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abstract

Electric shock accidents remain a major safety concern for distribution workers. Recent advancements

in video AI applications allow for detecting when workers cross safety lines, but determining their

height and the spatial distance between them and live equipment is still a challenge. This article

proposes a pre-control system using LiDAR, an edge processing module, and a warning module to

ensure safe operations in power distribution scenarios. The system scans the area in real time, uses

deep learning to identify objects like distribution stations, human bodies, high-voltage equipment,

and transmission lines in point clouds, and calculates the distance between operators and high-voltage

equipment. When this distance approaches or exceeds safety limits, the warning module issues voice

alerts. Experimental results show that this system signi�cantly reduces false alarms compared to

video-based methods, accurately measures distances, and provides timely warnings, making it a

practical solution for enhancing worker safety in power distribution operations.

Keywords: LiDAR, Calculation of point cloud spatial distance, Identi�cation of distribution station

area, Human body recognition, Homework behavior control

1. Introduction

Safety management on construction sites for distribution networks is crucial to protect the lives and

property of construction personnel. However, some workers lack strong safety awareness, leading to

violations of safety regulations, such as disregarding working height and voltage safety distances [5].

Additionally, supervisors often fail to e�ectively monitor and address potential hazards, resulting in
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accidents like electric shocks and falls [2]. To mitigate the impact of human factors in safety supervi-

sion, video AI detection systems have been explored. However, the relatively open construction sites

and distractions, such as passing citizens or obstructed cameras, often trigger false alarms, reducing

the reliability of video AI systems and diminishing the e�ectiveness of supervision [9, 3].

This paper presents a pre-control system for ensuring safe behavior in distribution network oper-

ations, utilizing LiDAR, gyroscopes, an edge computing module, and a warning module to address

distance and altitude detection issues [6]. The edge computing module collects LiDAR point clouds

in real time, using point cloud aggregation technology and tracking algorithms for object recognition.

Spatial distance measurement technology is employed to identify operators, the ground, distribution

network areas, and high-voltage equipment, while also measuring operating height and spatial dis-

tances. Dangerous behaviors during operations trigger reminders to alert workers, ensuring safer

operations and preventing accidents [8].

2. Basic Principle (Experimental Simulation)

2.1. Design Principles

2.1.1. Design Ideas. The pre-control device for ensuring safe operation behavior in distribution

network scenarios consists of seven modules: LiDAR module, tripod support module, gyroscope,

edge computing module, battery-powered module, con�guration and debugging tablet, and early

warning module. The LiDAR module, gyroscope, edge computing module, tripod, and battery-

powered module form the core of the pre-control device, with the external battery connected via

aviation quick connectors (see Figures 1, 2, and 3).

Fig. 1. The main body of the pre-control device

The edge computing module connects directly to the LiDAR via a network port and the gyroscope

via the RS232 serial port. It is also linked to the early warning module and debugging tablet

through shared Wi-Fi, enabling seamless data transmission for data collection, scene con�guration,

and alarm message communication [14, 13]. The edge computing module serves as both the bridge

and the brain of the device, responsible for point cloud collection, storage, target recognition, distance

measurement, and controlling the early warning module for operator alerts.
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Fig. 2. Con�guration of the debugging tablet

Fig. 3. Early warning module

Operators and work leaders, equipped with safety helmets containing early warning modules, re-

ceive timely alerts from the device. The pre-control device calculates the operator's ground clearance

and the spatial distance from high-voltage equipment. If the clearance exceeds 2 meters, the edge

computing module triggers the early warning module to remind the operator to wear a seatbelt

when working at height. If the spatial distance from high-voltage equipment falls below the safety

threshold, the module alerts the operator to the potential shock hazard [1, 11]. If there is signi�-

cant obstruction in the LiDAR's view for more than 3 seconds, the early warning module alerts the

station's control personnel.

The performance requirements of the system are summarized in Table 1.

2.2. Point Cloud Leveling

In 3D data processing and robot vision, aligning point clouds with the direction of gravity is a crucial

task. It helps reduce the complexity of data processing and improves the performance of subsequent

algorithms (see Figures 4 and 5).

1. Obtaining IMU Data

First, data must be acquired from the IMU (Inertial Measurement Unit). IMUs typically

contain sensors such as accelerometers and gyroscopes. Accelerometers measure the acceleration

of an object in three directions, including the acceleration component generated by gravity [7].



