≤ q ≤ 10)}. By removing the entries 11 and 12

from Table 6, we can attain a latin square L in Table 8. By using Table 8, we can produce a set S2

of Y5 tree decomposition for K12, 12, 10 as follows:

1 2 3 4 5 6 7 8 9 10 × ×
2 3 4 5 6 7 8 9 10 × × 1

3 4 5 6 7 8 9 10 × × 1 2

4 5 6 7 8 9 10 × × 1 2 3

5 6 7 8 9 10 × × 1 2 3 4

6 7 8 9 10 × × 1 2 3 4 5

7 8 9 10 × × 1 2 3 4 5 6

8 9 10 × × 1 2 3 4 5 6 7

9 10 × × 1 2 3 4 5 6 7 8

10 × × 1 2 3 4 5 6 7 8 9

× × 1 2 3 4 5 6 7 8 9 10

× 1 2 3 4 5 6 7 8 9 10 ×

Table 8. Dropped the entries 11, 12 from L12

• Consider the set of Y tree cells {aij, ai(j+6), a(i+6)j, a(i+6)(j+6)}, where (i, j) ∈ {(1, 1), (1, 2),
(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 6), (3, 1), (3, 2), (3, 5), (3, 6), (4, 1), (4, 4), (4, 5), (4, 6), (5, 3), (5, 4),
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(5, 5), (5, 6), (6, 2), (6, 3)(6, 4), (6, 5)}. It is possible to obtain a Y tree cell for each (i, j). All together

gives 24 copies of Y tree cells. As discussed in Remark 2.1, the Y tree cells will provide 72 copies of

Y5 trees.

• For all (i, j) ∈ {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (6, 12), (7, 11), (8, 10), (9, 9), (10, 8), (11, 7), (12, 6)},
we have aij = 5. It is possible to obtain a Y5 tree corresponding to each (i, j), such as (3aij 2j 1i 2k+7−i;

1i 3k+1), if aij = k, k = 5. Thus we may include these 12 copies of Y5 trees in S2.

• For all (i, j) ∈ {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (7, 12), (8, 11), (9, 10), (10, 9), (11, 8), (12, 7)},
we have aij = 6. It is possible to obtain a Y5 tree for each (i, j), such as (3aij 2j 1i 2k+7−i; 1i 3k−1),

if aij = k, k = 6. Thus we may include these 12 copies of Y5 trees in S2.

All together leads a Y5 tree decomposition for K12, 12, 10. As a consequence of it, a gregarious Y5

tree decomposition for E2(K12, 12, 10) may derived through use of Lemma 2.3.

From Cases 1 and 2, we can concluded that, a gregarious Y5 tree decomposition exists for E2(G),

G ∈ G = {K12, 12, 7, K12, 12, 10}.

Lemma 2.9. A gregarious Y5 tree decomposition for each graph G ∈ G = {K10 \K7, K11 \K6, K12 \
K5, K13 \K5, K14 \K6, K15 \K7, K16 \K8, K19 \K14, K20 \K13, K29 \K20, K35 \K30} is admissible

in E2(G).

Proof. (1) Let us consider V (K10 \K7) = {1, 2, 3, . . . , 10} and

S1 = {(1 4 3 6; 3 10), (2 6 1 8; 1 5), (2 7 3 1; 3 8), (7 1 2 4; 2 5), (5 3 2 8; 2 10), (10 1 9 2; 9 3)}.

It follows that, the set S1 provides a Y5 tree decomposition of K10 \K7.

(2) By taking V (K11 \K6) = {1, 2, 3, . . . , 11}, the set S2 given bellow derives a Y5 tree decompo-

sition of K11 \K6.

S2 ={(1 2 8 4; 8 5), (2 5 1 6; 1 7), (3 4 9 5; 9 2), (2 3 1 8; 1 11), (2 6 4 10; 4 7),

(5 6 3 8; 3 11), (7 2 10 5; 10 1), (7 5 11 4; 11 2), (3 5 4 2; 4 1), (1 9 3 7; 3 10)}.

(3) By taking V (K12 \K5) = {1, 2, 3, . . . , 12}, a Y5 tree decomposition for K12 \K5 is contained

with in the set S3 mentioned bellow.

