J. COMBIN. MATH. COMBIN. COMPUT. 123 (2024) 3-19

Journal of Combinatorial Mathematics ’

and Combinatorial Computing

www.combinatorialpress.com/jcmcc
Combinatorial Press

Decomposition of A Complete Equipartite Graph into
Gregarious Vs Tree

S. Gomathi!, A. Tamil Elakkiya!™

L PG & Research Department of Mathematics, Gobi Arts & Science College, Gobichettipalayam-638 458,
Tamil Nadu, India

ABSTRACT

A Y tree on k vertices is denoted by ),.. To decompose a graph into ) trees, it is necessary to
create a collection of subgraphs that are isomorphic to ) tree and are all distinct. It is possible to
acquire the necessary condition to decompose K,,(n) into YV trees (k > 5), which has been obtained
as n’m(m — 1) =0 (mod 2(k — 1)). Tt has been demonstrated in this document that, a gregarious
Vs tree decomposition in K,,(n) is possible only if n?m(m — 1) =0 (mod 8).
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1. Introduction

To create a Yy, tree (v1 v ... Ug_1; Vg2 Ug), its edges are represented as {(vivg, vovs, ..., Ug_oVk_1) U
(vg_2vk)} while the vertices are represented as {vq, vg,..., vg}. A Vs tree (v1 vy v3 v4;v3 V) can be
seen in Figure 1.
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V1

Fig. 1. )Vs tree
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The wreath product (G ® H) of G and H be defined in this way: V(G ® H) = {(u,v) | u €
V(G),v e V(H)} and E(G® H) = {(u,v)(x,y) | u =z and vy € E(H), or uz € E(G)}. I, is the
term used to describe the set of r vertices. The exstended graph (G ® I,) of G is also a multipartite
graph which is described in the following manner: V(G®I.) ={p, | p € V(G),q € I,} and E(G® I,)
= {p;s: | ps € E(G) and ¢,t € I,}. To make it easier for us, the extented graph is denoted by &, (G).
Here K, ® I,, is referred as the complete equipartite graph and is also identified by K,,(n). Here, the
extended graph &.(K,,(n)) can be considered as the extended graph &,,.(K,,), ie., K,,(nr).

Decomposition of a graph G can be partitioned into subgraphs {G;, 1 <i < n}, where each G; is
distinct by its edges, in addition with, the edge set of GG is the union of the edge set of all subgraphs.
In such a case that, if there is an isomorphism between each subgraph G; and a graph H, then G is
said to decompose into H.

However, a )5 tree decomposition in &,.(G) is termed as gregarious, if for every )5 tree, all its
vertices are assigned to various partite sets.

Numerous authors have investigated tree decompositions and their special characteristic, in par-
ticular gregarious tree decompositions. C. Huang and A. Rosa |10] demonstrated that the complete
graph K, admits a )5 tree decomposition when m = 0,1 (mod 8). The study of G-decomposition of
complete graphs, with G having 5 vertices, is detailed in [2]. According to the conjecture by Ringel
[16], it is proposed that Ky, has been decomposed into a tree with precisely m edges. Ja' nos
Bara't and Da'niel Gerbner [1] show that 191-edge connected graph admits a ) tree decomposi-
tion. To know more about tree decompositions, refer |3, 4, 17, 14, 9, 12, 11, 13, 15]. A gregarious
kite decomposition in K,, x K, is demonstrated to exist by A. Tamil Elakkiya and A. Muthusamy
[5], with the condition that mn(m — 1)(n — 1) = 0 (mod 8) being necessary and sufficient, where
x denotes tensor product of graph. In [6], A. Tamil Elakkiya and A. Muthusamy established the
conditions for a gregarious kite factorization of K,, x K,, stating that this factorization is only pos-
sible when mn =0 (mod 4) and (m — 1)(n — 1) =0 (mod 2) are present. A kite decomposition for
K,,(n) is gregarious is not possible unless m = 0,1 (mod 8) for odd n and m > 4 for even n are
present, which has been investigated in [7]. In [8], S. Gomathi and A. Tamil Elakkiya established
the conditions of a gregarious )5 tree decomposition for K,, x K,, stating that this decomposition
exists only if mn(m —1)(n — 1) =0 (mod 8) is present.

Our main concern is, to decompose a complete equipartite graph as gregarious )s trees. This
paper proves that a gregarious Vs tree decomposition for K,,(n) is only possible if n?m(m — 1) =0
(mod 8). By the notion of a gregarious Vs tree decomposition, the number of partite sets must be
at least 5 (m > 5). Moreover, a gregarious )5 tree decomposition for K,,(n) falls on the following

cases:
(i) m=0,1 (mod 8), for all n, n > 2.

(i) m=5,6,7,10,11,12 (mod 8), for even n.
To establish our key result, the following result is necessary:

Theorem 1.1. [10] For m = 0,1 (mod 8), a Vs tree decomposition is possible in K,,.

2. Gregarious ); tree Decomposition of K,,(n)

Remark 2.1. A Latin square of order r, denoted as L = (a;;) , is an 7 x r array where every row and
every column contains only the elements {1,2,3,...,r} once, in which each cell a;; would satisfies
the arithmetic operation such as a;; =i+ j — 1 (mod 7). If a;; = a@tn)+r) and Gigyr) = Aarn);,
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then the set {a;;, @i(j+k) > Ai+h)js a(Hh)(ﬁk)} is called as )Y tree cell. Here h and k are integers, which
are equal to 7, r is even. It provides the following three disjoint Vs trees:

(1) (Livn 2j4n 1 3a(i+h)(j+k)31i 2;)

(i1) (2544 SagemGer Lith 255 Livn 3ai(j+k))

(iii) (3%]' 2; 3a(i+h)j 2j+k;3a(i+h)j 1:),
where the subscripts are considered to be divisible by r and their remainders must be taken as
1,2,3,...,r.

For example, let us consider the Latin square of order 4 as given in Table 1.

(1] 2[[3]]4
2 13]4 |1
3] 4 [1]]2
411]2]3

Table 1. Latin square of order 4 (L)

Here h, k = 2, and i, j = 1, so we get aj;; = agz and a13 = az;. Now, the ) tree cell (a11, a13, asi, ags)
gives the following: (15 25 11 34s; 11 21), (23 3ass 13 21513 34y5) and (3ay; 21 3as; 235344 11)-
Then ay; = azs = 1 and a;3 = az; = 3 implies the disjoint Vs trees (13 23 17 31515 21), (23 31 13 24
13 33) and (37 27 33 23;33 11).

Lemma 2.2. For any Vs tree, there is a gregarious Vs tree decomposition for E.(Vs), r > 2.