138 Wen et al.

Laser Band 905nm

Laser Class Level 1 (Eye Safe)

Laser Channel 144 lines

Measuring Range 190m at 10% re�ectivity

Ranging Accuracy ± 2cm

Single-return Data Rate 240,000 points/s (single echo), 480,000 points/s (double echo), 720,000 points/s (triple echo)

Field of View Vertical 77.2◦, Horizontal 70.4◦

Angular Resolution 0.03◦ horizontally, 0.28◦ vertically

Image Resolution 1200W (3840*2880)

Sensor Type 1/2.3" Progressive Scan CMOS

Minimum Illumination Color 0.01 Lux @(F1.2, AGC ON)

Dynamic Range 72db

Lens 4.3 mm, F2.0

Field of View (Lens) 98◦ Horizontal, 82.8◦ Vertical, 45.1◦ Vertical, 98◦ Diagonal

Angle Adjustment Manual: Tilt 0◦, 15◦, 25◦, 35◦, Electric: Pitch -45◦-45◦, Horizontal 0-360◦

Gateway Performance CPU: 4 cores and 8 threads, frequency 2.8-4.70 GHz, memory: 16GB, hard disk: 1TB M.2

Gyroscope Two-axis gyroscope

Satellite Positioning Beidou, GPS

Wi-Fi Sharing 802.11 (a/b/g/n/ac), dual-band 2.4G+5.8G

Mobile Communication 5G, backward compatible with 4G

SIM Card Nano-SIM

Events Operation safety distance detection, cross-regional operation detection, and helmet wearing detection

Alarm Linkage Helmet alarm (sound, vibration, light), on-site tablet alarm, alarm message reporting platform

Interface 15-pin waterproof quick connector *1, RJ45 waterproof quick connector *1

Button Waterproof power button

Power Supply DC12V

Power Consumption Terminal: ≤75W, Gimbal: ≤5W, Motion: ≤50W
Alarm Size 200mm (Length) x 120mm (Height) x 220mm (Depth)

Terminal Size 60mm (Length) x 50mm (Height) x 20mm (Depth)

Weight Terminal: 4.0kg, Gimbal: 3.5kg

Table 1. Performance Requirements

2. Estimating the Direction of Gravity

When the IMU is at rest or near stationary, the output of the accelerometer mainly re�ects

the e�ect of gravity. The gravitational acceleration component is extracted using �ltering

algorithms (such as Kalman �lter, complementary �lter, etc.), resulting in a three-dimensional

vector representation of the gravity direction.

3. Point Cloud Preprocessing

Before aligning the point cloud with the direction of gravity, preprocessing is required. This

may involve �ltering, downsampling, denoising, etc., to reduce redundant information and noise

in the point cloud, improving the accuracy and e�ciency of subsequent processing [10].

4. Aligning the Point Cloud with the Direction of Gravity

Aligning the point cloud with the direction of gravity involves a coordinate transformation.

The speci�c steps are as follows:

(i) Calculate Rotation Matrix: Compute a rotation matrix that transforms the point cloud

from the original coordinate system to the reference coordinate system. The rotation

matrix can be obtained using quaternion, Euler angles, or directional cosine matrices.

The estimated gravity direction vector is used to calculate the rotation matrix.
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(ii) Apply Rotation Matrix: Apply the rotation matrix to each point in the point cloud,

transforming it from the original coordinate system to the reference coordinate system.

In this way, each point in the point cloud will be aligned with the direction of gravity.

Fig. 4. Original coordinate system point cloud (before leveling)

Fig. 5. Reference coordinate system point cloud (leveled)

2.3. Target Identi�cation & Tracking

The point cloud segmentation algorithm based on the adaptive distance threshold uses multi-feature

matching to achieve target recognition. The extended Kalman �lter (EKF), based on the Constant

Turn Rate and Acceleration (CTRA) model, is employed to update and associate the target state,

thereby reducing the impact of missed detections on target tracking [12]. The overall �ow of the

method is shown in Figure 6.