S3 ={(11 1 12 5; 12 6), (12 2 1 6; 1 7), (1 3 2 7; 2 8), (2 4 3 8; 3 9), (3 5 4 9; 4 10),

(4 8 5 10; 5 11), (1 4 12 7; 12 3), (6 5 1 8; 1 9), (3 6 2 9; 2 10), (8 7 3 10; 3 11),

(7 6 4 11; 4 7), (5 7 10 6; 10 1), (8 6 9 7; 9 5), (5 2 11 6; 11 7)}.

(4) Let V (K13 \K5) = {1, 2, 3, . . . , 13}, the collection S4 gives a Y5 tree decomposition of K13 \K5.

S4 ={(1 3 4 10; 4 13), (6 4 5 11; 5 1), (3 5 6 12; 6 8), (4 2 7 13; 7 3), (5 7 8 1; 8 3),

(6 13 2 3; 2 5), (7 6 1 13; 1 10), (9 3 6 10; 6 11), (9 4 7 11; 7 12), (10 5 8 12; 8 4),

(11 4 12 5; 12 3), (12 1 11 8; 11 2), (13 8 9 6; 9 1), (1 7 9 2; 9 5), (5 13 3 10; 3 11),

(12 2 10 7; 10 8), (4 1 2 6; 2 8)}.

(5) By considering V (K14 \K6) = {1, 2, 3, . . . , 14}, the set S5 must be a Y5 tree decomposition of
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K14 \K6.

S5 ={(14 3 4 10; 4 1), (14 4 5 11; 5 1), (3 5 6 12; 6 14), (4 2 7 14; 7 3), (13 7 8 1; 8 3),

(6 13 2 3; 2 5), (7 6 1 13; 1 10), (9 3 6 10; 6 11), (9 4 7 11; 7 12), (10 5 8 12; 8 4),

(11 4 12 5; 12 3), (12 1 11 8; 11 2), (13 8 9 6; 9 1), (1 7 9 2; 9 5), (5 13 3 10; 3 11),

(12 2 10 7; 10 8), (3 1 2 8; 2 14), (13 4 6 8; 6 2), (7 5 14 8; 14 1)}.

(6) Let V (K15 \K7) = {1, 2, 3, . . . , 15}. The set S6 leads a Y5 tree decomposition of K15 \K7.

S6 ={(15 3 4 10; 4 1), (15 4 5 11; 5 10), (3 5 6 12; 6 14), (15 2 7 14; 7 3),

(13 7 8 15; 8 2), (6 13 2 5; 2 14), (7 6 1 13; 1 10), (9 3 6 10; 6 15), (9 4 7 11; 7 12),

(15 5 8 12; 8 4), (11 4 12 5; 12 3), (12 1 11 8; 11 6), (13 8 9 6; 9 1), (1 7 9 2; 9 5),

(5 13 3 10; 3 11), (12 2 10 7; 10 8), (2 1 3 8; 3 14), (13 4 6 8; 6 2), (7 5 14 8; 14 1),

(7 15 1 8; 1 5), (14 4 2 3; 2 11)}.

(7) By considering V (K16 \K8) = {1, 2, 3, . . . , 16}, the set S7 provides a Y5 tree decomposition of

K16 \K8.

S7 ={(3 6 15 1; 15 7), (15 5 4 8; 4 9), (13 7 5 1; 5 14), (13 3 2 16; 2 6),

(8 13 4 16; 4 12), (14 1 6 16; 6 5), (14 2 5 16; 5 13), (14 4 3 16; 3 15), (14 6 8 16; 8 12),

(11 7 1 16; 1 13), (15 2 7 16; 7 14), (9 3 8 1; 8 14), (4 7 9 1; 9 8), (10 6 9 2; 9 5),

(15 8 2 1; 2 13), (5 8 10 1; 10 4), (6 7 10 3; 10 5), (11 5 3 1; 3 14), (4 2 12 5; 12 7),

(10 2 11 1; 11 3), (7 8 11 4; 11 6), (13 6 4 1; 4 15), (7 3 12 1; 12 6)}.

(8) Let V (K19 \K14) = {1, 2, 3, . . . , 19}. A Y5 tree decomposition of K19 \K14 belongs to S8.