5

Proof. By taking V(&,.()5)) = { U pg, 1 < ¢ < r} and by using the latin square L of order r, the set
p=1

{1; 25 3a,; 445 3a;; 55}, 1 <4,5 <r,r > 2, provides a gregarious Vs tree decomposition for &,.(Vs). O

Lemma 2.3. A gregarious Vs tree decomposition is admissible in E.(H), r > 2, if a Vs tree decom-
position 1s possible in H.

Proof. If there is a collection S of Vs trees in the decomposition of H, then by applying Lemma
2.2 to each V5 € S, we will get a gregarious Vs tree decomposition for &£,.(Ys). Consequently, we can
attain a gregarious Vs tree decomposition for &.(H), r > 2. O

Lemma 2.4. A gregarious Y5 tree decomposition is admissible in K,,(n), when m = 0,1 (mod 8)
and for every n, n > 2.

Proof. In Theorem 1.1, stating that, )5 tree decomposition is possible for K,, when m = 0,1

(mod 8). Thus, according to the Lemma 2.3, we can attain a gregarious s tree decomposition for
Er(Kpm), > 2. O

Lemma 2.5. A gregarious Vs tree decomposition for each graph G € G = {Ks 6.6, Ks.8.8, 510,10, 10,
K12712712} 18 admaissible in gg(G)



6 GOMATHI, ELAKKIYA

3
Proof. Let us consider V(K3 32) = {Up;1 < ¢ < 2} The set given below contains a Vs
=1

tree decomposition for Ky oo @ {(32 12p31 195 3121), (223221 145 21 1), (3211 29 19; 25, 31)}.  Conse-
quently, we may derive a gregarious Vs tree decomposition for &.(Ks 2 0) if r = 3,4,5,6, accord-
ing to the Lemma 2.3. That is, a gregarious )5 tree decomposition exists for the graphs G =
{Ks,6,6, K5 8.8, K10,10,10, K12,12,12}, since &E,.(K,,(n)) ~ K,,(nr). Moreover, by repeating the same
process to each graph G € G, we can acquire a gregarious Vs tree decomposition for &(G). n

Lemma 2.6. A gregarious Vs tree decomposition for each graph G € G = {Kg s 5, Ks 56, K557}
is admissible in E(G).
Proof. (1) A gregarious Y5 tree decomposition for £ (Ks s 5) can be derived as follows:
2
Let V(Kss5) = {(Upp1 < ¢ <8 U(3,1<q<5)}. By removing the entiries 6, 7 and 8 from
p=1

Table 2, we can attain a latin square L in Table 3. By using Table 3, we can produce a set &7 of Vs
tree decomposition for Kg g 5 as follows:

CO| || O | W[
OO~ Oy O | WD
o= oo 1oy ot x|
WIN|HFH|C0| || O =~
=W =00 =T Oy Ut
G| W[N]~
S| O = | W | N |00
N[O | W N| |0

Table 2. Latin square of order 8 (Lg)

XXX [O =Wl —
XX | X | o | w| o
DO = X | X[ X | Ot =]
WIN| X | XX ]| =

W IN =X [ X | X | ot
O x| W ||~ X[ XX
Xloks|w|o|—| X | X
X | X |ok=|w|po|—]| X

Table 3. Dropped the entries 6, 7, 8 from Lg

e As discussed in Remark 2.1, if a;; = aivn)(j+4) = 5 and a;(j4x) = agitn); = 1, we get the following
Y tree cells {(ais, ai1, ass, as1), (agq, ass, aes, aes), (a3, asr, ars, arr), (aa2, Gy, asa, ase) }. It follows that
these ) tree cells yield 12 copies of Y5 trees, in which each are isomorphic and disjoint mutually.

e For all (4,7) € {(1,2),(2,1),(3,8),(4,7),(5,6),(6,5),(7,4),(8,3)}, we have a;; = 2 and for all
(i,7) € {(1,3),(2,2),(3,1),(4,8),(5,7),(6,6),(7,5), (8,4)}, we have a;; = 3. It is possible to obtain
a Vs tree corresponding to each (4,7), such as (34, 2; 1i 2p46-i; 1i 3x11), if aj; = k, k = 2,3. Thus
we may include these 16 disjoint copies of Vs trees in Sj.
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e Similarly, for all (i,7) € {(1,4),(2,3),(3,2),(4,1),(5,8),(6,7),(7,6),(8,5)}, a;; = k, k = 4,
it is possible to obtain a )Ys; tree. We then place the 8 disjoint copies of )5 trees follows from
(3ay; 25 1i 219515 3x—2) in Si. All together implies a Vs tree decomposition for Ky g 5. As a con-
sequence of it, a gregarious )5 tree decomposition for &(Kyg s 5) may derived through the use of
Lemma 2.3.

(2) A gregarious Vs tree decomposition for £(Ks g ) can be derived as follows:

2
Let V(Kgs6) = {(U pg: 1 <q<8)U(34,1 <¢q<6)}. Byremoving the entiries 7 and 8 from Table
p=1

2, we can attain a latin square L in Table 4. By using Table 4, we can produce a set Sy of Vs tree
decomposition for Kg g ¢ as follows:

X|IX || o ix|Ww|[No|—
RIX | X | oot e|w|o
N[~ X | X || o | w
W= X[ X || o] i~
BlWw| |~ X | X[y ot
Gl |||~ XX |
| ot | w| |~ X | X
X|o|oks|w| || X

Table 4. Dropped the entries 7, 8 from Lg

o As discussed in Remark 2.1, if a;; = agyn)j+x) = 5 and a;(j4r) = a(i+n); = 1, we get the following
Y tree cells {(ass, a1y, ass, as1), (asq, ass, aes, aes), (a3, asr, ars, arr), (aa2, 4, aga, ase) }. It follows that
the ) tree cells yield 12 copies of Vs trees, in which each are isomorphic and disjoint mutually.

e As discussed in Remark 2.1, if a;; = a@ipn)(j+1) = 2 and a;(j4x) = agi+n); = 6, we get the following
Y tree cells {(ai2, aie, ase, ase), (a1, ass, ae1, aes), (ass, A34, ars, A74), (Aa7, Q43, agy, as3)}. It follows that
the Y tree cells yield 12 copies of Vs trees.

e For all (7,7) € {(1,3),(2,2),(3,1),(4,8),(5,7),(6,6),(7,5),(8,4)}, a;; = k, k = 3, it is possible
to obtain a Vs tree. We then place the 8 copies of V5 trees follows from (3% 2 1; 2546-i; 1 3k41) in
Ss.

e For all (4,75) € {(1,4),(2,3),(3,2),(4,1),(5,8),(6,7),(7,6),(8,5)}, aij = k, k = 4, it is possible
to obtain a )5 tree. We then place the 8 copies of Vs trees follows from (3%. 2 1; 243, 1; 341) in
Sy. All together leads a Vs tree decomposition for Kg g 6. As a consequence of it, a gregarious Vs
tree decomposition for & (K g ¢) may derived through use of Lemma 2.3.