2.3.1. Target Identi�cation & Tracking. Point cloud segmentation based on the distance thresh-

old can be expressed as:
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Fig. 6. Method �ow

d(Pn−1, Pn) > dth, (1)

where d(Pn−1, Pn) represents the distance between two adjacent points in the original point cloud,

which is the distance threshold. In general, the greater the distance between the target and the

sensor, the larger the distance between adjacent points on the target surface, due to the �xed angular

resolution of the LiDAR, as shown in Figure 7. The distance threshold is related to the radial distance

of the point and can be expressed as:

dth = rn−1
sin(∆φ)

sin(λ−∆φ)
+ ε, (2)

where rn−1 is the radial distance of the point pn−1, ∆φ is the angular resolution of the LiDAR, λ is

the angular threshold used to calculate the maximum spacing, and ε is the sensor error.

Fig. 7. Clustering algorithm based on distance threshold

However, using the above clustering algorithm, point clouds located on surfaces that are relatively

parallel or perpendicular to the direction of the laser pulse on the same target may not be segmented

into the same target. To improve this, |α− β| is used to represent the relative relationship between

the positions of two adjacent points and the laser beam. If |α − β| is less than the set angular

threshold, and λ is considered such that the two points are on a surface relatively perpendicular to

the laser beam, a larger value of λ is set to obtain a smaller dth distance threshold. If |α − β| is
greater than the set angular threshold, a smaller dth is set to obtain a larger λ distance threshold.
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2.4. Segment Fitting

The line segment �tting is performed using the endpoint iterative �tting algorithm (Itratif, End-

point�tting, Pu) on each point cloud cluster after clustering. This method connects the �rst and last

data points in each point cloud cluster to form a line segment by calculating the maximum distance

of other data points from this line segment. If the maximum distance exceeds the set threshold,

the line segment is divided into two line segments at the data point corresponding to the maximum

distance. This check is repeated until all line segments in the point cloud cluster no longer require

division [4].

In the actual operating environment, occlusion of the target part may a�ect the clustering of point

clouds, causing the data points of the same target to be divided into two point cloud clusters. In

this paper, the merging of point cloud clusters is completed by comparing the spacing between the

clusters and the slope of their line segments. As shown in Figure 8, the upper human target is

occluded, and the corresponding point cloud is divided into two parts. The last data point of the

point cloud cluster on the left side of the target is connected with the �rst data point of the point

cloud cluster on the right to form a line segment. If the distance of the line segment is less than the

set distance threshold, and the di�erence between the slope of the left and right point cloud clusters

is less than the set slope threshold, the two point clouds are merged, and the line segment is re�tted.

Fig. 8. Point cloud clustering and line segment �tting

2.4.1. Target Recognition. After point cloud clustering and line segment �tting, the operator

target can be represented by one line segment, the machine by two line segments, and the vehicle by

two line segments. The following characteristics are de�ned:

1. The length of the line segment for a single segment target.

2. I1, I2, representing the lengths of the two line segments for a two-segment target.

3. varr represents the distance variance of the point cloud cluster.

A large number of point cloud data are collected and processed according to the above method,

with each target category manually labeled. The feature reference intervals of di�erent types of

targets can be obtained, and target type identi�cation can be achieved by comparing the feature set

of an unknown target with the generated reference intervals for each type of target.
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2.4.2. Target Tracking. For the detected target at each moment, it is necessary to associate it

with the historical target in order to �lter the target state. The Extended Kalman Filter (EKF),

based on the Constant Turn Rate and Acceleration (CTRA) model, is used to predict the target

state:

x−
k = Axk−1. (3)

The system state is {x, y, a, v, α}T , which successively represents the lateral distance, longitudinal

distance, velocity direction, velocity, and acceleration of the target in the coordinate system of the

pre-control device. Here, A is the state transfer matrix. The speed of the pre-control device and the

heading angular velocity are measured and provided as input to the �lter as control quantities.

Fig. 9. Schematic of target association

As shown in Figure 9, the target state at time k is predicted based on the target information

at time k − 1. There are two measurement targets at time k. If the Euclidean distance between

the calculated and estimated position of current target 1 is less than the set distance threshold, the

corresponding target is associated with the target at time k−1 and identi�ed as the same target. The

target measurement is then used to update the target state. For new targets that are not associated

with existing targets, the system state and the related error matrix of the Kalman �lter are initialized

and expanded, which is used to predict the target state and target association at the next moment. If

a historical target is not associated with the target at the current time, state estimation will continue

to be performed using the information from the previous time until the continuous unassociated time

exceeds the set threshold, at which point the target is eliminated.