S8 ={(3 18 5 4; 5 2), (2 19 1 4; 1 6), (3 1 2 6; 2 14), (4 2 3 7; 3 16), (5 6 4 3; 4 16),

(6 3 19 5; 19 4), (7 1 12 3; 12 5), (1 10 2 18; 2 13), (16 2 9 4; 9 1), (5 15 2 8; 2 7),

(5 11 4 10; 4 17), (17 2 11 3; 11 1), (4 7 5 8; 5 1), (10 5 13 3; 13 1), (1 16 5 9; 5 14),

(2 12 4 13; 4 14), (5 3 15 4; 15 1), (4 18 1 8; 1 14), (10 3 17 1; 17 5), (4 8 3 9; 3 14)}.

(9) Let V (K20 \K13) = {1, 2, 3, . . . , 20}. A Y5 tree decomposition of K20 \K13 is contained in S9.

S9 ={(3 6 15 1; 15 7), (20 5 4 19; 4 9), (13 7 5 1; 5 14), (13 3 2 20; 2 6),

(6 13 4 18; 4 12), (20 1 6 12; 6 5), (8 2 5 16; 5 13), (20 4 15 3; 15 5), (19 6 7 16; 7 12),

(11 7 1 16; 1 13), (15 2 7 19; 7 20), (20 3 19 1; 19 5), (18 7 9 1; 9 2), (10 6 9 3; 9 5),

(16 3 18 5; 18 6), (6 17 2 13; 2 18), (4 10 1 12; 1 18), (4 7 10 3; 10 5), (11 5 3 1; 3 14),

(4 2 12 5; 12 3), (10 2 11 1; 11 3), (20 6 4 1; 4 3), (7 3 8 1; 8 6), (8 7 14 6; 14 1),

(8 4 16 2; 16 6), (8 5 17 7; 17 3), (6 11 4 14; 4 17), (17 1 2 14; 2 19)}.

(10) Let V (K29 \ K20) = {1, 2, 3, . . . , 29}. A Y5 tree decomposition of K29 \ K20 has been con-
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structed as follows:

S10 ={(1 9 5 12; 5 17), (2 10 6 13; 6 18), (7 11 3 14; 3 19), (4 12 8 15; 8 20),

(5 13 9 16; 9 21), (6 14 1 20; 1 22), (5 27 2 21; 2 23), (6 27 3 22; 3 24),

(7 3 4 23; 4 25), (8 29 5 24; 5 26), (10 1 6 25; 6 28), (11 2 24 4; 24 9),

(12 7 14 5; 14 4), (13 4 15 3; 15 2), (10 5 16 6; 16 3), (11 6 7 8; 7 26),

(12 3 10 9; 10 8), (13 8 11 9; 11 4), (8 27 7 18; 7 29), (9 28 8 19; 8 18),

(29 1 12 9; 12 2), (6 2 13 3; 13 1), (22 7 4 29; 4 26), (7 28 3 23; 3 25),

(17 9 7 23; 7 20), (25 1 8 24; 8 21), (26 2 9 25; 9 22), (15 5 1 26; 1 23),

(26 6 5 25; 5 4), (3 8 9 14; 9 29), (14 2 7 10; 7 17), (8 4 9 20; 9 19),

(22 2 1 11; 1 21), (3 6 15 1; 15 7), (28 4 16 2; 16 8), (5 8 17 3; 17 6),

(6 9 18 4; 18 1), (7 1 19 5; 19 2), (8 2 20 6; 20 3), (9 3 21 7; 21 4),

(10 4 22 8; 22 5), (11 5 23 9; 23 6), (12 6 24 1; 24 7), (13 7 25 2; 25 8),

(14 8 26 3; 26 9), (15 9 27 4; 27 1), (16 1 28 5; 28 2), (17 2 29 6; 29 3),

(18 3 1 17; 1 4), (19 4 2 18; 2 5), (20 5 7 19; 7 16), (21 6 4 20; 4 17),

(2 3 5 21; 5 18), (23 8 6 22; 6 19)}.