(3) A gregarious Vs tree decomposition for £(Ks g ) can be derived as follows:

2
Let V(Kgs7) = {(Upg, 1 <qg<8) U(3,,1<q<7)}. By removing the backword diagonal entries
p=1

from Table 2, we can attain a latin square L in Table 5. By using Table 5, we can produce a set S3
of Vs tree decomposition for Ky g 7 as per the following:

o Consider the set of Y tree cells {(aij, ai(jta), Giva)j, Avay+a)}s (4,5) € {(1,1),(1,2),(1,3),
(2,1),(2,2)(2,4),(3,1),(3,3),(3,4), (4,2), (4,3), (4,4)}. It is possible to obtain a Y tree cell cor-
responding to each (7, j). All together gives 12 copies of ) tree cells. These ) tree cells provides the
following 36 copies of Vs trees.

(i) When i = j

1i+h 2]+k 11 3a(i+h)(j+k.); 12 347 2]+l€ 3a(i+h)(j+k) 1i+h 34, 1i+h 3ai(j+k')7 3(11'1' 2] 3a(i+h)j 2j+k;3a(i+h)j 1’L
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R X[~ o x| w| o
DO [ X | =IO ot | o
WIND || X [ ot i
Bl W N =X || ot

| O | W N X |
N | OO W N =X

G| W[ NP X |~

X || O =W —

Table 5. Dropped the backword diagonal entries from Lg

(i) When ¢ # j

Livh 254k Li Ba iy anyt Li 20 254k Sagnygrn Lith 255 Livh Saigyinys Sai; 25 Saginy; Zi4ki Bagam, Liv

e For all (z,7) € {(1,4),(2,3),(3,2),(4,1)}, a;; = 4, it is possible to obtain a Vs tree. We then
place the 4 copies of Vs trees follows from (3., 2; 1; 29_;; 1; 2;) in Sa.

e For all (i,7) € {(5,8),(6,7),(7,6),(8,5)}, a;; = 4, it is possible to obtain a Vs tree. We then
place the 4 copies of Vs trees follows from (3% 2; 1; 29_4;1; 2,4) in S3. All together leads a V; tree
decomposition for Ky g 7. As a consequence of it, a gregarious Vs tree decomposition for & (K s 7)
may derived through use of Lemma 2.3.

From Cases 1, 2 and 3, we can concluded that, a gregarious )5 tree decomposition exists for E(G),
G € G ={Ksss Kss6, Kz 87}

H

Lemma 2.7. A gregarious Vs tree decomposition for each G € G = {Kg 510, Ks 511, Ks 512} 1S
admissible in E(G).

Proof. (1) A gregarious Ys tree decomposition for £ (Kjs s 19) can be derived as follows:
2
Let V(Kg,&lo) = {( U pq,l S q S 8) U (31, 32, 33, 347357367377387 OOl,OOQ)}. By USiIlg the latin
p=1

square in Table 2, we can produce a set &) of Vs tree decomposition for Kg g 19 as follows:

e As discussed in Remark 2.1, if a;; = agyn)(j+x) = 5 and a;(j+r) = a(i+n); = 1, we get the following
Y tree cells {(ass, a11, ass, as1), (ag4, ags, Ges, Ges), (a3, A37, A73, A77), (Q42, 46, A2, ase) }. It follows that
the Y tree cells yield 12 copies of Vs trees.

e For all (4,5) € {(1,2),(2,1),(3,8),(4,7),(5,6), (6,5),(7,4), (8,3)}, we have a;; = 2 and for all
(,7) € {(1,3),(2,2),(3,1),(4,8),(5,7),(6,6),(7,5), (8,4)}, we have a;; = 3. It is possible to obtain
a Vs tree corresponding to each (4, ), such as (34, 2; 1 00k; 1; 34,,41), if @y = k+1, k =1,2. Thus
we may include these 16 copies of Vs trees in S;.

e For all (4,5) € {(1,4),(2,3),(3,2),(4,1),(5,8),(6,7),(7,6),(8,5)}, we have a;; = 4. It is possible
to obtain a ) tree corresponding to each (7, ), such as (3q,, 2; 1; 3p45; 1i 3x—1), if a; = k+1, k = 3.
Thus we may include these 8 copies of Vs trees in Sj.

e For all (4,j) € {(1,6),(2,5),(3,4),(4,3)}, we have a;; = 6. It is possible to obtain a )5 tree
corresponding to each (7,7), such as (34,; 1; 2; 00k_3;2; 34,,41), if a;; = k + 2, k = 4. Thus we may
include these 4 copies of Vs trees in S;.

e Lor all (i,5) € {(5,2),(6,1),(7,8),(8,7)}, we have a;; = 6. It is possible to obtain a )5 tree
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corresponding to each (7, ), such as (2j12 1; 2j 001525 34,;41), if a;; = k + 2, k = 4. Thus we may
include these 4 copies of Vs trees in Sj.

e For all (4,7) € {(1,7),(2,6),(3,5), (4,4),(5,3),(6,2),(7,1),(8,8)}, we have a;; = 7. It is possible
to obtain a )5 tree corresponding to each (i, ), such as (3., 1; 2j 0og_3;2; 3py3), if a;; = k + 2,
k = 5. Thus we may include these 8 copies of )5 trees in S;.

e For all (7,j) € {(1,8),(2,7),(3,6),(4,5)}, we have a;; = 8. It is possible to obtain a )5 tree
corresponding to each (4,7), such as (1; 2; 3(a,;—2) 2i; 3(a;;—2) liva), if aj; = k+2, k = 6. Thus we

may include these 4 copies of Vs trees in Sj.

All together leads a V5 tree decomposition for Ky s 10. As a consequence of it, a gregarious Vs tree
decomposition for & (K g 10) may derived through the use of Lemma 2.3.

(2) A gregarious Vs tree decomposition for £,(Ks g 11) can be derived as follows:

2
Let V(K&&H) = {( U pq, 1 S q S 8)U(31,32,33,34,35,36,37,38, 1, 002,003)}. By llSiIlg the latin
=1

square in Table 2, we can produce a set Sy of V5 tree decomposition for Ky s 11 as follows:

e As discussed in Remark 2.1, if a;; = aivn)(j+4) = 5 and a;(j+x) = agitn); = 1, we get the following
Y tree cells {(ais, ai1, ass, as1), (asq, aos, aes, aes), (a3, asr, ars, arr), (aa2, 4, asa, ase) }. It follows that
the Y tree cells yield 12 copies of Vs trees.

e For all (z,7) € {(1,2),(2,1),(3,8),(4,7),(5,6),(6,5),(7,4),(8,3), we have a;; = 2 and for all
(i,7) € {(1,3),(2,2),(3,1),(4,8),(5,7),(6,6),(7,5), (8,4)}, we have a;; = 3. It is possible to obtain
a Vs tree corresponding to each (7,7), such as (3,,. 2; 1; oog; 1; 3p42), if a;; =k +1, k =1,2. Thus
we may include these 16 copies of Vs trees in Ss.