2.5. 3D Cube Bounding Box

The construction of the Oriented Bounding Box (OBB) requires �rst determining a suitable direction.

The average of the coordinates of all vertices of the target object is calculated, which serves as

the center of the OBB cube's bounding box. Next, the covariance matrix is constructed, and the

eigenvalues and corresponding eigenvectors are obtained to construct the OBB bounding box. The

speci�c process is as follows:

m =
1

3n

n∑
i=1

(
ai + bi + ci

)
, (4)

where ai, bi, and ci represent the 3 vertices of the i-th triangle of the target object, and n is the

number of vertices.
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1) The covariance matrix M is constructed from the mean value:

Mjk =
1

3n

n∑
i=1

(−−→
alȷa

l
k +

−−→
alȷa

l
k +

−−→
alȷa

l
k

)
, 1 ≤ j, k ≤ 3. (5)

2) As shown in Figure 10, the eigenvalues and corresponding eigenvectors of the matrix M are

solved. The eigenvectors are normalized and used as the three coordinate axes of the OBB

cube bounding box. Finally, the target object is projected along the three coordinate axes, and

the OBB cube bounding box is constructed according to the maximum and minimum values

of the projection distances. Figure 10 illustrates the OBB envelope box for both the bike and

bust models.

Fig. 10. The OBB envelope box for both bike and bust models

2.6. Height Calculations

Based on the point cloud data of the reference coordinate system after leveling, the operator's point

cloud is extracted through point cloud clustering, line segment �tting, and target recognition. The

target object frame is selected using the 3D cube bounding box, and the center point coordinates of

the bounding box are taken. The distance between the center point and the LiDAR, along with the

angle ̸ 1 with the horizontal plane, are calculated through the XYZ values. H1 is calculated using

the Pythagorean theorem, and the height of the operator H is set to H2 at the center point of the

LiDAR of the pre-control device:

H = H1 +H2 = C1 · sin(̸ 1) +H2.

2.7. Calculation of Spatial Distance

As shown in Figure 11, through target recognition training, high-voltage equipment such as distribu-

tion network stations, transformers, transformer terminals, high-voltage drop-out fuses, high-voltage

arresters, and high-voltage down conductors are identi�ed. Before the operation, the scene of the

station area is initialized, and the point cloud of the operation area is collected. The identi�ed high-

voltage equipment is selected, and the coordinate subset of the edge points of the aggregate point

cloud (reference point cloud) for each high-voltage device is extracted, allowing for voltage safety

distance calibration. When the operator enters the station area, the recognition algorithm identi�es

the operator and tracks it. The distance between the edge point cloud of the comparison point cloud

and the edge point coordinates of the calibrated high-voltage equipment aggregation point cloud
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(reference point cloud) is calculated. The nearest neighbor distance from each point cloud in the

comparison point cloud to the reference point cloud is also calculated. The octree structure can be

used to improve the search rate of neighborhood point clouds.

Fig. 11. The octree structure

2.7.1. Octree Structure. An octree is a tree-like data structure used to describe 3D space and

is most commonly used to divide three-dimensional space. The octree subdivision divides the cube

containing the point cloud into 8 equivalent subcubes, and each subcube undergoes this recursive

partitioning process (see Figure 12) until the set octree depth is reached.

Fig. 12. Recursive subdivision based on octree

An octree structure is a form of data list that encodes the absolute positions of points at all

subdivision levels and is suitable for spatial indexing. Two points within the same cell at a given

subdivision level have the same (partial) association code. The code consists of a 3-bit (0-7) set

(see Figure 13), representing the relative position on each subdivision level cell. This allows for fast

binary search and point cloud space scanning by sorting the code, making octree structure coding

more e�cient, and enabling quick searching of all points in a code or set.

Fig. 13. Octree coding
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2.7.2. Spatial Distance Calculation. The distance between two 3D coordinate points can be

calculated using the Euclidean distance formula. Suppose that the reference point cloud P1 and the

comparison point cloud P2 in 3D space have coordinates P1(x1, y1, z1) and P2(x2, y2, z2), respectively.