(11) Let V (K35 \K30) = {1, 2, 3, . . . , 35}. A Y5 tree decomposition of K35 \K30 is shown bellow:

S11 ={(3 18 5 1; 5 2), (4 19 1 2; 1 3), (5 20 2 3; 2 4), (1 21 3 4; 3 24),

(2 22 4 13; 4 6), (3 23 5 14; 5 7), (4 24 1 15; 1 8), (4 25 2 16; 2 9),

(1 26 3 19; 3 10), (2 27 4 18; 4 11), (3 28 5 25; 5 12), (4 29 1 20; 1 13),

(5 30 2 13; 2 14), (1 31 3 14; 3 15), (2 32 4 15; 4 16), (3 33 5 16; 5 17),

(4 34 1 17; 1 18), (5 35 2 18; 2 19), (3 17 2 23; 2 7), (5 26 4 21; 4 23),

(1 27 5 22; 5 24), (2 28 1 23; 1 25), (3 29 2 24; 2 26), (4 30 3 25; 3 27),

(5 31 4 28; 4 20), (1 32 5 29; 5 19), (2 33 1 30; 1 14), (3 34 2 31; 2 15),

(4 35 3 32; 3 16), (6 1 4 33; 4 17), (20 3 5 34; 5 4), (8 3 6 2; 6 5), (9 4 7 3; 7 1),

(10 5 8 4; 8 2), (11 1 9 5; 9 3), (12 2 10 1; 10 4), (13 3 11 2; 11 5),

(14 4 12 3; 12 1), (3 22 1 16; 1 35), (2 21 5 13; 5 15)}.

From (1) - (11), we have got a Y5 tree decomposition for each G ∈ G = {K10 \K7, K11 \K6, K12 \
K5, K13 \K5, K14 \K6, K15 \K7, K16 \K8, K19 \K14, K20 \K13, K29 \K20, K35 \K30}. By applying

Lemma 2.3, we can produce a gregarious Y5 tree decomposition for E2(G), G ∈ G = {K10 \K7, K11 \
K6, K12 \K5, K13 \K5, K14 \K6, K15 \K7, K16 \K8, K19 \K14, K20 \K13, K29 \K20, K35 \K30}.

Lemma 2.10. A gregarious Y5 tree decomposition for each graph G ∈ G = {Ki} is admissible in

E2(Ki), for all i ∈ {5, 6, 7}.
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Proof. A gregarious Y5 tree decomposition of E2(Ki), i ∈ {5, 6, 7} have been discribed as follows:

E2(K5) ={(12 22 31 42; 31 52)⊕ (11 21 32 41; 32 51)⊕ (21 42 11 32; 11 52)⊕
(22 41 12 31; 12 51)⊕ (11 31 21 41; 21 51)⊕ (12 32 22 42; 22 52)⊕
(21 12 52 41; 52 32)⊕ (22 11 51 42; 51 31)⊕ (21 52 42 32; 42 12)⊕
(22 51 41 31; 41 11)}.

E2(K6) ={(12 21 62 32; 62 41)⊕ (11 62 31 21; 31 51)⊕ (32 52 22 41; 22 62)⊕
(12 51 32 22; 32 42)⊕ (21 52 31 41; 31 12)⊕ (21 42 52 62; 52 12)⊕ (41 51 22 61; 22 11)⊕
(21 61 11 41; 11 31)⊕ (22 42 51 61; 51 11)⊕ (32 41 52 61; 52 11)⊕ (51 21 11 42; 11 32)⊕
(31 22 12 42; 12 61)⊕ (31 61 41 12; 41 21)⊕ (31 42 62 51; 62 12)⊕ (42 61 32 21; 32 12)}.

E2(K7) ={(31 21 11 61; 11 42)⊕ (42 71 61 51; 61 12)⊕ (21 72 62 51; 62 41)⊕
(12 71 62 52; 62 22)⊕ (12 21 61 52; 61 41)⊕ (21 71 51 31; 51 42)⊕ (11 72 52 42; 52 21)⊕
(22 42 62 31; 62 12)⊕ (71 32 51 41; 51 22)⊕ (22 71 52 41; 52 11)⊕ (71 41 11 22; 11 51)⊕
(32 52 12 22; 12 42)⊕ (42 32 72 61; 72 51)⊕ (22 52 31 12; 31 41)⊕ (41 21 32 61; 32 12)⊕
(42 21 62 32; 62 11)⊕ (21 51 12 72; 12 41)⊕ (42 72 31 11; 31 61)⊕ (42 61 22 32; 22 72)⊕
(11 32 41 72; 41 22)⊕ (11 71 31 22; 31 42)}.

Lemma 2.11. A gregarious Y5 tree decomposition for each graph G ∈ G = {Ki} is admissible in

E2(Ki), for all i ∈ {10, 11, 12, 13, 14, 15, 18}.