e For all (i,7) € {(1,4),(2,3),(3,2),(4,1),(5,8),(6,7),(7,6)
to obtain a Vs tree corresponding to each (i, j), such as (34,; 2;

A4

.(8,5)}, we have a;; = 4. It is possible

1; ook 1; 3k-1), if ayy = k+1, k= 3.
Thus we may include these 8 copies of Vs trees in Ss.

e For all (4,5) € {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),(7,8),(8,7)}, we have a;; = 6 and for all
(,7) € {(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1), (8,8)}, we have a;; = 7. It is possible to obtain a
Vs tree corresponding to each (4, 7), such as (34,; 15 2j 00k; 2; 3(a;;41)), if aij =k +5, k =1,2. Thus
we may include these 16 copies of Vs trees in 82

e For all (4,5) € {(1,8),(2,7),(3,6),(4,5),(5,4),(6,3),(7,2),(8,1)}, we have a;; = 8. It is possible
to obtain a )5 tree corresponding to each (i,j), such as (3,,, 1; 2j 00k;2; 3(a;;-2)), if a; = k +5,
k = 3. Thus we may include these 8 copies of )5 trees in Ss.

All together leads a V5 tree decomposition for Ky g 11. As a consequence of it, a gregarious Vs tree
decomposition for & (K g 11) may derived through use of Lemma 2.3.

(3) A gregarious Ys tree decomposition for & (K g 12) can be derived as follows:

Let V(K s12) = {( U Dgs 1 < g < 8)U (34, 32,33, 34, 35, 36, 37, 35, 001, 002, 003, 004) }. By using the

latin square L in Tabfe , we can produce a set Ss for Vs tree decomposition of K s 12 as follows:

e For all (4,j) € {(1,1),(2,8),(37 7),(4,6),(5,5),(6,4),(7,3),(8,2)}, we have a;; = 1, for all
(t,7) € {(1,2),(2,1),(3,8),(4,7),(5,6),(6,5),(7,4),(8,3)}, we have a;; = 2 and for all (i,j) €
{(1,3),(2,2),(3,1),(4,8),(5,7),(6,6),(7,5),(8,4)}, we have a;; = 3. It is possible to obtain a Vs
tree corresponding to each (i, j), such as (3, 2; 1; 00k; 1; 3x41), if aj; = k, k = 1,2,3. Thus we may
include these 24 copies of Y5 trees in Ss.

e For all (4,7) € {(1,4),(2,3),(3,2),(4,1),(5,8),(6,7),(7,6),(8,5)}, we have a;; = 4. It is possible
to obtain a Vs tree corresponding to each (i, ), such as (3,,, 2; 1; cog; 1; 34—3), if a;; = k, k = 4.

aij
Thus we may include these 8 copies of Vs trees in Ss.
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e For all (7,5) € {(1,5),(2,4),(3,3),(4,2),(5,1),(6,8),(7,7),(8,6)}, we have a;; = 5, for all
(e,7) € {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),(7,8),(8,7)}, we have a;; = 6 and for all (i,j) €
{(1,7),(2,6),(3,5), (4,4), (5,3),(6,2),(7,1),(8,8)}, we have a;; = 7. It is possible to obtain a Vs
tree corresponding to each (4,7), such as (3,,; 1; 2; 00k; 25 3(a;;+1)), if aij =k +4, k =1,2,3. Thus
we may include these 24 copies of Vs trees in Ss.

e Forall (7,5) € {(1,8),(2,7),(3,6),(4,5), (5,4),(6,3),(7,2),(8,1), }, we have a;; = 8. It is possible
to obtain a Vs tree corresponding to each (7, 7), such as (3,,; 1; 2; 00x; 2; 3(r41)), if @iy = k+4, k = 4.
Thus we may include these 8 copies of Y5 trees in Ss.

All together leads a V5 tree decomposition for Ky s 12. As a consequence of it, a gregarious Vs tree
decomposition for & (K s 12) may derived through use of Lemma 2.3.

From Cases 1, 2 and 3, we can cocluded that, a gregarious )5 tree decomposition exists for &(G),

G € G ={Ks 510, Ks3,11, Ks5312} n

Lemma 2.8. A gregarious Vs tree decomposition for each graph G € G = {Ki2,12,7, Ki2,12,10} 1S
admissible in E(G).
Proof. (1) A gregarious Vs tree decomposition for £ (K2 12 7) can be derived as follows:
2
Let V(Ki2,12.7) = {(U pg; 1 < ¢ <12)U (34,1 < ¢ < 7)}. By removing the entries 8, 9, 10, 11 and
p=1

12 from Table 6, we can attain a latin square L in Table 7. By using Table 7, we can produce a set
S of Vs tree decomposition for Ky 12,7 as follows:

1121314 5|6 | 7|89 101112
2031456789 10(11]12|1
304156 |78 ]9 |10/11 12| 1] 2
4 (5|6 | 781910111121 |2 |3
516 | 7|89 1101112 1|2 |3 |4
6 | 7891011 12| 1 |2 3 |4]5
7T 89101112, 1|23 4]|5]|6
819 (10|11 }12) 1 2|3 |4|5]|6]|7
9101112} 12 3|45 6]|7]|8
(111212 {3456 |7|8]9
1mj12y1(2 131456789110
12 1 3415|6789 1011

Table 6. Latin square of order 12 (L;2)

e Consider the set of Y tree cells {a;j, ai(j16), A(it6)j> Ai+6)j+6) }» Where (i,7) € {(1,1),(2,6),
(3,5),(4,4),(5,3),(6,2)}. It is possible to obtain a ) tree cell corresponding to each (7,7). All
together gives 6 copies of ) tree cells. As discussed in Remark 2.1, these ) tree cells will provide 18
copies of Vs trees.

e Forall (i,7) € {(1,2),(2,1),(3,12), (4,11), (5, 10), (6,9), (7,8), (8
we have a;; = 2. For all (i, 5) € {(1,3), (2,2),(3,1), (4,12), (5, 11), (6, 10
(11,5),(12,4)}, we have a;; = 3. Forall (¢, ) € {(1,4),(2,3),(3,2), (4,1)
(9,8),(10,7),(11,6),(12,5)}, we have a;; = 4. And for all (4,5) € {(1,5

,7),(9,6), (10,5), (11, 4), (12,3)},
):(7,9),(8,8),(9,7), (10,6),
,(5,12),(6,11),(7,10),(8,9),