Then, the distance between the two points can be calculated by the following steps:

(a) Calculate the square of the di�erence on each coordinate axis: First, calculate the

di�erence between the coordinate values of the two points on the X, Y, and Z axes, and square

these di�erences respectively. This means calculating (x2 − x1)
2, (y2 − y1)

2, and (z2 − z1)
2.

(b) Sum: Add the sum of the three squares obtained above, i.e., (x2−x1)
2+(y2−y1)

2+(z2−z1)
2.

(c) Square Root: Finally, take the square root of the sum from the previous step:√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2,

which gives the straight-line distance between the two points.

This calculation formula is based on the generalization of the Pythagorean theorem in three-

dimensional space and applies to any two points in three-dimensional space, regardless of their

position.

3. Analysis and Discussion

The operation of the distribution network station area in a certain area was taken as the experimental

object (see Figure 14).

Fig. 14. The operation of the distribution network station area in a certain area

The device is used to detect the distribution network operation area, and the identi�cation ability

of the device is analyzed through the algorithm detection results.

According to the truth value and the target recognition results, the above indexes are obtained

and compared with a feature-based target recognition method. The comparison of various target

recognition results is shown in Table 2. Compared with the methods in the references, the proposed

method can provide more accurate and reliable target recognition results for the three types of
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targets. Overall, the recognition accuracy of the proposed method is improved by 3.5%, and the

recall rate is increased by 5.8%.

Target category Target Numbers TPS FPS FNS P (%) R (%) TPS FPS FNS P (%) R (%)

Personnel 105 100 3 5 97.1 95.2 92 15 13 86.0 87.6

Equipment 152 131 24 21 84.5 86.2 122 27 30 81.9 80.2

Vehicle 187 147 35 40 86.8 78.6 138 53 49 72.3 73.8

All targets 444 378 62 66 85.9 85.1 352 75 92 82.4 79.3

Table 2. Evaluation of target recognition results

According to the surface of the device detection and on-site manual measurement results, the

detection deviation of the personnel working height is kept within 10 cm. The surface of the device

detection and on-site manual measurement results are shown in Table 3.

Status Device detection (cm) Manual measurements (cm) Deviation (cm)

The �rst time Standing erect 245 249 4

The second time Standing erect 368 360 8

The third time Standing erect 233 230 3

The fourth time Standing erect 254 258 4

The �fth time Standing erect 274 271 3

The sixth time Stooping 243 248 5

The seventh time Stooping 258 252 6

The eighth time Stooping 301 296 5

The ninth time Stooping 266 264 2

The tenth time Stooping 272 275 3

Table 3. Comparison table of height measurements

According to the spatial distance detection function between the operator and the high-voltage

equipment, the detection deviation of the spatial distance between the operator and the high-voltage

equipment is kept within 5 cm based on the surface of the device detection and on-site manual

measurement results for the 10 test results (see Table 4).

Device detection (cm) Manual measurements (cm) Deviation (cm)

The �rst time 68 69 1

The second time 69 68 1

The third time 65 67 2

The fourth time 60 62 2

The �fth time 64 65 1

The sixth time 69 65 4

The seventh time 67 68 1

The eighth time 66 65 1

The ninth time 63 62 1

The tenth time 60 63 2

Table 4. Comparison table of distance measurements
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4. Conclusion

Distribution network operation safety accidents can lead to personal injuries, economic losses for

enterprises, and, in the case of major accidents, pose a threat to public safety, cause public panic,

and a�ect social stability, resulting in signi�cant social harm and impact. However, there are cur-

rently very few distribution network operation safety control devices in use. The operation safety

control device designed in this paper provides more accurate prompts and comprehensive protec-

tion for distribution network operators. At the same time, it has characteristics such as intelligence,

convenience, stability, reliability, economic viability, and environmental protection. It is highly appli-

cable and aligns with current development trends, as well as the safety needs of distribution network

operations. The device boasts a high degree of integration, with simple deployment, and can be

widely used in environments such as transmission hanging lines, distribution network hanging lines,

distribution network station areas, substations, booster stations, converter stations, and high-voltage

operating environments like power plant switchyards. It can monitor external damage behaviors and

operational safety behaviors, such as mechanical construction, personnel operation, and temporary

construction. This helps to prevent electric shock accidents and e�ectively protect the operational

safety of transmission lines and high-voltage main equipment.
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Research on the application of on-site operation safety behavior pre-control device based on spatio-
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