Proof. A gregarious Y5 tree decomposition for E2(Ki), i ∈ {10, 11, 12, 13, 14, 15, 18} can be derived

as follows:

(1) Let K10 = K7 ⊕ K10 \K7. We then write E2(K10) = E2(K7)⊕ E2(K10 \K7). A gregarious Y5

tree decomposition for E2(K10 \K7) and E2(K7) have been respectively derived in Lemmas 2.9

and 2.10. A gregarious Y5 tree decomposition has been found for E2(K10).

(2) Let K11 = K6 ⊕ K11 \K6. We then write E2(K11) = E2(K6) ⊕ E2(K11 \K6). A gregarious Y5

tree decomposition for E2(K11 \K6) and E2(K6) have been respectively derived in Lemmas 2.9

and 2.10. Hence, we concluded that, E2(K11) has a gregarious Y5 tree decomposition.

(3) Let K12 = K5 ⊕ K12 \K5. We then write E2(K12) = E2(K5) ⊕ E2(K12 \K5). A gregarious Y5

tree decomposition for E2(K12 \K5) and E2(K5) have been respectively derived in Lemmas 2.9

and 2.10. Our conclusion was that, E2(K12) has a gregarious Y5 tree decomposition.

(4) Let K13 = K5 ⊕ K13 \K5. We then write E2(K13) = E2(K5) ⊕ E2(K13 \K5). A gregarious Y5

tree decomposition for E2(K13 \K5) and E2(K5) have been respectively derived in Lemmas 2.9

and 2.10. A gregarious Y5 tree decomposition is obtained for E2(K13).

(5) Let K14 = K6 ⊕ K14 \K6. We then write E2(K14) = E2(K6) ⊕ E2(K14 \K6). A gregarious Y5

tree decomposition for E2(K14 \K5) and E2(K6) have been respectively derived in Lemmas 2.9

and 2.10. Consequently, E2(K14) is decomposed into a gregarious Y5 tree.
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(6) Let K15 = K7 ⊕ K15 \K7. We then write E2(K15) = E2(K7) ⊕ E2(K15 \K7). A gregarious Y5

tree decomposition for E2(K15 \K7) and E2(K7) have been respectively derived in Lemmas 2.9

and 2.10. A gregarious Y5 tree decomposition has been found for E2(K15).

(7) Let K18 = 3K6 ⊕ K6, 6, 6. We then write E2(K18) = 3 E2(K6) ⊕ E2(K6, 6, 6). A gregarious Y5

tree decomposition for E2(K6, 6, 6) and E2(K6) have been respectively derived in Lemmas 2.5

and 2.10. A gregarious Y5 tree decomposition has been found for E2(K18).

For E2(Ki), i ∈ {10, 11, 12, 13, 14, 15, 18}, a gregarious Y5 tree decomposition was obtained from

(1) - (7).

Lemma 2.12. A gregarious Y5 tree decomposition for each graph G ∈ G = {Ki} is admissible in

E2(Ki), for all i ∈ {19, 20, 29, 30, 31, 34, 35, 36}.

Proof. A gregarious Y5 tree decomposition for E2(Ki), i ∈ {19, 20, 29, 30, 31, 34, 35, 36} can be derived
as follows:

(1) Let K19 = K14 ⊕ K19 \K14. We then write E2(K19) = E2(K14) ⊕ E2(K19 \K14). A gregarious

Y5 tree decomposition for E2(K19 \K14) and E2(K14) have been respectively derived in Lemmas

2.9 and 2.11. A gregarious Y5 tree decomposition has been found for E2(K19).

(2) Let K20 = K13 ⊕ K20 \K13. We then write E2(K20) = E2(K13) ⊕ E2(K20 \K13). A gregarious

Y5 tree decomposition for E2(K20 \K13) and E2(K13) have been respectively derived in Lemmas

2.9 and 2.11. Hence, we concluded that, E2(K20) has a gregarious Y5 tree decomposition.

(3) Let K29 = K20 ⊕ K29 \K20. We then write E2(K29) = E2(K20) ⊕ E2(K29 \K20). A gregarious

Y5 tree decomposition for E2(K29 \K20) and E2(K20) have been respectively derived in Lemma

2.9 and in the above Case 2. Our conclusion was that, E2(K29) has a gregarious Y5 tree

decomposition.

(4) Let K30 = 3K10 ⊕ K10, 10, 10. We then write E2(K30) = 3 E2(K10) ⊕ E2(K10, 10, 10). A gregarious

Y5 tree decomposition for E2(K10) and E2(K10, 10, 10) have been respectively derived in Lemmas

2.11 and 2.5. A gregarious Y5 tree decomposition is obtained for E2(K30).