) (2,4),(3,3),(4,2), (5, 1),
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XIX[IX|X|X|N|o| o kx|w|[bdo|—
HIX XXX |X|~N|o|okx|w|o
N[ X | XX X[ X[ Ot | W
WIN| R X [ XX XX |||t &~
B W N R X X XXX ot
G| W N~ XXX |IX|IX|g o
O | W N[ X [ XX |X|X]|~
N OO | W N R XXX X] X
XNl okx|w| |~ X[ XXX
XX |[~No|okxs|w|( o~ XXX
XX [ X|~No|oyk|w| N[~ X | X
XXX |X|N|o|okx|w[nN|—| X

Table 7. Dropped the entries 8, 9, 10, 11, 12 from L4

(6,12),(7,11),(8,10),(9,9),(10,8),(11,7),(12,6) }, we have a;; = 5. It is possible to obtain a ) tree
corresponding to each (i, j), such as (34,; 2; 1 2p47—i; 1i 3pt1), if ag; = k, k = 2,3,4,5. Thus we may
include these 48 copies of Vs trees in Sj.

o For all (i, 7) € {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1), (7,12), (8, 11), (9, 10), (10, 9), (11,8), (12, 7)},
we have a;; = 6. It is possible to obtain a Y tree corresponding to each (4, j), such as (3% 2; 1 2p47-;
1; 3i_4), if a;; = k, k = 6. Thus we may include these 12 copies of )5 trees in S;. All together leads
a Vs tree decomposition for K5 12 7. As a consequence of it, a gregarious )5 tree decomposition for
Er(K12,12,7) may derived through use of Lemma 2.3.

(2) A gregarious Vs tree decomposition for (K2 12,10) can be derived as follows:

Let V(Ki2,12,10) = {(LZJ pg, 1 < g <12)U (3,1 < ¢ < 10)}. By removing the entries 11 and 12

p=1
from Table 6, we can attain a latin square L in Table 8. By using Table 8, we can produce a set Sy

of Vs tree decomposition for K3 12 10 as follows:

112131456789 |10 x| x
2131456 | 7|89 |10]x|x|1
314156781910 x| x]|1]|2
4 1516|789 |10 x| x|1/|2]3
516 | 7819|110 x| x|1]2]3]4
6 | 718|910 x| x| 1/]2|3]|4]5
718 19|10 x| x| 1|23 |4|5]6
819 (10| x| x| 1|23 [4|5]|]6]|7
9 110 x| x| 1|2 |3 |4 |b5]|]6]7]|8
10| x| x| 1|23 |45 |6|7]8]09
X | x| 12345 |6|7]8]9]10
x| 1123|4516 7|89 |10]x

Table 8. Dropped the entries 11, 12 from Lqo

e Consider the set of Y tree cells {aj, a;(j+6), A(it+6)j, A(i+6)(j+6) }» Where (4, 7) € {
(1,3),(1,4),(2,1),(2,2),(2,3),(2,6),(3,1),(3,2),(3,5), (3,6), (4, 1), (4,4), (4,5), (4
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(5,5),(5,6),(6,2),(6,3)(6,4), (6,5)}. It is possible to obtain a ) tree cell for each (i, 7). All together
gives 24 copies of ) tree cells. As discussed in Remark 2.1, the ) tree cells will provide 72 copies of
Vs trees.

o Forall (i, ) € {(1,5), (2,4), (3,3), (4,2), (5,1), (6,12), (7, 11), (8, 10), (9, 9), (10,8), (11, 7), (12,6) },
we have a;; = 5. It is possible to obtain a Vs tree corresponding to each (7, j), such as (3a;; 2; 1i 2x17-4;
1; 3k+1), if a;; = k, k = 5. Thus we may include these 12 copies of )5 trees in S,.

o For all (i, §) € {(1,6), (2,5), (3,4), (4,3), (5,2), (6, 1), (7,12), (8, 11), (9, 10), (10, 9), (11,8), (12, 7)},
we have a;; = 6. It is possible to obtain a Vs tree for each (4,7), such as (3q,, 2; 1; 2pp7—i; i 3p—1),
if a;; = k, k = 6. Thus we may include these 12 copies of Vs trees in S.

All together leads a Vs tree decomposition for Kz 12 19. As a consequence of it, a gregarious Vs
tree decomposition for & (Ka 12 10) may derived through use of Lemma 2.3.

From Cases 1 and 2, we can concluded that, a gregarious )5 tree decomposition exists for E(G),

G € G ={Ki2127, Ki2,12,10}- O

Lemma 2.9. A gregarious Vs tree decomposition for each graph G € G = { Ko\ K7, K11 \ Kg, K12\
K5, K13\ K5, K14\ Ko, K15 \ K7, K16 \ Kg, K19 \ K14, Koo \ K13, Ko \ Koo, K35 \ K30} is admissible

Proof. (1) Let us consider V(Ko \ K7) = {1,2,3,...,10} and
S ={(1436;310),(261815),(2731:38),(7124;25),(5328:210),(10192;93)}.

It follows that, the set S; provides a Vs tree decomposition of Kjg \ K7.
(2) By taking V(K73 \ Kg) = {1,2,3,...,11}, the set Sy given bellow derives a Vs tree decompo-
sition of Ku \ KG-

S, ={(1284;85),(2516;17),(349592),(2318111),(26410;47),
(5638311),(72105:101),(75114;112),(3542;41),(1937;310)}.

(3) By taking V(K32 \ K5) = {1,2,3,...,12}, a )5 tree decomposition for Ko \ K5 is contained
with in the set S3 mentioned bellow.

Sy ={(111125:126),(12216:17),(1327:28),(2438;39),(35409;4 10),
(48510;511),(14127;123),(6518;19),(36209;210),(87310;3 11),
(76411;47),(57106;101),(86 9 7;95),(52 11 6;11 7)}.

(4) Let V(K3\ K5) = {1,2,3,...,13}, the collection S, gives a Y5 tree decomposition of K3\ K.

Sy ={(13410;413),(64511;51),(35612;68),(42713;73),(5781;83),
(6132 3;25),(76113;110),(9 36 10;6 11), (9 4 7 11;7 12), (10 5 8 12;8 4),
(114125:123),(121 11 811 2),(13896:9 1), (1 79 2:95),(5 13 3 10;3 11),
(12210 7;10 8), (4 1 2 6;2 8)}.

(5) By considering V(K14 \ Kg) = {1,2,3,...,14}, the set S5 must be a Vs tree decomposition of
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K4\ K.

Ss={(143410:41),(144511:51),(35 6 126 14), (4 2 7 14;7 3), (13 7 8 1;8 3),
(61323;25),(76113:110),(93610;6 11),(94 7 11;7 12), (10 5 8 12;8 4),
(114125:123),(121 11 811 2),(13896:9 1), (1 79 2:9 5),(5 13 3 10;3 11),

(12210 7:10 8),(3 12 8,2 14),(134 6 86 2),(7 5 14 8;14 1)}.

(6) Let V(Ky5\ K7) ={1,2,3,...,15}. The set S leads a Vs tree decomposition of K5\ K7.