(5) Let K31 = 2K12 ⊕ K7 ⊕ K12, 12, 7. We then write E2(K31) = 2 E2(K12) ⊕ E2(K7) ⊕ E2(K12, 12, 7).

A gregarious Y5 tree decomposition for E2(K7), E2(K12) and E2(K12, 12, 7) have been respectively

derived in Lemmas 2.10, 2.11 and 2.8. Consequently, E2(K31) is decomposed into a gregarious

Y5 tree.

(6) Let K34 = 2K12 ⊕ K10 ⊕ K12, 12, 10. We then write E2(K34) = 2 E2(K12) ⊕ E2(K10) ⊕
E2(K12, 12, 10). A gregarious Y5 tree decomposition for E2(K10), E2(K12) and E2(K12, 12, 10) have

been derived in Lemmas 2.11 and 2.8. A gregarious Y5 tree decomposition has been found for

E2(K34).

(7) Let K35 = K30 ⊕ K35 \K30. We then write E2(K35) = E2(K30) ⊕ E2(K35 \K30). A gregarious

Y5 tree decomposition for E2(K35 \K30) and E2(K30) have been respectively derived in Lemma

2.9 and in the above Case 4. A gregarious Y5 tree decomposition has been found for E2(K35).

(8) Let K36 = 3K12 ⊕ K12, 12, 12. Then, we write E2(K36) = 3 E2(K12) ⊕ E2(K12, 12, 12). A gregarious

Y5 tree decomposition for E2(K12) and E2(K12, 12, 12) have been respectively derived in Lemmas

2.11 and 2.5. A gregarious Y5 tree decomposition has been found for E2(K36).
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For E2(Ki), i ∈ {19, 20, 29, 30, 31, 34, 35, 36}, a gregarious Y5 tree decomposition was obtained from

(1) - (8).

Note 2.13. Further, in order to prove Km(n) has a gregarious Y5 tree decomposition when m ≡
5, 6, 7, 10, 11, 12 (mod 8) and n is even, it is enough to prove that Km(2) admits a gregarious Y5 tree

decomposition. It is clearly stated in Lemma 2.3.

Lemma 2.14. A gregarious Y5 tree decomposition is admissible in Km(2) when m ≡ a (mod 8),

a ∈ {5, 6, 7, 10, 11, 12}.

Proof. Consider the graph Km(2) ≃ E2(Km) and let m = 8s+ a, a ∈ {5, 6, 7, 10, 11, 12}.
A non negative integer s can be categorized into 4 Cases: (i) s ≡ 0, 2 (mod 6), (ii) s ≡ 4 (mod 6),

(iii) s ≡ 1, 5 (mod 6) and (iv) s ≡ 3 (mod 6).

Case i: For s ≡ 0, 2 (mod 6), the graph Km decomposes as a copy of Ka, s copies of K8,
s
2
copies

of K8, 8, a and s2−2s
6

copies of K8, 8, 8. Therefore, E2(Km) = E2(Ka ⊕ sK8 ⊕ s
2
K8, 8, a ⊕ s2−2s

6
K8, 8, 8) =

E2(Ka) ⊕ s E2(K8) ⊕ s
2
E2(K8, 8, a) ⊕ s2−2s

6
E2(K8, 8, 8). A gregarious Y5 tree decomposition for E2(Ka)

and E2(K8) have been obtained from the Lemmas 2.10, 2.11 and 2.4. Further more, the Lemma 2.5

has yielded a gregarious Y5 tree decomposition for E2(K8, 8, 8) . Also, the Lemmas 2.6 and 2.7 have

been used to obtain a gregarious Y5 tree decomposition for E2(K8, 8, a) . Consequently, it proves that

a gregarious Y5 tree decomposition exists for E2(Km).