Se={(153410:41),(154 5 11:5 10), (3 5 6 12:6 14), (15 2 7 14:7 3),
(137815:82),(6 132 5;214),(7 6 1 13;1 10),(9 3 6 10;6 15), (9 4 7 11;7 12),
(1558 12:84), (11 412 5;12 3), (12 1 11 8:11 6),(138 9 6:9 1), (1 7 9 2;9 5),
(513310;311),(122107:10 8),(21 3 8:3 14), (1346 8:6 2),(7 5 14 814 1),
(71518;15),(14423;211)}.

(7) By considering V(K36 \ Ks) = {1,2,3,...,16}, the set S; provides a Vs tree decomposition of
K16 \ Kg.

S;={(36151;157), (1554 8,49),(13 75 1;5 14), (13 3 2 16;2 6),
(8134 16;4 12),(14 1 6 16;6 5), (14 2 5 16;5 13), (14 4 3 16;3 15), (14 6 8 16;8 12),
(11711651 13),(152 7 16;7 14),(93 8 1;8 14),(4 79 1:9 8), (10 6 9 29 5),
(1582 1;213),(58 10 1;10 4), (6 7 10 3;10 5), (11 5 3 1:3 14), (4 2 12 5,12 7),
(10211 1;11 3),(7 8 11 4;11 6), (13 6 4 1;4 15), (7 3 12 1:12 6)}.

(8) Let V(Ki9 \ K14) ={1,2,3,...,19}. A Y5 tree decomposition of Kjq \ K4 belongs to Ss.

Se={(31854;52),(21914;16),(3126;214),(4237;316),(56 4 3;4 16),
(63195;194),(71123;125),(110218;213),(16294;9 1),(5 15 2 82 7),
(511410;417),(172 11 3;111),(47 585 1),(10 5 13 3;13 1), (1 16 5 9;5 14),
(2124 13;414),(5 3 15 4;15 1), (4 18 1 8;1 14), (10 3 17 1;17 5), (4 8 3 9;3 14)}.

(9) Let V(K \ K13) ={1,2,3,...,20}. A Y5 tree decomposition of Ky \ K3 is contained in Sy.

Se={(36151;157),(20 54 19:4 9), (13 7 5 1;5 14), (13 3 2 20:2 6),
(613 4 18;4 12),(20 1 6 12;6 5),(8 2 5 16;5 13), (20 4 15 3:15 5), (19 6 7 16;7 12),
(1171 16;113),(152 7 19:7 20),(20 3 19 1;19 5), (18 79 1;9 2), (10 6 9 3:9 5),
(16 318 5,18 6), (6 17 2 13;2 18), (4 10 1 12;1 18), (4 7 10 3:10 5), (11 5 3 1;3 14),
(42125123),(102111;113),(20 64 1;4 3),(73 8 1;8 6), (8 7 14 6;14 1),
(84 162,16 6), (85 17 7;17 3),(6 11 4 14;4 17), (17 1 2 14;2 19)}.

(10) Let V(Ko \ Ka0) = {1,2,3,...,29}. A Vs tree decomposition of Koy \ Kg has been con-
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structed as follows:

S1o={(19512;517),(2 10 6 13:6 18), (7 11 3 14;3 19), (4 12 8 15;8 20),
(5139 16:9 21), (6 14 1 20:1 22), (5 27 2 21;2 23), (6 27 3 22;3 24),
73423:425),(829524;526),(10 1 6 25,6 28), (11 2 24 4;24 9),
12 714 5;14 4), (13 4 15 3;15 2), (10 5 16 6:16 3), (11 6 7 8:7 26),
12310 9;10 8), (13 8 11 9;11 4), (8 27 7 18:7 29), (9 28 8 19; 8 18),
291129;122),(62 13 3;13 1), (22 7 4 29;4 26), (7 28 3 23;3 25),
17 97 23;7 20), (25 1 8 24;:8 21), (26 2 9 25:9 22), (15 5 1 26; 1 23),
26 6 525:54), (389 14:9 29), (14 2 7 10: 7 17), (8 4 9 20:9 19),
222 111;121),(36151;157),(28 4 16 2;16 8), (5 8 17 3;17 6),
69184:18 1),(7 119 5:19 2), (8 2 20 6:20 3), (9 3 21 7:21 4),
10 4 22 8;22 5), (11 523 9:23 6), (12 6 24 1:24 7), (13 7 25 2,25 8),
14 8 26 3;26 9), (15 9 27 4;27 1), (16 1 28 5;28 2), (17 2 29 6;29 3),
18 3117;14),(194218;25),(205 7 19;7 16), (21 6 4 20;4 17),
235 21:5 18),(23 8 6 22:6 19)}.

~— ~— ~— —v

N N N N e e e e e N N

(11) Let V(K35 \ K30) = {1,2,3,...,35}. A )5 tree decomposition of Kz5 \ K3 is shown bellow:

S ={(31851;52),(41912;13),(52023;24),(12134;3 24),
(222413;46),(323514;57),(424115;18),(425216;29),
(126 319;3 10),(2 27 4 18;4 11),(3 28 5 25;5 12),(4 29 1 20; 1 13),
(5302 13;2 14), (1 31 3 14;3 15),(2 32 4 15;4 16), (3 33 5 16;5 17),
(434 117;118),(535218;219), (317 223;27),(5 26 4 21;4 23),
(127 522;5 24),(2 28 1 23;1 25),(3 29 2 24;2 26), (4 30 3 25;3 27),
(531 4 28;4 20), (1325 29;5 19),(2 33 1 30;1 14), (3 34 2 31;2 15),
( (

( 1
( (

—~

~— — ~— ~— ~—

435332;316),(61433;417),(203534;54),(836265),(9473;71),
1058 4;82),(11195;9 3), (12210 1;10 4), (13 3 11 2;11 5),
14412 3;121),(3 22 1 16;1 35), (2 21 5 13;5 15)}.

From (1) - (11), we have got a s tree decomposition for each G € G = {Kyo \ K7, K11 \ Ke, K12\
K, Kz \ K5, Kig \ Ko, K5\ K7, K16\ Ks, K19\ K14, Koo \ K13, K9 \ Ko, K35 \ K30}. By applying
Lemma 2.3, we can produce a gregarious Vs tree decomposition for £(G), G € G = { Ko\ K7, K11\
Ko, K12\ K5, K13\ K5, K14\ Ke, K15 \ K7, K16 \ Ks, K19 \ K14, Koo \ K13, K9 \ Koo, K35 \ K30}, O

Lemma 2.10. A gregarious )5 tree decomposition for each graph G € G = {K;} is admissible in
EKY), for alli e {5,6,7}.
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Proof. A gregarious Vs tree decomposition of & (

K;), i € {5,6, 7} have been discribed as follows:

Ey(I5) ={(12 22 31 42:31 52) @ (11 21 32 41332 51) @ (21 42 11 39311 52)@
(22 41 12 31312 51) © (11 31 21 41321 51) @ (12 32 22 49325 52)@
(21 13 52 41;52 32) © (22 11 51 42,51 31) @ (21 52 42 32342 1)@
(22 51 41 3154 11)}'

Ey(Kg) ={(12 21 62 32562 41) ® (11 62 31 21531 51) @ (32 52 29 41325 62)@

(12 51 32 29339 42) @ (21 52 31 41531 12) B (21 4o 53 69; 59 19) @ (41 51 29 61529 11)D

(20 61 11 41517 31) @ (22 4o 51 61551 11) @ (32 41 59 61352 11) @ (51 21 L1 4o 11 32)

(3122 13 4915 61) @ (31 61 41 12341 21) @ (31 42 62 51562 12) B (42 61 32 21332 12)}.

o D

E(K7) ={(31 21 11 61311 4) & (42 71 61 51361 13) B (21 T2 62 51;62 41)P
1y 71 62 52562 29 19 27 61 52;6; 44 2171 51 31391 4o
29 45 62 31562 1 71 32 51 41591 29 29 71 52 41552 1

( )& ( ) 7o D2 42559 21)®
( 2) @ ( )

(32 52 13 29515 2) D (42 32 To 61;72 51) 22 92 31 19;31 44

( 1) @ ( )

(1y )& ( )

)@ (L 1)

1) @ (71 41 11 22514 51)@
) @ (41 21 32 61532 1)
) & (42 )

D
D
D
D 61 29 32;29 72)D

/\/‘\/\/\

45 21 62 32;62 1 21 51 19 To;19 44 4y 79 31 11531 61
32 41 72341 29 11 71 31 29331 49) ).

Lemma 2.11. A gregarious )5 tree decomposition for each graph G € G = {K;} is admissible in

Ea

Proof. A gregarious )5 tree decomposition for & (K

K;), for all i € {10,11,12,13,14,15,18}.

i), 1 € {10,11,12,13,14,15, 18} can be derived

as follows:

(1)

(2)

Let K19 = K7 @ Ky \ Ky7. We then write E(K1) = E(K7) & E(Kio \ K7). A gregarious Vs
tree decomposition for & (Ko \ K7) and E(K7) have been respectively derived in Lemmas 2.9
and 2.10. A gregarious )s tree decomposition has been found for & (K7y).

Let KH = K6 D K11 \ K6. We then write gQ(Kll) = gQ(Kﬁ) D gQ(Kll \ KG) A gregarious y5
tree decomposition for £ (K \ Kg) and E(Kg) have been respectively derived in Lemmas 2.9
and 2.10. Hence, we concluded that, & (K1) has a gregarious Vs tree decomposition.

Let Klg = K5 D K12 \ K5. We then write gQ(KlQ) = 52(K5) D gQ(KlQ \ K5) A gregarious y5
tree decomposition for £(Kis \ K5) and E(K5) have been respectively derived in Lemmas 2.9
and 2.10. Our conclusion was that, &(K;2) has a gregarious Vs tree decomposition.

Let K13 = K5 @ Ki3 \ K5. We then write &(K3) = E(K5) @ E (K3 \ K5). A gregarious Vs
tree decomposition for £ (K3 \ K5) and E(K5) have been respectively derived in Lemmas 2.9

and 2.10. A gregarious Vs tree decomposition is obtained for & (K3).

Let K14 = K6 @D K14 \ KG. We then write 52([(14) = 52<K6) D 52([(14 \ K6) A gregarious y5
tree decomposition for & (K4 \ K5) and E(Kg) have been respectively derived in Lemmas 2.9
and 2.10. Consequently, E(K14) is decomposed into a gregarious s tree.
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(6)

(7)

Let K15 = K7 D K15 \ K7. We then write €2<K15) = 52(K7) ©® SQ(K]_E’, \ K7) A gregarious y5
tree decomposition for & (K5 \ K7) and E(K7) have been respectively derived in Lemmas 2.9
and 2.10. A gregarious Vs tree decomposition has been found for & (K5).

Let K18 = 3K6 D K6,6,6- We then write gg(Klg) =3 gQ(Kﬁ) S5 82(K6,6,6)- A gregarious y5
tree decomposition for £ (K 6 6) and E(Ks) have been respectively derived in Lemmas 2.5
and 2.10. A gregarious Vs tree decomposition has been found for & (Kg).

For &(K;), i € {10,11,12,13,14,15,18}, a gregarious )5 tree decomposition was obtained from
(1) - (7). O

Lemma 2.12. A gregarious )5 tree decomposition for each graph G € G = {K;} is admissible in

E(K;), for all i € {19,20,29,30,31,34, 35,36}

Proof. A gregarious )5 tree decomposition for & (K;), i € {19, 20, 29, 30, 31, 34, 35,36} can be derived
as follows:

(1)

(2)

Let K19 — K14 NP Klg \ K14. We then write gQ(Klg) = 52(K14) D gg(Klg \ K14). A gregarious
Vs tree decomposition for E(Kig \ K14) and E(K4) have been respectively derived in Lemmas
2.9 and 2.11. A gregarious Vs tree decomposition has been found for & (Kg).

Let Koy = Ky3 @ Koo \ K13. We then write E(Kag) = E2(Ki3) @ E2(Ka \ K13). A gregarious
Vs tree decomposition for (Koo \ K13) and E(K;3) have been respectively derived in Lemmas
2.9 and 2.11. Hence, we concluded that, &(Ky) has a gregarious Vs tree decomposition.

Let Kog = Kog @ Koo \ Ka9. We then write Ey(Kag) = Eo(Kog) @ E2(Kag \ Kog). A gregarious
Vs tree decomposition for Ey(Kag \ Kog) and E3(Ks) have been respectively derived in Lemma
2.9 and in the above Case 2. Our conclusion was that, &(Ks) has a gregarious )5 tree
decomposition.

Let Kgg = 3K10 D .[(107 10, 10- We then write gQ(Kgo) =3 52(K10) D EQ(KI(L 10, 10). A gregarious
Y5 tree decomposition for £ (Kg) and E2(Kqo,10,10) have been respectively derived in Lemmas
2.11 and 2.5. A gregarious Vs tree decomposition is obtained for & (K3p).

Let Kgl = 2K12 ) K7 Q) [(127 12,7+ We then write 52([(31) =2 gQ(K]_Q) ) 52(K7) ©® (92([(1271277).
A gregarious Y5 tree decomposition for E(K7), E(K12) and E2(K2,12 7) have been respectively
derived in Lemmas 2.10, 2.11 and 2.8. Consequently, & (K3;) is decomposed into a gregarious
Y5 tree.