Case ii: For s ≡ 4 (mod 6), the graph Km decomposes as a copy of Ka, s − 4 copies of K8,
s
2

copies of K8, 8, a,
s2−2s−8

6
copies of K8, 8, 8 and 4 copies of K16 \ K8. Therefore, E2(Km) = E2(Ka ⊕

(s − 4)K8 ⊕ s
2
K8, 8, a ⊕ s2−2s−8

6
K8, 8, 8 ⊕ 4 (K16 \ K8)) = E2(Ka) ⊕ (s − 4) E2(K8) ⊕ s

2
E2(K8, 8, a) ⊕

s2−2s−8
6

E2(K8, 8, 8) ⊕ 4 E2(K16 \ K8). A gregarious Y5 tree decomposition for E2(K8, 8, 8) have been

obtained from the Lemma 2.5. Further more, a gregarious Y5 tree decomposition have been obtained

for E2(K8, 8, a) from the Lemmas 2.6 and 2.7. Also, a gregarious Y5 tree decomposition have been

obtained for E2(K16 \K8) from the Lemma 2.9. In addition with, a gregarious Y5 tree decomposition

have been obtained for E2(Ka) and E2(K8) from the Lemmas 2.10, 2.11 and 2.4. Consequently, it

proves that a gregarious Y5 tree decomposition exists for E2(Km).

Case iii: For s ≡ 1, 5 (mod 6), the graphKm decomposes as a copy ofKa+8,
s−1
2

copies ofK16,
s−1
2

copies of K8, 8, a and
s2−3s+2

6
copies of K8, 8, 8. Therefore, E2(Km) = E2(Ka+8 ⊕ s−1

2
K16 ⊕ s−1

2
K8, 8, a ⊕

s2−3s+2
6

K8, 8, 8) = E2(Ka+8) ⊕ s−1
2

E2(K16) ⊕ s−1
2

E2(K8, 8, a) ⊕ s2−3s+2
6

E2(K8, 8, 8). A gregarious Y5 tree

decomposition for E2(K8, 8, 8) have been obtained from the Lemma 2.5. Further more, a gregarious

Y5 tree decomposition have been obtained for E2(K8, 8, a) from the Lemmas 2.6 and 2.7. Also, a

gregarious Y5 tree decomposition have been obtained for E2(Ka+8) from the Lemmas 2.11 and 2.12.

In addition with, a gregarious Y5 tree decomposition have been obtained for E2(K16) from the Lemma

2.4. Consequently, it proves that a gregarious Y5 tree decomposition exists for E2(Km).

Case iv: For s ≡ 3 (mod 6), the graph Km decomposes as a copy of Ka+24,
s−3
2

copies of K16,
s−3
2

copies of K8, 8, a and s2−3s
6

copies of K8, 8, 8. Therefore, E2(Km) = E2(Ka+24 ⊕ s−3
2

K16 ⊕ s−3
2

K8, 8, a ⊕
s2−3s

6
K8, 8, 8) = E2(Ka+24) ⊕ s−3

2
E2(K16) ⊕ s−3

2
E2(K8, 8, a) ⊕ s2−3s

6
E2(K8, 8, 8). A gregarious Y5 tree

decomposition for E2(K8, 8, 8) have been obtained from the Lemma 2.5. Further more, a gregarious Y5

tree decomposition have been obtained for E2(K8, 8, a) from the Lemmas 2.6 and 2.7. Also, a gregarious

Y5 tree decomposition have been obtained for E2(Ka+24) from the Lemma 2.12. In addition with, a

gregarious Y5 tree decomposition have been obtained for E2(K16) from the Lemma 2.4. Consequently,

it proves that a gregarious Y5 tree decomposition exists for E2(Km).
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The Cases (i) - (iv) mentioned earlier will provide a gregarious Y5 tree decomposition for Km(2).

Theorem 2.15. The occurence of a gregarious Y5 tree decomposition for Km(n) is possible only if

n2m(m− 1) ≡ 0 (mod 8).

Proof. Necessity: Given that | E(Km(n)) | = n2m(m−1)
2

and | E(Y5) |= 4. To determine a gregarious

Y5 tree decomposition for Km(n), the necessary condition for edge divisibility has been expressed as
|E(Km(n)|
|E(Y5)| = n2m(m−1)

2×4
. That is, 8|n2m(m− 1). It can be written as n2m(m− 1) ≡ 0 (mod 8).

Su�ciency: The occurence of a gregarious Y5 tree decomposition for Km(n) has been described

in Lemmas 2.4 and 2.14.

3. Conclusion

In this document, we present a complete and detailed solution to the problem of identifying the pres-

ence of a gregarious Y5 tree decomposition in Km(n). Decomposing Km(n) into a Yk tree (gregarious

Yk tree) is generally a challanging task for k ≥ 6.
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