Let K34 = 2K12 ©® Kl() D K12712710. We then write 82(K34) = 2 gg(Klg) D 52(K10) D
E2(Ki2,12,10)- A gregarious Vs tree decomposition for £ (K1), E2(Ki2) and E(Ki9 12, 10) have
been derived in Lemmas 2.11 and 2.8. A gregarious ); tree decomposition has been found for
82<K34>.

Let K35 = Kgo D K35 \ Kgo. We then write 52(K35) = EQ(K?)O) D 52<K35 \ Kgo). A gregarious
Vs tree decomposition for (K35 \ K3) and E(K3p) have been respectively derived in Lemma
2.9 and in the above Case 4. A gregarious Vs tree decomposition has been found for & (K3s).

Let K36 = 3K12 @D K12712712. Then, we write 52<K36) =3 52<K12) @D 52(K12’12712). A gregarious
Vs tree decomposition for Ey(K) and Ey(Ki2 12,12) have been respectively derived in Lemmas
2.11 and 2.5. A gregarious Vs tree decomposition has been found for Ey(Ksg).
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For &(K;), i € {19,20,29,30,31,34,35,36}, a gregarious )5 tree decomposition was obtained from
(1) - (8). O

Note 2.13. Further, in order to prove K,,(n) has a gregarious )5 tree decomposition when m =
5,6,7,10,11,12 (mod 8) and n is even, it is enough to prove that K,,(2) admits a gregarious )5 tree
decomposition. It is clearly stated in Lemma 2.3.

Lemma 2.14. A gregarious Ys tree decomposition is admissible in K,,(2) when m = a (mod 8),
a € {5,6,7,10,11,12}.

Proof. Consider the graph K,,(2) ~ &(K,,) and let m = 8s+a, a € {5,6,7,10,11,12}.

A non negative integer s can be categorized into 4 Cases: (i) s = 0,2 (mod 6), (ii) s =4 (mod 6),
(iii) s = 1,5 (mod 6) and (iv) s =3 (mod 6).

Case i: For s = 0 2 (mod 6), the graph K, decomposes as a copy of K,, s copies of Ks, 5 copies
of Ky g, and 225 ¢opies of Ks g 5. Therefore, &(Ky,) = E2(K, © s Ks @ 5 Ky g4 8) =
E(K,) @ SSQ(Kg) © 5 E(Kg8qa) ®* g2s & (Ks s 8). A gregarious Y5 tree decomposition for E(K,)
and & (Kg) have been obtained from the Lemmas 2.10, 2.11 and 2.4. Further more, the Lemma 2.5
has yielded a gregarious Vs tree decomposition for £ (Ks g g) . Also, the Lemmas 2.6 and 2.7 have

been used to obtain a gregarious Vs tree decomposition for &(Ky s o) . Consequently, it proves that
a gregarious )5 tree decomposition exists for E(K,).

Case ii: For s = 4 (mod 6), the graph K,, decomposes as a copy of K,, s — 4 copies of Ks, 5
copies of K&&a, 25 8 COpleS of Ky g s and 4 copies of Kjg \ Ks. Therefore, &(K,,) = E(K, &
(8—4)K8@§K8,8,a@ 23 8K8,8,8@4(K16\K8)) = &E(K,) @ (s —4)E(KR) @ 5 E(K3s8,4) ®
32’275’882([(&&8) @ 4& (K6 \ Kg). A gregarious Vs tree decomposition for & (Kjs g s) have been
obtained from the Lemma 2.5. Further more, a gregarious )s tree decomposition have been obtained
for £(Ks s o) from the Lemmas 2.6 and 2.7. Also, a gregarious Vs tree decomposition have been
obtained for & (K¢ \ Ks) from the Lemma 2.9. In addition with, a gregarious Vs tree decomposition
have been obtained for & (K,) and &(Ky) from the Lemmas 2.10, 2.11 and 2.4. Consequently, it
proves that a gregarious )5 tree decomposition exists for Ey(K,).

Case iii: For s = 1,5 (mod 6), the graph K, decomposes as a copy of K, s, *5= L copies of Kig, 2
copies of Ky g , and SQ‘% copies of Kg g g. Therefore, &(K,,) = E(Kur8 D 5+ K16 P == K8 8,a EB
52_% Ky 55) = E2(Kass) ® 52 E(Kig) D 5F Ex(Ks 5,0) D 52_28+2 &Ky s 8)- A gregarlous Vs tree
decomposition for & (K s s) have been obtamed from the Lemma 2.5. Further more, a gregarious

1

Y5 tree decomposition have been obtained for &(Kg s ) from the Lemmas 2.6 and 2.7. Also, a
gregarious Vs tree decomposition have been obtained for & (K, g) from the Lemmas 2.11 and 2.12.
In addition with, a gregarious )5 tree decomposition have been obtained for £ (Kg) from the Lemma
2.4. Consequently, it proves that a gregarious )s tree decomposition exists for 52( m)-

Case iv: For s =3 (mod 6), the graph K,, decomposes as a copy of K24, 552 copies of Kig, —3
COpleS of K g, and £235 copies of Kjg g.s. Therefore, &(K,y,) = Ea(Kaioa & 5° ’3 Kig® =2 Kg 8.a EB
2 _35 Ks s.8) = & a+24) & —352(K16) & —352(K8 8.a) B 2 g3s E(Ks s 8). A gregarlous Vs tree

decomposmon for £(Ks s s) have been obtained from the Lemma 2.5. Further more, a gregarious )5

tree decomposition have been obtained for £ (K s ,) from the Lemmas 2.6 and 2.7. Also, a gregarious
Vs tree decomposition have been obtained for & (K, y94) from the Lemma 2.12. In addition with, a
gregarious )5 tree decomposition have been obtained for £(Kg) from the Lemma 2.41. Consequently,
it proves that a gregarious )5 tree decomposition exists for Ey(K,).
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The Cases (i) - (iv) mentioned earlier will provide a gregarious Y5 tree decomposition for K,,(2).
[

Theorem 2.15. The occurence of a gregarious Vs tree decomposition for K,,(n) is possible only if
n’*m(m —1) =0 (mod 8).

Proof. Necessity: Given that | E(K,,(n)) | = m and | E()s) |= 4. To determine a gregarious
Vs tree decomposition for K, (n), the necessary condition for edge divisibility has been expressed as
2
|E|g§;5()7‘1)| =2 ”;(;Tl). That is, 8|n?m(m — 1). Tt can be written as n?m(m — 1) =0 (mod 8).
Sufficiency: The occurence of a gregarious Vs tree decomposition for K,,(n) has been described

in Lemmas 2.4 and 2.14. O

3. Conclusion

In this document, we present a complete and detailed solution to the problem of identifying the pres-
ence of a gregarious )5 tree decomposition in K,,(n). Decomposing K,,(n) into a Yy tree (gregarious
Yy tree) is generally a challanging task for k > 6.
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